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Nowadays, microbial communities are frequently monitored

over long periods of time and the interactions between their

members are explored in vitro. This development has opened

the way to apply mathematical models to characterize

community structure and dynamics, to predict responses to

perturbations and to explore general dynamical properties such

as stability, alternative stable states and periodicity. Here, we

highlight the role of dynamical systems theory in the exploration

of microbial communities, with a special emphasis on the

generalized Lotka–Volterra (gLV) equations. In particular, we

discuss applications, assumptions and limitations of the gLV

model, mention modifications to address these limitations and

review stochastic extensions. The development of dynamical

models, together with the generation of time series data, can

improve the design and control of microbial communities.
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Introduction
Microbial communities are not static over time; abun-

dances of members fluctuate from one measured time point

to the next, sometimes drastically so. Longitudinal studies

of host-associated and environmental microbiota have

revealed several cases of complex dynamics, including

periodicities, chaos and alternative stable states [1,2��],
as reviewed in [3]. Moreover, thanks to advances in
www.sciencedirect.com 
sequencing techniques, the number, length, and resolution

of microbial community time series are all increasing rap-

idly; time series may cover a year or more, with monthly,

weekly or even daily sampling intervals [1,4,5]. However,

while we are gaining an ever more detailed picture of the

composition and dynamics of many microbial communi-

ties, we still understand little of the rules that govern how

these communities change over time.

Dynamical systems theory is a well-developed branch of

mathematics that describes the change of complex sys-

tems such as microbial communities over time, and which

is now increasingly applied to sequencing data [6–8]. In

brief, the time development of a dynamical system, here

the species composition of the community, can be

described by a set of ordinary differential equations

(ODEs) that encode the rules according to which the

system changes. In some cases, prior biological knowl-

edge of the system is sufficient to formulate these rules,

while in others they can be derived from time series data.

Dynamical systems theory highlights the conditions for

the emergence of complex behavior and provides rigorous

definitions of stability (see Box 1). The development and

analyses of dynamical models thus allow microbial ecol-

ogy to go beyond simple descriptions of community

composition and statistical correlations, towards a better

understanding of community dynamics.

Ordination plots visualize movement through
community space
Microbial community time series are frequently visual-

ized in ordination plots, where each sample is represented

by a point and consecutive samples are connected by

arrows (e.g. [9–11]). Ordination methods, such as

Principal Coordinates Analysis (PCoA), display sample

similarity computed from the high-dimensional species

composition in a lower, typically two-dimensional space.

Since microbial community time series often consist of

rarefied counts or relative abundances and are therefore

compositional, the sample similarity needs to be assessed

by methods that have been designed for compositional

data, such as the Aitchison distance [12]. Bray-Curtis

dissimilarity is also a suitable option, yielding similar

results for absolute and relative abundances [13]. Alter-

natively, the data can be transformed with a log ratio (e.g.

the centered log ratio as in [14]).

In dynamical systems theory, the phase space represents

all possible system states. A PCoA plot can be interpreted

as a representation of the phase space. The points
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Box 1 What does ‘stability’ mean?

Many theoretical works in ecology focus on ‘stability’. However, the

definition of this property varies from author to author. It is therefore

important to distinguish them:

� Linear asymptotic stability: In the theory of non-linear dynamical

systems, stability is determined by the behaviour of the system in

response to a small, punctual perturbation in the variables (i.e. a

change in abundance of some species in the present context) (see

e.g. [31,65]). If, following the perturbation, the composition of a

microbial community returns to its initial (steady) state, this state

will be stable. In contrast, if the perturbation amplifies (meaning

that the system diverges from its initial state), this state is unstable.

In addition, stability is a local property: it does not imply anything

about the long-term behaviour of the system and may not be valid

for large perturbations.

� Persistence/permanence: These definitions of stability pertain to

the long-term behaviour of a community. Both imply that a com-

munity will always maintain the species it started with, regardless

of the size of the perturbation and even if it does not return to its

original state [66], however, permanence is the stricter definition

requiring that the boundary of the state space is a repeller:

meaning if ever any species density approaches too close to zero,

it will again begin to grow- and thus formally no species can ever

go extinct [67].

