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Abstract

In forest harvesting, terrain trafficability is the key parameter needed for route planning. Advance knowledge

of the soil bearing capacity is crucial for heavy machinery operations. Especially peatland areas can cause

severe problems for harvesting operations and can result in increased costs. In addition to avoiding potential

damage to the soil, route planning must also take into consideration the root damage to the remaining trees.

In this paper we study the predictability of boreal soil load bearing capacity by using remote sensing data and

field measurement data. We conduct our research by using both linear and nonlinear methods of machine

learning. With the best prediction method, ridge regression, the results are promising with a C-index value

higher than 0.68 up to 200 meter prediction range from the closest point with known bearing capacity, the

baseline value being 0.5. The load bearing classification of the soil resulted in 76% accuracy up to 60 meters

by using a multilayer perceptron method. The results indicate that there is a potential for production

applications and that there is a great need for automatic real-time sensoring in order to produce applicable

predictions.

Keywords: Terrain trafficability, Soil bearing capacity prediction, Forest harvesting, Machine learning,

Open data

1. Introduction

Terrain trafficability in forests is currently one of

the most important issues in boreal timber harvest-

ing. Conducting harvesting operations during good

soil bearing conditions is crucial since improperly

timed operations can cause serious economical and

ecological damage. Vehicular loading exceeding soil
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strength causes not only soil damage, but also dam-

age to trees, mostly to the tree roots, but sometimes

to tree stem as well due to increasing uncontrolled

motion of the forwarder.

Damage to roots and stems can lead to fungal in-

fection which eventually causes wood discoloration

and in the worst case decay. In addition, the wa-

ter and nutrition conditions of the forest soil can

change as a result of soil settling [1]. The opera-

tion of forest machines is therefore avoided during
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the period of high soil failure risk and the harvest-

ing is postponed to the winter when soil is normally

frozen. It is estimated that the seasonal variation in

timber procurement causes approximately 100 M e

costs in Finland alone [2]. In addition, operations

in poorly bearing conditions increase time and fuel

consumption and decrease the efficiency of harvest-

ing operations [3].

Furthermore, deep ruts caused by forwarding affect

the general acceptability of the forest operations.

The costs caused by challenging trafficability condi-

tions could be decreased by additional information

on soil conditions, especially soil bearing capacity.

The load bearing capacity of soil is often described

by its penetration resistance. Accordingly, forest

operations could be planned to be performed dur-

ing adequate bearing capacity or routed to avoid

sections of poor bearing capacity, thus minimizing

the damage and maximizing the efficiency of har-

vesting.

In this study we conduct a research on the predic-

tion of soil bearing capacity by using remote sens-

ing and field measurement data. We have analysed

two cases, firstly visual soil damage classification

and secondly soil penetration resistance prediction.

The data sets are provided by Natural Resources

Institute Finland (LUKE), Metsäteho Ltd., the Ge-

ological Survey of Finland (GTK), National Land

Survey of Finland (NLS) and Finnish Meteorologi-

cal Institute (FMI). Similar studies have been con-

ducted in [4; 5] where soil properties such as type

and water permeability was estimated in order to

have predictions on the soil bearing capacity using

public data. Related studies have been conducted

in [6] where soil respiration rates are predicted from

temperature, moisture content and soil type and

[7], where the soil type in desert landscapes was

predicted using classification tree analysis.

2. Background

Timber harvesting systems vary across the world.

In Finland, the mechanized cut-to-length harvest-

ing system is utilized almost exclusively [8]. Har-

vesting operations in Finland are typically commer-

cial thinnings or clear cuttings. In a traditional

thinning operation only a part of the trees, on av-

erage 30%, are cut, leaving most of the trees stand-

ing [9]. Depending on stand properties thinnings

are typically done one to three times during the ro-

tation of a stand [9].

