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Single-cell omics technologies are currently solving biological and medical problems that earlier have
remained elusive, such as discovery of new cell types, cellular differentiation trajectories and communi-
cation networks across cells and tissues. Current advances especially in single-cell multi-omics hold high
potential for breakthroughs by integration of multiple different omics layers. To pair with the recent
biotechnological developments, many computational approaches to process and analyze single-cell
multi-omics data have been proposed. In this review, we first introduce recent developments in
single-cell multi-omics in general and then focus on the available data integration strategies. The integra-
tion approaches are divided into three categories: early, intermediate, and late data integration. For each
category, we describe the underlying conceptual principles and main characteristics, as well as provide
examples of currently available tools and how they have been applied to analyze single-cell multi-
omics data. Finally, we explore the challenges and prospective future directions of single-cell multi-
omics data integration, including examples of adopting multi-view analysis approaches used in other dis-
ciplines to single-cell multi-omics.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-
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1. Introduction

Recent developments in single-cell omics technologies to mea-
sure different modalities such as genome, transcriptome, epigen-
ome, and proteome have enabled unprecedented insight and
resolution to cellular phenotypes, biological processes and devel-
opmental stages [1,2,11,3–10]. Single-cell studies can resolve the
confounding effects of distinct cell types in heterogeneous sam-
ples, that can not be separated with traditional bulk approaches.
Recent technological advancements have demonstrated simultane-
ous assaying of two or more of different omics layers [12,13,22–3
0,14–21]. The multimodal approaches at single-cell resolution are
pushing forward a new era of scientific exploration in the field of
molecular biology and medicine. Combination of several single-
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Fig. 1. Single-cell multi-omics workflow. The first step in the workflow is sample extraction where cells are harvested, for example, from blood or tissues. Next, the extracted
cells are dissociated and used to profile multiple layers of omics data from individual cells. In the computational analysis three data integration strategies can be used: early,
intermediate and late data integration. In the end, for instance, distinct cell types and cell states can be recognized by clustering.
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cell omics layers have enabled higher resolution for differentiation
processes involved, for instance, in embryonic development
[20,31], development of immune system [32–36], cancer biology
[37], and neuronal development [38,39]. Additionally, the potential
for new translational aspects is high [40]; within known cell-types
distinct subpopulations of cells have been discovered to associate
with disease versus healthy states, for instance, in the context of
somatic cancer evolution [41], heart [42,43] and neuronal diseases
[44], and recurrent miscarriage [45]. Generally, in cancer cells,
tumor heterogeneity plays a crucial role in drug resistance, relapse
and metastasis. Therefore, accurately identifying tumor subpopu-
lations using multi-omics approaches holds potential in the field
of precision medicine. Further, multimodal omics data enables
joint analysis of the different players, such as transcripts and pro-
teins, in complex regulatory processes [46].

Computationally, the multimodal single-cell omics profiling has
opened up the way for developing models that can relate the inter-
actions and associations among multiple omics layers at single-cell
resolution and allows utilization of complementary evidence from
the multimodal data [47,48]. At the core of the single-cell analysis
are clustering algorithms that are used to separate cell types or
functional cell states, either static or continuous. Strategically,
multimodal single-cell data analysis can be roughly divided into
three main approaches based on the stage where the integration
of the data layers is conducted: early, intermediate, and late inte-
gration (Fig. 1). Similar categories have been described earlier in
the context of bulk multi-omics data analysis [49,50]. Early inte-
gration concatenates multiple omics data types into one integrated
dataset and performs analysis on this data using the same algo-
rithms typically used for the single omics layers. In late integration,
analysis is first performed separately on each omics layer and these
results are then integrated to determine the final consensus
results. In intermediate integration, the multiple omics layers are
analyzed together, including integration of sample similarities,
joint dimension reduction techniques, and statistical modeling
approaches [49].