� Temporal stability and robustness: Stability of an ecological

system is sometimes assessed by the level of variability displayed

by the community over time [68]. This variability may be attributed

to stochasticity. A related definition refers to how much the com-

position of a system depends on small environmental changes,

which are typically taken into account in the model parameters. If

the community tends to remain constant over time or across

parameter changes, it will be considered more stable. On the

contrary, if the abundance of some species is sensitive to para-

meter changes, the system is considered less stable. This concept

of stability is a measure of robustness — or resistance — to noise

and to parameter values, and can be quantified by sensitivity

analyses (parameters) or stochastic simulations (noise).

� Structural stability: A system is more structurally stable than

another if its dynamical behaviour (e.g. the coexistence between

several species) is maintained over a larger range of parameter

values [69,70].
connected by arrows correspond to the trajectory of the

system through the phase space (or community space, for

simplicity). The community’s movement through com-

munity space can be analyzed to test for instance whether

the community moves randomly or tends towards a cer-

tain direction, or whether community composition

changes more strongly during perturbation periods,

implying larger jumps through community space. Figure 1

illustrates trajectories for ocean and gut microbial com-

munities, which provide examples of periodic behavior

(Figure 1a) as well as the tendency to remain in the same

region of the community space, suggesting the presence

of a stable state (Figure 1b). While the gut community in

Figure 1b returns to its stable state after a perturbation,

thereby demonstrating resilience, a gut community from

another person appears to switch to a second state upon

perturbation (Figure 1c). While the phase space plot

visualizes attractors such as stable states, alternative plots

such as recurrence plots and periodograms serve to

explore other aspects of the behavior of dynamical sys-

tems, such as periodicity.
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Recently, the Anna Karenina principle (AKP) of dysbiotic

communities has been put forward [15,16�], which states

that dysbiotic communities tend to exhibit greater inter-

subject variability than the ‘reference’ community in

healthy hosts. The observation that perturbation periods

contain larger jumps than are present before the pertur-

bation (Figure 1d) suggests a dynamical formulation of

the AKP, where perturbed communities tend to vary

more strongly over time than healthy communities.

Although experimental evidence supports this dynamic

version of the AKP [17�], it remains to be tested

systematically.

What can we learn from community models?
Mathematical approaches provide the means for system-

atic quantitative characterization of observed patterns and

their underlying mechanisms, and have a long-standing

history in ecology (e.g. [18,19]). While a number of

models have been proposed in microbial community

ecology (reviewed e.g. in [20]), we will discuss in partic-

ular the generalized Lotka–Volterra (gLV) model, since it

has become one of the most popular microbial community

models to date (e.g. [6,21]).

The gLV model is a classical ordinary differential equa-

tions (ODEs) model that characterizes the dynamics of a

multi-species system. It describes the change over time of

a population of N species as a function of their intrinsic

growth rates and the interactions between species (see

the supplement). Interactions can be unidirectional (spe-

cies i affects species j, but not the other way round; e.g.

commensalism) or reciprocal (species i affects species j
and vice versa; e.g. competition and parasitism).

Together, these interactions encode the community net-

work. Thus, the gLV model can capture a number of

commonly encountered network structures, including

food chains, modularity, scale-freeness and small-world

networks (e.g. in [22,23]).

The utility of the gLV model for studying microbial com-

munities is twofold: it offers a convenient tool to interpret

existing empirical data, and provides a framework to make

broader predictions about the factors that govern microbial

communities’ stability and dynamics. An increasing num-

ber of methods have been developed with which to fit gLV

models to large-scale longitudinal (and in certain cases,

cross-sectional) data [7,8,24,25]. In these studies, observed

data are used to assign values to the intrinsic growth rates

and interspecies interactions associated with each member

of a microbial community. Thus, one can determine not

only how each species’ abundance changes over time, but

how this change is influenced by each of the other members

of the community. Through learning these parameters,

researchers have been able to identify members of micro-

bial communities that play important roles both for broad

scale community properties (e.g. keystone species that

influence many other community members [7]) and for
www.sciencedirect.com
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Figure 1
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Ordination plots visualize movement through community space. Community dynamics are visualized with ordination plots computed with R