The rotation period of a stand usually ends to a

final felling, where all trees of commercial value are

cut. Some individual tree clusters are left stand-

ing for example to retain biodiversity [10]. The

structure of private forest ownership in Finland

has changed, which is causing pressure to change

the forestry practices, as many forest owners are

no more dependent of forest income and empha-

size multiple values in management decisions. The

commercial aspect of harvesting has become less

pronounced, while environmental standpoint has

gained more attention. More than a half of the for-

est owners are satisfied with the current forest man-

agement practices, where every sixth forest owner

feels unsatisfied especially with clear cuttings, lack

of management alternatives, soil preparation and

damage caused by heavy machinery [11]. So far

the use of alternative forest management methods

including selection cuttings has been marginal con-
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centrating on urban forests, landscape protection

areas, valuable habitats, riparian and other buffer

zones. If uneven-aged forest management becomes

more popular in future, it increases the amount of

thinnings. Uneven-aged thinnings place even more

challenges to harvesting machinery in respect to

avoiding damages and risk of root rot.

3. Research area and data sets

3.1. Research area

The data sets were collected from various loca-

tions around the area of Pieksämäki, a municipality

located in the province of Eastern Finland 62◦18’N

27◦08’E. The research areas were divided into two

cases based on the response variable. The predictor

data sets varied between the two cases as illustrated

in tables 1 and 2.

3.2. Multi-Source National Forest Inventory data

The Multi-Source National Forest Inventory

(MS-NFI) holds the state of Finnish forests in high

spatial resolution (20 m). The data is updated ev-

ery second year. The parameters are derived by

generalizing the field measured sample plot data ap-

plying mainly Landsat imagery and KNN method

as well as digital map information. 43 numerical

features include information regarding, for exam-

ple, biomass and volume of growing stock and site

type. These multi-source features exhibit built-in

dependencies, thus the final number of useful fea-

tures is lower. An excellent, detailed description

regarding the MS-NFI is given by [12].

3.3. Digital Elevation Model data

We downloaded digital elevation model (DEM)

data from the file service for open data by the Na-

tional Land Survey of Finland. The DEM was made

from airborne laser scanning data with the resolu-

tion of at least 0.5 samples/m2, which is equivalent

to approximately 1.4 m distance between samples.

The grid size of the DEM data set was 2 m. Sev-

eral geomorphometric variables were derived from

the NLS DEM in SAGA GIS environment. In

our analysis we used the geomorphometric fea-

tures: plan curvature, profile curvature, slope, to-

pographic wetness index, flow area, aspect, diffuse

insolation and direct insolation [13; 14; 15; 16; 17].

These derived features are more efficient for predic-

tion than raw height data alone.

3.4. Weather data

Weather data consisting of temperature (◦C) and

rainfall (mm) for years 2011-2013 was provided by

the Finnish Meteorological Institute. The grid size

of the data set was 10 km. In our analyses we used

the mean temperature and rainfall of the last 30

days as predictor features for each observation of

the response value. For example if an observation of

the response value was measured June 15, 2013 the

mean temperature and rainfall predictor features

for the response value observation were calculated

from the time interval May 16 - June 14, 2013.

3.5. Aerial Gamma-ray Spectroscopy data

The aerial gamma-ray data with grid size of 50 m

was provided by the Geological Survey of Finland

(GTK). The raster data is based on gamma-ray

flux from potassium, which is the decay process
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Table 1: Predictor data sets used in prediction of soil damage response variable. RS stands for remote sensing data and FM

stands for field measurement data

Data set Type Grid size

Digital Elevation Model data RS 2 m

Multi-source National Forest Inventory data RS 20 m

Soil type data RS 20 m

Peatland data RS 20 m

Gamma-ray spectroscopy data RS 50 m

Weather data RS 10 km

Table 2: Predictor data sets used in prediction of penetration resistance response variable.

Data set Type Grid size

Stoniness data FM 2 m

Peatland data FM 2 m

Soil moisture data FM 2 m

Digital Elevation Model data RS 2 m

Multi-source National Forest Inventory data RS 20 m

Weather data RS 10 km

of the naturally occurring chemical element potas-

sium (K). This data indicates many significant char-

acteristics of the soil, including the tendency to

stay moist after precipitation and tendency to frost

heaving [18]. Also the soil type, especially den-

sity, porosity, grain size and humidity of the soil

have an effect on gamma-ray radiation. Areas with

high gamma-radiation tend to have lower soil mois-

ture and vice versa. We derived several statistical

and textural features from Gamma-ray data such

as: 3×3 windowed mean, 3×3 windowed standard

deviation, Gabor filter features (see e.g. 19) and

Local Binary Pattern features [20].