In this review, we provide a coarse overview of the recent
development in different approaches for integrative single-cell
multi-omics analysis and clustering. We focus on the basic princi-
ples and strategies and provide examples of the available tools and
software utilizing the different strategies. We also briefly discuss
the challenges and future directions for the method development
and application.
2. Single-cell multi-omics data

The single-cell omics datasets can either be matched, i.e. differ-
ent omics layers have been measured simultaneously from the
same individual cell with recent techniques such as Cellular Index-
ing of Transcriptomes and Epitopes by Sequencing (CITE-Seq), RNA
expression and protein sequencing assay (REAP-seq), gDNA-mRNA
sequencing (DR-seq) or single-cell methylome and transcriptome
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sequencing (scM&T-seq) [12,16,24,27] with a comprehensive list-
ing in [51], or unmatched, i.e. different omics layers have been
measured from different single-cell experimental samples [52].
Compared to matched multimodal data, the unmatched multi-
omics datasets have a relatively higher source of variation as the
different omics layers originate from different cells and experi-
mental setups [48]. Despite the challenge in addressing different
sources of variations and batch effects, the unmatched single-cell
multi-omics data integration has large potential to reveal novel
biological insights because of the high quantity of single-
modality single-cell data generated in recent years. Until recently,
measurement of one layer of single-cell data has been economi-
cally a far more reachable and easier option than matched multi-
omics. Hence, in several cases where related data are available,
integrating these is still a viable option for wider research commu-
nity. Also, several of the current data analysis methods have been
developed using unmatched data. The first comparisons to provide
details on the increased accuracy of the matched data are only cur-
rently emerging. As a very preliminary example, a recent study
compared computationally inferred cluster assignments from
matched single-cell RNA sequencing (scRNA-seq) and single-cell
Assay for Transposase-Accessible Chromatin using sequencing
(scATAC-seq) datasets to (de facto) measured couplings and
reported highly variable and dataset dependent accuracy (37–
75%) for the computational inference; however, the clustering
miss-assignments represented related cell types [1].

Single-cell transcriptomic (scRNA-seq) data is by far the most
commonly assayed single-cell data type. Epigenomic (scATAC-seq
and methylome) data are typically sparser than scRNA-seq data,
leading to a situation where the integration strategy should be
weighted to take into account the unbalanced information content.
One simplistic solution here is to transfer clusters or cell type
labels from information-rich scRNA-seq data to another more
sparse data layer [53,54]. On the other hand, when cell surface
receptor data is available from CITE-seq, then it may be biologically
relevant to use the well-known protein markers to guide the clus-
tering of scRNA-seq results [55].

Considering experimental design, scRNA-seq from whole single
cells commonly requires fresh tissues, whereas nuclear samples
(nuclear snRNA-seq, ATAC-seq and methylome) can be frozen
specimens, which greatly facilitates projects with extensive sam-
pling. Promisingly, although nuclear transcriptome sequencing
have less coverage and depth compared to full cell scRNA-seq of
mRNA, recent comparisons have suggested that majority of the
expression changes can be retrieved from single-nuclei RNA-seq
[56,57], further motivating the use of matched nuclei samples
(RNA + ATAC, RNA + methylome etc.) for gene regulation studies.
Notably, some assays retrieve matched genomic/chromatin and
RNA from nuclei such as the commercially available (10X Geno-
mics) snRNA/ATAC-seq, whereas others such as scM&T-seq or
single-cell Chromatin Accessibility and Transcriptome sequencing
(scCAT-seq) [16,58] combine nuclear genomic/chromatin collec-