package vegan using Bray Curtis dissimilarity. Panel (a) depicts the seasonal variation of the English Channel community from 2003 to 2008 [1],

where warm seasons are colored in green (April to September) and cold seasons in red (October to March). Two distinct community states appear

in the warm season, which group years 2003, 2005 and 2006 on the one hand and years 2004 and 2008 on the other and which are bridged in

the cold season. The trajectory followed in 2007 differs from those of the other years. Samples are labeled by both month and year (e.g.

9.08 = September 2008). Panel (b) shows the trajectory of the gut community of individual A before and after perturbation by traveling and diarrhea

[5]. The perturbation periods are marked in red, labels refer to days since the start of the measurements. The community stays within a narrow

region of community space until pushed away by the first perturbation. After the perturbations, the community returns to this region (stable state).

In panel (c), the trajectory of the gut community of individual B is shown [5], with a Salmonella infection. Highlighted in red and labels referring to

days since the start of the measurements. The perturbation in this case appears to push the community towards a second state. Panel (d) depicts

a box plot of the jump lengths for the gut community of individual A. Although the average jump length during the perturbation periods is not

significantly larger, the perturbed jump length distribution has a higher standard deviation, since it contains the longest jumps. All data were

rarefied (to 4623 reads for the English Channel and 10 000 reads for the stool data). Stool data were in addition interpolated with the stinepack R

package (function stineman) to equalize sampling intervals. Small negative values resulting from interpolation were set to zero. Because of a long

sampling gap, the last sample for the stool data set B was omitted.
specific health-related purposes (e.g. species that inhibit

known pathogens [6]).

Fitting gLV models to large scale community data is

particularly useful when studying diverse natural
www.sciencedirect.com 
communities where it is challenging to manipulate the

communities themselves or to culture individual mem-

bers — as is often the case for host-associated microbiotas.

However, such approaches typically have strict sampling

requirements. They assume that measurements have been
Current Opinion in Microbiology 2018, 44:41–49
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taken regularly and are sufficiently frequent to resolve the

dynamics [26]. For the parameterization of the discrete

gLV, Fisher and Mehta recommend that the sample num-

ber should be at least equal to the square of the taxon

number [7]. Moreover, in practice, only the most abundant

taxa are selected for dynamical modeling, potentially miss-

ing the role of important but low abundance community

members [7,8]. Alternatively, Cao and colleagues suggest

to parameterize the gLV from several short time series

collected for different initial conditions [27]. However,

these approaches will fail to capture any features driving

community change that are not observed, for example,

environmental change.

An alternative approach can be applied when studying

simpler, easily cultured communities. Here each inter-

species interaction is parameterized individually, for

example through culturing each community member in

isolation and in pairwise co-cultures. Once the gLV

parameters have been determined, these can be used

to simulate microbial dynamics in silico — for example to

predict how more complex communities might behave.

Such approaches have been used in order to predict

community stability and invasibility [28��], and to study

the role of higher order interactions within microbial

communities [29,30].

The above examples outline methods by which gLVs can

be used to inform studies of specific empirically observed

microbial communities. However, gLV models can also

generate broader predictions concerning general micro-

bial community dynamics. In this approach a community

property of interest is defined mathematically, as is the

correspondence between changes to the biology of a

microbial community and changes to the parameters of

the gLV model. By systematically screening the parame-

ter values of the gLV model one can then determine how

each of the features of a microbiota individually influ-

ences the community property of interest, such as stabil-

ity (see Box 1 for a few definitions of stability and

Figure 2a for their illustration). Theoretical approaches

and numerical simulations can then be used to study for

example the impact of the species number and the

interaction density (connectivity) on the survival rate

(Wigner-May theorem, Figure 2b), or how interspecies

cooperation affects microbiome stability [31,32]

(Figure 2c). Moreover, such theoretical insights are not

solely limited to properties of the communities them-

selves; systematically varying and simulating gLVs has

also been used as a method to assess the validity of

different methodological approaches for studying com-

plex microbial communities [13,21,33,34].