3.6. Peatland data

The peatland data was compiled by LUKE us-

ing the open geographic information data derived

from NLS Topographic database [21] depicting the

terrain and covering the whole of Finland. The po-

sitional accuracy of the NSL Topographic database

corresponds to that of scales 1:5000 - 1:10000 [21].

The peatland mask consist of four different NLS

Topographic database elements depicting different

type of peatlands. These elements were first com-

bined and then rasterized to 20 m grid using Ar-

cMap software [22]. The definitions for peatlands in

the NLS Topograhic database are: 1) area is mostly
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covered by peatland vegetation and 2) a minimum

of 0.3 m peat thickness [21]. A minimum criteria

for area is 1000 m2. Area with peat thickness less

than 0.3 m can also be classified as peatland if it is

covered by peatland vegetation.

3.7. Subsoil and topsoil data

GTK provided the analysis of subsoil classifi-

cation data and topsoil classification data from

Pieksämäki target area. The soil type data is rep-

resented by positive integer values, which indicate

the pre-classified soil types. Both of the soil type

data sets consisted of twelve distinct soil types e.g.

bedrock, Sphagnum peat, Carex peat and sandy

till. The grid size of these data sets were also 20 m.

3.8. Soil moisture data

Gravimetric soil water content was measured

from the samples by drying the soil samples and

calculating the weight difference of dry and wet soil

sample [23].

3.9. Soil damage data

Approximately 36 km of strip roads were walked

through and visually assessed into damage classes

by a forest operations expert. The data was kindly

provided to us by Metsäteho Ltd. in 2013. The soil

damage data was classified into three main ordinal

classes based on the rut depth caused by forest har-

vesting machinery. The three classes were: 1) No

damage; 2) Slight damage; and 3) Damage1.

1Includes strip road sections covered by brash mat, orig-

inally classified as “potential damage”, since without brash

mat they likely would have been damaged.

The original dataset required preprocessing since

the field recorded GPS-tracks included locational

errors (zig-zag -motion). After the data was pre-

processed to produce a smooth line form, we con-

verted strip road lines into points and extracted val-

ues from selected features, e.g. MS-NFI and topo-

graphic variables.

3.10. Soil penetration resistance, stoniness and

shear modulus

The total of 50 penetration resistance measure-

ments were taken on two different locations in

Kumpunen, Pieksämäki, Finland (N 6921354, E

501297 in ETRS-TM35FIN coordinates). The

study was conducted during a commercial thinning

operation. The plot locations were selected based

on expert judgment to cover the gradient between

dry mineral soil with high bearing capacity and wet

organic soil with low bearing capacity. 15 plots were

measured from dry site and 35 plots were measured

from wetter, partly paludificated site. Sites were lo-

cated roughly 490 m meters apart from each other.

Depth of organic soil varied from 0 to almost 90 cm.

We measured the soil penetration resistance using a

penetrometer [24] at five different locations around

and between the wheel tracks to avoid the random

effect caused by e.g. hitting a tree root in a single

measurement. This method is illustrated in figure

1. Shear modulus was measured at the same lo-

cations with a spiked shear vane [25]. The accu-

mulation of logging residue significantly hindered

measuring, and it was not always possible to place

measurements systematically.
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3.11. Rut depth measurement

Depth of both wheel ruts was measured using an

inversed U-shaped frame with its feet resting on the

undeformed soil surface outside wheel rut, which

formed the reference level. Individual observations

were averaged to plot level. First measurements

were taken after the harvester and the rut formation

was measured again after each pass of the forwarder

collecting the timber from the cutting area. The

extraction road was cleared of logging residue after

the harvester pass in order to observe the effect of

soil properties on forwarder rut formation without

the reinforcing effect of brash [3]. The accumulated

mass traversed over each measuring location was

defined as the sum of net vehicle mass plus the mass

of load for all the passes [3].