Fig. 2. Schematic illustration of the early, intermediate and late data integration strategies in single-cell multi-omics analysis. In early data integration, multiple omics
datasets are concatenated together for downstream analysis. By default, early integration increases the dimensionality of the data and does not account for the different
distribution of the values in each separate omics layer. The intermediate data integration strategy covers a range of techniques to jointly analyze multiple omics datasets.
Typically, this is done by transforming the datasets to a single integrated data matrix using, for instance, similarity-based integration, joint dimensionality reduction, or
statistical modeling-based approaches. The late data integration strategy first employs the data analysis separately for each omics layer and then integrates these results to
create a consensus result.
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tion with transcriptome assay from cytoplasm. Further, methods to
simultaneously assay three omics modalities simultaneously from
single cells are currently developed, such as scNOMeRe [59] that
collects transcriptome data from cytoplasmic extract and DNA
methylation and chromatin accessibility data from nuclei or
scNMT-seq [29] that instead of chromatin accessibility collects
nucleosome data.
2590
Another developing front is the integration of the above men-
tioned liquid omics with spatial transcriptomics and other data
that preserves the information of tissue structures [60] Also, for
translational aspects, single-cell diagnostic such as the detection
of circulating tumor cells (CTCs) [61–63] are emerging, and in
the future these may also include integration of several omics
layers.



Table 1
Computational single-cell multi-omics tools applying intermediate integration
approaches and their applicable omic data types.

Tool Methodology Single-cell omics types (designed
for matched/unmatched)

Refs.

Similarity-based approaches
SCHEMA Metric-learning

based method
Multi-omics data (matched) [77]

Spectrum Weighted-
nearest
neighbor
analysis

Multi-omics data (unmatched) [78]

Seurat4 Weighted-
nearest
neighbor
analysis

Transcriptome and chromatin
accessibility or proteome data
(matched)

[79]

Dimension reduction-based approaches
BindSC Canonical

correlation
analysis

Transcriptome and chromatin
accessibility data (matched)

[80]

CoupledNMF Non-negative
matrix
factorization

Transcriptome and chromatin
accessibility data (unmatched)

[53]

LIGER Non-negative
matrix
factorization

Transcriptome and spatial gene
expression data or DNA
methylation (unmatched)

[81]

MAGAN Manifold
alignment

Multi-omics data (unmatched) [82]

MATCHER Manifold
alignment

Transcriptome and DNA
methylation data (matched)

[83]

MMD-MA Manifold
alignment

Multi-omics data (matched) [84]

MOFA+ Factor analysis Multi-omics data (matched) [85]
scMVAE Variational

autoencoder
Multi-omics data (matched) [86]

Seurat3 Canonical
correlation
analysis

Transcriptome and chromatin
accessibility data (unmatched)

[87]

totalVI Deep
generative
model

Transcriptome and proteome data
(matched)

[88]

Unicom Manifold
alignment

Multi-omics data (unmatched) [89]

Statistical modeling-based approaches
BREM-SC Bayesian

mixture model
Transcriptome and proteome data
(matched)

[90]

Clonealign Statistical
model

Transcriptome and genome data
(unmatched)

[91]
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3. Single-cell multi-omics data integration strategies

A primary goal of single-cell analysis is to discover known and
novel cell populations. Hence, the data analysis methods to achieve
this goal most often use an unsupervised approach. Additionally,
some semi-supervised approaches have been suggested [64]. Here,
we describe the general single-cell multi-omics integration strate-
gies, divided into early, intermediate and late integration (Fig. 2).
While some single-cell applications have used early or late data
integration, intermediate integration approach has been most
widely used in integrating single-cell multi-omics data.

In early data integration, multiple omics data layers are first
concatenated as a single merged data matrix before proceeding
into the analysis. A merged data matrix can then be used as an
input for machine learning methods that are able to consider any
type of dependences between the features [65]. The advantages
of this approach include relatively easy application of any method
that can utilize a data matrix. However, the merged data matrix
increases complexity beyond single omics data and hence early
data integration approaches often utilize automatic feature learn-
ing, such as dimensionality reduction and representation learning
[66]. Feature learning methods, such as autoencoders combine
multiple omics layers with variable numbers of features into a
compressed data matrix at the hidden layer to create an integrated
representation from the multi-omics data. However, as such
autoencoders are conceptually closer to intermediate integration
approaches. In bulk omics setting, the early integration has been
applied, for instance, for tumor subtyping involving jointly all the
considered omics [67]. In single-cell omics setting, early data inte-
gration has been most commonly applied to combine multiple
datasets of the same omics type from different studies, such as
scRNAseq data from multiple sources coupled with different nor-
malization and scaling steps [68] A major challenge of early data
integration is that the features from multiple omics datasets are
often different both in terms of dimension and scale that may lead
to more weight on an omics layer with more dimensions unless
properly normalized [69]. Furthermore, the sparsity and the
high-dimensional nature of omics datasets make it challenging to
construct a common representation across multiple datasets. This
could be addressed by lower dimensional embedding of an individ-
ual datasets retaining the overall structure of the original data fol-
lowed by the subsequent data integration technique, including
several linear [70] and nonlinear [71] methods.