Assumptions and limitations of the
generalized Lotka–Volterra model
While the gLV model offers a range of applications for

studying microbial communities, it also has a number of
Current Opinion in Microbiology 2018, 44:41–49 
key limitations. First, it can only describe pair-wise

interactions and thus fails to capture modulating effects

that a third species may have on an interacting pair, for

example, when a cross-feeding relationship between two

species is weakened by the production of the exchanged

metabolite by a third species. Second, it does not take

immigration from surrounding communities or environ-

mental effects such as variable temperature or spatial

structure into account. Third, it assumes that populations

are homogeneous. Fourth, interaction strengths are sup-

posed not to change over time. Fifth, interaction strengths

are assumed to be additive, which implies that the gLV

model does not differentiate well between an interaction

that is crucial for survival of a species and one that merely

boosts its growth. Finally, interactions are assumed to be

bilinear, that is, the growth rate of a species will change

proportionally to the abundance of its interaction partner.

However, in the real world, the growth rates often satu-

rate. For instance, when the concentration of a substrate

produced by a cross-feeding partner is very high, the

enzyme activity rather than the substrate concentration

limits the rates of biochemical reactions. At that point, a

higher abundance (implying a higher substrate concen-

tration) will no longer benefit the interaction partner.

These limitations likely explain why not all experimental

time series are well described by the gLV model. For

instance, some time series show greater variability or even

a shift to another community state after a short (transient)

perturbation (e.g. [35]). However, when using the gLV to

simulate the response of a large community at steady state

to a transient perturbation that does not kill any of the

species, the community typically returns monotonously

(i.e. without fluctuations) to its initial state (Box 1 and

Figure 3a).

A number of extensions have been proposed to overcome

these limitations. Momeni and colleagues proposed adap-

tations of the gLV equations to better capture cross-

feeding [36�]. More precisely, they suggest modifications

to make the gLV model consistent with mechanistic

models that explicitly describe the interaction mecha-

nism through exchanges of chemical compounds. Haege-

man and Loreau added an immigration term to the gLV

[37], whereas Stein and colleagues included a term to

model the response to an antibiotic perturbation [8]. Dam

and colleagues take the impact of the environment on

lake communities into account by multiplying growth

rates with environmental variables [38�]. In contrast to

gLV-based models, individual-based modeling (IBM)

describes communities at the level of individuals instead

of populations, which allows to relax the assumption of

homogeneous populations and to take spatial structure

into account (e.g. [31,39]).

Although sets of parameter values leading to complex

dynamics such as chaos (characterized by an apparent erratic
www.sciencedirect.com
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Figure 2
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Concepts of stability and the impact of community properties on stability. Stability is often considered to be critical for microbial community

function, particularly in host-associated microbiotas [68]. (a) To understand the factors that drive community stability one must first define

‘stability’ of an ecosystem. We review different definitions of stability in Box 1, and illustrate them here. In dynamical system theory a commonly

considered metric is linear asymptotic stability, which asks whether a community will return to its original steady state following a small

perturbation. Other definitions such as permanence or persistence require that a community will always maintain the species it started with.

Temporal stability quantifies variability across time. Finally, a community is more structurally stable than another if its species coexist for a greater

range of parameter values. (b) The species number and the connectivity (density) of the interactions affect the empirical persistence of the

community, calculated here as the fraction of the initial species in a community that survive throughout a gLV simulation. The random interaction

strengths are drawn from a Normal distribution of mean 0 and standard deviation 0.2. The survival rate is greater when there are fewer species or

less densely connected species. The black line indicates the theoretical transition to instable communities [18,65]. The color code reflects the

proportion of surviving species. (c) The ratio of cooperative versus competitive interactions affects the (linear asymptotic) stability of the non-trivial

steady state (associated to the coexistence of all species). Here we gradually increase the number of cooperative interactions within an otherwise

competitive host-associated community. Stability, here quantified as �l (where l is the leading eigenvalue of the matrix representing all pair-wise

interactions), decreases with increasing cooperation [31].
dynamics and a sensitivity on initial conditions) can be found

in small-scale systems (e.g. [40,41]), those behaviors occur

very rarely in arbitrarily parameterized large-scale systems.