3 m

Sample

Track

points

Figure 1: Illustration of how the field measurements were

made. Black rectangles represent the wheel tracks and gray

points represent the measurement points. The width of the

track was approximately 0.4 m and distance from the center

of the left track to the center of the right track was 2.8 m.

4. Methods

The possibilities to predict the response vari-

ables were estimated using both linear and non-

linear methods. Next we will describe the used

prediction methods including leave-one-out cross-

validation with a dead zone approach for the model

performance estimation given by the concordance

index (C-index).

4.1. Leave-one-out cross-validation with a dead

zone

In geographical applications there is bound to

be some sort of spatial autocorrelation between the

data points. Data points very close to each other

geographically have intuitively larger spatial auto-

correlation than data points far apart. Accordingly,

using the traditional cross-validation approach (see

e.g. 26) that assumes the mutual independence of

the data points, is not suitable here, as it only es-

timates the prediction capability of individual test

data points, regardless of their distance from the

training data. We need a way of simulating the

predictions in a practical situation which is why we

use the so-called leave-one-out cross-validation with

a dead zone (LOOCVDZ), [5].

The idea of the LOOCVDZ method is to simulate

the prediction capability of the model in such a sit-

uation, where the point for which the prediction

is to be made is at least n meters away from the

closest training point. For each data point at a

time, we create a perimeter (dead zone) of radius δ

around the point and remove from the training data

all the points falling inside the perimeter including

the test point itself. A model is trained with the

reduced training data set and a prediction is per-

formed for the test point with the learned model.

This process is repeated over the whole data set,

just like an ordinary leave-one-out cross-validation.
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The LOOCVDZ method gives us a way of simulat-

ing a harvester or a forwarder predicting soil bear-

ing capacity, when the closest known measurements

are at least n meters away. In figure 2 we have il-

lustrated the LOOCVDZ method.

Omitted points 

Test point

Deadzone radius

Figure 2: Illustration of the dead zone with perimeter deter-

mined by δ. The black point is the one whose label we aim

to predict. The data inside the dead zone will be omitted

from training the model used to predict the label of the test

point.

4.2. Concordance index

Concordance index (C-index) was the main per-

formance measure used in the analyses [27]. Con-

cordance index measures the relative ranking of

paired data points in the sets V = {y1, ..., yn} and

P = {ŷ1, ..., ŷn}, where V is the set of observed

labels and P is the corresponding set of predic-

tions. The C-index measures how well the predic-

tion model was able to rank the predictions into

correct order. It is a particularly useful measure in

situations where we are not especially interested in

the absolute accuracy of the prediction value, but

rather where we need to make a choice between a

set of alternatives. In our application we are in-

terested in selecting the most supporting area or

route from a set of alternatives for the forest ma-

chine. Explicitly concordance index is defined as:

C-index =
1

N

∑
yi<yj

h (ŷi − ŷj) , (1)

where N = |{ (i, j) | yi < yj }| is the normaliza-

tion constant which equals to the number of data

pairs with different label values and h(u) is the step

function returning 1.0, 0.5 and 0.0 for u < 0, u = 0

and u > 0, respectively. The further apart from 0.5

C-index is, the better the model was able to capture

the pattern in the data.

4.3. Ridge regression

Ridge regression, also known as Tikhonov regu-

larization [28] is the regularized version of the stan-

dard linear regression. Let xi ∈ Rp be the feature

vector of the ith sample point, w ∈ Rp is a vector

of weights and yi ∈ R is the response value of ith

sample. In ridge regression our task is to find the

set of weights w, such that the objective function:

E(w) =
1

n

n∑
i=1

(
xT
i w− yi

)
+
λ

n
wTw, (2)

is minimized. In 2, n ∈ N is the number of data

points and λ > 0 is the regularization parameter.