The late integration strategy first employs the analysis sepa-
rately for each omics data layer and then integrates these results
to create a consensus result. These methods have previously been
used to integrate separate scRNA-seq experiment or in bulk multi-
omics but have not yet been widely applied to single-cell multi-
omics. For instance, mixture model ensemble clustering has been
applied to combine multiple scRNA-seq clustering results and
could readily be applied to create a consensus clustering of
multi-omics data [72]. It models the interdependence of local clus-
tering results with the aim to find a robust and improved global
clustering solution across multiple data sources through optimiza-
tion. The SAME-clustering [72] tool implements a mixture model
ensemble method for aggregating clustering solutions generated
from different clustering algorithms in scRNA-seq data aiming to
land in a robust consensus clustering. The Graph Partitioning-
Based Cluster Ensemble Method Sc-GPE [73] and the Ensemble
Clustering Based on Probability Graphical Model With Graph Reg-
ularization EC-PGMGR [74] use graph-based ensemble clustering.
These approaches can also be applied for single-cell multi-omics
clustering, as they give flexibility to use different omics specific
clustering algorithms to generate the best local clustering solu-
tions. On the other hand, potential late integration approaches
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have been employed in bulk multi-omics, including Cluster-of-
clusters analysis (COCA) [75], a two-step integrative clustering
algorithm that performs integrative cluster analysis summarizing
the clustering results found from multiple omics datasets. In Ker-
nel Learning Integrative Clustering (KLIC) [76] multiple clustering
structures are integrated as a multiple kernel learning problem
where each of the datasets provide a weighted contribution to
the final clustering. Obviously, as late integration algorithms often
take a clustering result as an input, they directly fit to a workflow
where unmatched single-cell multi-omics datasets are first ana-
lyzed separately.”

The intermediate integration covers a range of techniques that
aim to jointly analyze the different omics layers together using,
for instance, similarity-based integration, joint dimension reduc-
tion, or statistical modeling. The similarity-based integration
approaches include, for instance, spectral clustering approaches
and graph fusion algorithms. The joint dimension reduction tech-
niques aim to find a lower dimensional representation for the
single-cell multimodal data layers by projecting them into a com-
mon latent space. These include various matrix factorization tech-
niques as well as covariance-based techniques, such as canonical
correlation analysis. The statistical modelling techniques for inte-
gration utilize, for instance, Bayesian approaches to determine
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cluster probabilities of cells from multiple omics layers. Represen-
tative examples of different tools that apply these approaches are
provided in Table 1.
4. Computational tools for intermediate integration of single-
cell multi-omics data

4.1. Similarity-based approaches

Spectral clustering utilizes similarity matrices as a basis for
clustering. The adoption of the multi-view version of spectral clus-
tering can be used to deal with the multi-omics data. Currently,
several methods that are applied in bulk multi-omics data integra-
tion are being proposed for single-cell multi-omics integration
[92–96]. For example, Spectrum [78] uses a self-tuning density-
aware kernel that enhances the similarity between points that
share common nearest neighbours. In addition to bulk data, it
has been applied on simulated single-cell data [78]. The Pair-
wised Co-regularized Multimodal Spectral Clustering (PC-MSC)
[97] implements a co-regularization approach to combine multiple
kernels representing the different omics layers. The method has
been applied to single-cell transcriptome and protein marker data
[94]. SCHEMA [77] implements a metric-learning based method
[98], which first determines similarities between cells under each
modality and then transforms the primary modality so that it has
maximum level of agreement with the other modalities.