Moreover, the presence of multi-stability (the existence of

more than one stable state where all species coexist in the

same conditions) was never reported in the standard gLV

model. However, when relaxing the linearity assumption by

introducing non-linear growth functions, the gLV can simu-

late higher variability after a perturbation (Figure 3b).

Another variant of the gLV model with multiplicative
www.sciencedirect.com 
interaction  terms can be parameterized to exhibit multi-

stability and perturbation-induced switches between alter-

native stable states (Figure 3c) [42].

While the non-linear variants of gLV capture complex

behavior better than the classical gLV, they also come with

more parameters and are therefore harder to fit to the data

and to analyse. For instance, to model the interaction mech-

anism on the molecular level, knowledge about exchanged

metabolites and their kinetic parameters is required, which
Current Opinion in Microbiology 2018, 44:41–49
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Figure 3
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Extending gLV with non-linear growth functions allows simulating complex behavior. Time series generated with the original gLV model and two

variants. Perturbation periods are colored in gray. (a) In the absence of species loss, the original gLV model quickly returns to the steady state

after a perturbation. (b) When the growth rates are additive non-linear functions of the other species, larger (transient) variation can be the

consequence of a perturbation. (c) When the growth rates are the product of nonlinear inhibitory functions of the other species, multi-stability can

occur [42]. In this simulation, the perturbation induces a switch to another community state that remains after the end of the perturbation. (d)

Principle of multi-stability: A perturbation that increases a control parameter such as a growth rate beyond a tipping point (black circle) induces a

community switch. The original community state can only be restored when the control parameter is lowered below another tipping point. If the

control parameter is only lowered to its original value, the alternative state is preserved (hysteresis). Details about the simulations are given in the

supplement.
canbederivedfrommetaboliteconcentrations followedover

time. In general, when selecting a model, one must strike a

balance between realism and the ability to systematically

and comprehensively analyse the system of interest.

The gLV and its variants illustrate how rich and complex

dynamical behavior may emerge from simple pairwise

interactions between community members. If species

interactions are not relevant for community dynamics

in a particular community, the neutral model [43,44]

may be considered. The neutral model assumes that

the species are ecologically equivalent in terms of fitness,

and the observed fluctuations in species abundances can

be explained by purely stochastic variation. In the neutral

model, interactions with other species are not needed to

characterize changes in species abundance, and the

dynamics of each species is governed essentially by
Current Opinion in Microbiology 2018, 44:41–49 
stochastic variation proportional to species abundance

and exchanges with a meta-population. The neutral

model can be used as a null model for testing alternative

models of community variation or as an approximation for

community dynamics; it can thus serve to study the

relative importance of various potential ecological mech-

anisms in driving community variation [45]. Most of the

available implementations for testing the neutral hypoth-

esis have been designed for cross-sectional observations

(e.g. [46]), but a novel covariance-based method for

longitudinal time series was proposed recently [47].

Whereas species variation in the neutral model is stochas-

tic, the gLV model is deterministic, that is, the future

community state is entirely determined by the preceding

community state. We will next discuss ways to account for

stochastic behavior.
www.sciencedirect.com



Microbial communities as dynamical systems Gonze et al. 47
Accounting for uncertainty
Uncontrolled biological and technical variation is inher-

ently present in experimental community data. This can

pose considerable challenges for modeling. Often only a

subset of the relevant variables can be directly observed,

and a limited sample size provides insufficient informa-

tion of the underlying generative processes. Stochastic

factors and measurement errors add uncertainty to model-

ing and inference. Explicitly modeling the uncertainties

can lead to more accurate inference and predictions when

the model assumptions, such as symmetry or overdisper-

sion, are valid. For instance, if symmetric noise models

are used for skewed data, parameter estimates can be

biased [48,49]. Furthermore, certain models, such as the

Gamma-Poisson (negative binomial) or Dirichlet-

Multinomial [15], can perform model averaging, which

can also improve robustness and predictive performance

[50]. Hence, although modeling of uncertainties is often

seen as a tool for obtaining more accurate confidence

intervals, it can be critical for unbiased modeling and

predictions.