4.4. Multilayer perceptron

Multilayer perceptron (MLP) is a feedforward

neural network [29; 30], where we try to minimize

the objective function:

E(w) =
1

n

n∑
i=1

(yi − a(xi,w))
2
, (3)

where w is the set of weights of the network, ai is

the ith activation of the output node given input
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xi ∈ Rp and yi ∈ R is the corresponding response

value. The set of weights w is defined as:

w :=

{
w

(l)
ij

∣∣∣∣ 1 ≤ l ≤ L, 0 ≤ i ≤ d(l−1), 1 ≤ j ≤ d(l)
}
,

where L is the number of hidden layers and d(l) is

the number of hidden nodes on layer l. The acti-

vation functions in the hidden nodes are tanh(x)

functions and the output activation function was

selected to be a linear function.

A popular regularization approach for MLPs is

to construct a committee of MLP networks trained

with early stop training [29] in which training data

are divided into two parts. The first part is used to

train the MLP and the other part is used to moni-

tor the validation error. Training is stopped when

the validation error begins to increase. This ran-

dom splitting scenario is repeated for all committee

members and the final output of the MLP commit-

tee is obtained by counting the average output of

the committee members. Early stop is an ad hoc

method for regularization, but it is simple, fast and

in many cases gives good results. We used a MLP

early stop committee (MLP-ESC) of 10 networks

with 10 hidden units.

4.5. k-nearest neighbor

k-nearest neighbor [31] is the simplest of the used

methods, but still a powerful nonlinear method for

many applications. In k-nearest neighbor we pre-

dict the label ŷi of a test point xi ∈ Rp by taking

the average value of the labels of its k nearest neigh-

bors, i.e. we use the formula:

ŷi =
1

k

k∑
j=1

yj ,

where the values yj ∈ R, i = 1, ..., k are the labels

of the points xj that are closest to the test point

xi. Euclidian distance is the standard metric used

in this method for finding the closest neighbors.

5. Analysis and results

We have separated our analysis into two cases

based on the response variables:

• Case 1: Soil damage prediction

• Case 2: Soil penetration resistance prediction

Both of these variables can be used as indicators

for soil load bearing capacity.

5.1. Case 1: Soil damage prediction

In soil damage prediction our data set consisted

of 11795 points from harvesting operations includ-

ing both thinning and clearcutting. The predic-

tor variables consisted from various remote sens-

ing data sets and their derived features, totaling to

83 variables used in the analysis. The target vari-

able for prediction was soil damage class consisting

of three ordinal damage classes (no damage, slight

damage, damage). The used data sets in this case

are listed in table 1.

We tried two different approaches in predicting soil

damage class, firstly predicting the soil damage

variable without any modifications to the label val-

ues and, secondly, combining the damage classes

’slight damage’ and ’damage’ into one class so that

we could get a binary prediction problem (no dam-

age - damage). The purpose of this second approach

was to detect whether the prediction model is able

to distinguish between non-damaged and damaged
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soil points. The multilayer perceptron model was

trained with 11295 data points and tested with a

sample of 500 data points, because the overall cal-

culations using LOOCVDZ would have taken far

too much time using the entire data set. We have

illustrated the prediction results using LOOCVDZ

for these two approaches in figure 3.

In both cases the results indicate that a moder-

ate prediction performance to a 20-30 meters range

is reached especially with k-nearest neighbor and

ridge regression. Ridge regression stays above base-

line up to 200 meters but has nonetheless poor per-

formance. Low prediction performance in case 1

was expected due to low quality of the provided re-

sponse variable. Poor results of the analysis based

on visually classified data implicated the need for

physical measurements. It was concluded that more

accurate measurements were needed in order to im-

prove the performance of the models. This insight

motivated the collection of new data, i.e. penetra-

tion resistance as response variable.

5.2. Case 2: Soil penetration resistance prediction

Due to high noisiness of the response variable,

the soil damage prediction resulted in maximum

of 20-30 meter moderate prediction performance.

This problem was tackled in the case of soil pen-

etration resistance prediction, where an accurate

data set, measured with an electrically driven and

recording penetrometer, was provided by LUKE.

The penetrometer proved superior over the spiked

shear vane in varying mineral soil peatland condi-

tions. The results of this experiment indicated the

need for real-time automatic sensors for harvesters

in order to produce sufficiently accurate input data

to produce applicable prediction rates. A total of 50

penetration resistance profiles were collected from

two test sites. The test sites were selected to have

differing properties in terms of penetration resis-

tance. The first site was located on mineral soil

with good bearing capacity, whereas the second was

partly covered by a layer of peat. Based on physi-

cal measurements, the quality of the data was much

higher than that of the soil damage data. We have

listed the used data sets for this case in table 2.

In the analysis, the predictor data sets consisted of

50 variables. Also in this case we divided the pre-

diction of soil penetration resistance into two ap-

proaches. In the first approach we implemented a

regression model for the penetration resistance vari-

able. In the second approach we divided the data

into two classes based on the following criterion:

Class of data point xi =

 1 if yi ≥ 5000 kPa

0 if yi < 5000 kPa
,

where xi is the ith data point with elements corre-

sponding to feature values and yi is the correspond-

ing value of penetration resistance for that point. In

this case the problem was to classify a data point

xi either into class 1 or 0. We have illustrated the

results for both of these approaches in figure 4. We

can notice that the results are much better than in

it was in case 1. C-index stays above 0.6 up to 100

meters for multilayer perceptron and ridge regres-

sion. Ridge regression stays above 0.6 up to 200

meters. In classification case we got 66% classifica-

tion accuracy up to 100 meters by MLP and almost

70% accuracy up to 40 meters by MLP-ESC.
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Figure 3: Prediction results for case 1: soil damage class (a) and binary classification (b). The results show that there is a

moderate prediction accuracy up to 20 meters in both regression and classification. k-nearest neighbor achieves the highest

performance to 20 meter range. Ridge regression gives highest results after 20 meters.
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Figure 4: Prediction results for case 2: soil penetration resistance (a) and soil bearing capacity binary classification (b). Ridge

regression and multilayer perceptron achieve the highest results up to 100 meter range. For multilayer perceptron (MLP) we

have more than 70% classification accuracy up to 40 meter range.
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6. Conclusion

The results indicated moderate prediction rates

up to 20 meters for the soil damage regression case.

After 20 meters the prediction performance drops

dramatically and a random yes/no guess produces

better results. C-index value stays just above the

baseline 0.5 up to 200 meters for the ridge regres-

sion model. In the soil damage classification case

we achieved more than 60% classification rate up to

20 meters as well. We therefore conclude that more

precise measurements are needed for modelling pur-

poses. In the case of penetration resistance predic-

tion we achieved a C-index higher than 0.6 up to 200

meters for ridge regression model. With soil bear-

ing capacity classification we achieved more than

66% successful classification up to 100 meters by

MLP. Up to 20 meters we achieved classification

accuracy of more than 80% also by MLP. The bet-

ter results in the case of penetration resistance data

is explained by the higher quality of the used data

sets because the data samples were based on phys-

ical measurements.

As a summary of the results, in case 1; the soil

damage prediction remains moderate up to 20 me-

ters after which the result drop close to baseline

value. In case 2; the soil penetration resistance

prediction the results remain very good up to 20

meters, good up to 100 meters after which the re-

sults start to drop below baseline. It was evident

that the used data sets in penetration resistance

case was more reliable and contained less noise than

the data sets used in soil damage case. This points

out the necessity of accurate and real-time mea-

surements in order to produce applicable forecast

models for harvesting operations. If the data qual-

ity is not high enough the prediction performance

deteriorates rapidly. However the measured data

sets were rather small, which suggests further anal-

ysis in more varied environments in the future.

We conclude, that more detailed field data is re-

quired, i.e. physical measurements and detailed

information about the motions of the machinery

within the stand, since for example the accumu-

lation of traversed mass over each location is one

of the main variables explaining soil damages [3].

These can be achieved through online learning

based on trafficability data accumulated by har-

vesters or other field studies. Vertical distance to

drainage network should also be tested [32]. Fur-

ther validation with weather data and water bud-

get models should be continued in the future as it

is one of the key variables affecting trafficability of

fine grained mineral and organic soils.

Acknowledgments

The study was carried out in New Computational

Methods for Effective Utilization of Public Data

(ULJATH)-project funded by the Finnish Funding

Agency for Innovation (TEKES).

References
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