Stochastic differential equation (SDE) models constitute

a class of differential equation-based models that

integrate stochastic processes into the deterministic

description. Stochastic processes provide the means to

characterize richer stochastic variation, where the values

are not independent but exhibit a specific dependency

structure over time. In SDE models, one or more of the

terms are stochastic processes. The Wiener process is a

common example, which provides a model for Brownian

motion [51,52]. The values of a Wiener process are not

independent, but the difference between two time points

is normally distributed with a variance that increases

linearly with time. Other examples of stochastic processes

include the mean-reverting Ornstein-Uhlenbeck Process,

which tends to return towards a mean value [53] and the

self-exciting Hawkes Process, where the occurrence of an

event will temporarily increase the chance of further

events [54]. Stochastic processes provide tools to charac-

terize structured variation in complex ecological systems

where some of the underlying mechanisms may be

unknown, and can hence provide useful extensions to

purely mechanistic models. Their application has a long

tradition in physics and finance, and provides new oppor-

tunities for ecological modeling.

Recent applications include models for microbial extinc-

tion events [52] and migration [55]. The study by Schroe-

der et al. [55] first employs a discrete model that combines

selection and migration to describe the growth of small

populations in drinking water pipes, and then shows how

a continuous stochastic process model naturally follows at

the limit of large sample sizes.

Further uncertainties arise from limited sample numbers

and measurement errors. The Bayesian probabilistic
www.sciencedirect.com 
framework provides tools to incorporate prior information

in the models and address uncertainties in modeling and

inference [56], and it has been applied for instance in the

modeling of influenza transmission [57]. A Gaussian

Process regression approach was recently proposed for

non-parametric modeling of microbial growth curves

under environmental perturbations [58�]. Interestingly,

this approach allows to quantify the differential effects of

environmental perturbations on microbial growth across a

large compendium of genotypes in archaea and yeast and

to identify transcriptional regulators of microorganism

growth under standard and stress conditions. The appli-

cation of SDEs and Bayesian inference in microbial

ecology remains limited, partially due to the increased

efforts that may be required to construct, apply, and

interpret such models. Nevertheless, new practical tools

for Bayesian inference in Lotka–Volterra and other stan-

dard ODE models have recently become available [59].

This provides promising opportunities not only for

modeling the uncertainties, but also for incorporating

prior information and joint modeling of multiple

information sources based on hierarchical latent variable

models [60]. Such extensions will, however, come with

additional challenges in model formulation and parame-

terization, and increased computational cost.

Conclusions/outlook
Deterministic and stochastic dynamical models provide

rigorous quantitative frameworks to characterize the

rich and complex patterns of variation observed in

microbial communities. However, a number of

challenges remain to be solved to improve microbial

community models. For small-scale communities, com-

bining models of species interactions and dynamics

with information about their metabolism can improve

the prediction accuracy (e.g. [61,62]). Likewise, incor-

porating information on spatial structure and individual

variation can improve the models, as these are impor-

tant factors shaping community dynamics (e.g.

[39,63,64]). However, it is not easy to scale up these

models to describe larger communities. Furthermore,

microbial communities are not isolated systems; immi-

gration from surrounding communities as well as the

environment are important factors with potentially

drastic influence on the model performance. Finally,

the community members themselves, and their mutual

interactions, may evolve over time and alter the envi-

ronment they inhabit. Hence, a variety of challenges

remain to be solved to arrive at more realistic, predic-

tive, and practically applicable community models.
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