Graph fusion algorithms construct graphs from each omics
layer and map them to a single fused graph. Recently, several graph
fusion algorithms [92–96] have been proposed for integrating
graphs in multi-view clustering domains. Generally, once graphs
are integrated from multiple omics layers, any conventional clus-
tering methods can be implemented to partition the joint graph
into clusters. Crucial for the accuracy of this approach is that geo-
metric properties of the single data layers are sufficiently main-
tained in the global presentation. Most notably for single-cell
omics, the latest version of the widely used Seurat, Seurat4 [79],
implements a weighted-nearest neighbor graph-based integration
for cluster analysis. It has been applied, for instance, on CITE-seq
data of blood cells to improve the discovery of cell states and cell
types.
4.2. Dimension reduction-based approaches

Canonical correlation analysis (CCA) is a correlation-based
multivariate analysis method to examine the linear relationship
between two datasets [99,100]. A set of linear combinations of
all variables in each of the two datasets is determined so that it
maximizes the correlation between them and best explains both
within and between dataset variability. The high dimensionality,
sparsity and variable feature spaces across the different omics lay-
ers pose constraints for the linear combinations limiting the bio-
logical applicability of CCA. Generally, to solve these issues
variants of CCA including sparse CCA [100] and penalized matrix
decomposition (PMD) method [101] have been proposed. For
instance Seurat3 [87] implements CCA in order to integrate two
single-cell omics datasets. It first jointly reduces the dimensional-
ity of two datasets using the diagonalized CCA followed by a search
for a mutual nearest neighbor in lower dimensional space, and
then establishes the cellular relationship across the datasets as
an anchor. This has been used, for example, to integrate scRNA-
seq and scATAC-seq data from the mouse visual cortex and
scRNA-seq and surface protein expression from bone marrow
[87]. Another recent adaptation of CCA for single-cell multi-
omics clustering is bindSC [80] which utilizes bi-order canonical
correlation analysis (bi-CCA) that captures the correlated variables
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from both cells and features between two modalities to formulate
the canonical correlation vectors in a latent space. While Seurat3 or
bindSC can only be applied to two datasets at a time, multiset CCA
[102] aims to simultaneously find multivariate associations
between more than two modalities. In multiset CCA, the canonical
coefficients of all variables are optimized to maximize the pairwise
canonical correlations [103]. Currently, we are not aware of multi-
set CAA being applied to single-cell multi-omics.

Non-negative matrix factorization (NMF) extracts a low-
dimensional non-negative representation of the high-dimensional
data that is typically sparse. LIGER (linked inference of genomic
experimental relationships) [81] is a recently introduced tool for
single-cell multi-omics analysis that utilizes integrative non-
negative matrix factorization (iNMF) [104] in order to identify
the shared and dataset specific factors across the datasets. It was
applied to spatial and scRNA-seq data from mouse brain frontal
cortex in order to cluster cell subtypes, and to scRNA-seq and
DNA methylation data from mouse cortical to perform integrative
cluster analysis [81]. Further, recently [105] extended the iNMF
implementation of LIGER to make it an online learning algorithm
[106] where multiple datasets are used as mini-batches in a con-
tinual cycle allowing fast and memory efficient integration of large
multimodal datasets. Another NMF-based implementation for
scRNA-seq and scATAC-seq data coupledNMF [53] formulates an
optimization problem to couple the information from each dataset
during the cluster optimization. The factor analysis-based tool
MOFA [107] and its improved version MOFA+ [85], on the other
hand, use a variational Bayesian inference framework and have
been applied to both bulk and single-cell multi-omics analysis.

Manifold alignment is a class of machine learning algorithms
that produce projections between sets of data that lie on a common
manifold [108]. The idea is to create a low-dimensional represen-
tation (or manifold) for each dataset and then align these represen-
tations (manifolds) in a common space where the different
datasets are directly comparable. Manifold alignment algorithms
can be supervised, semi-supervised, or unsupervised based on
the level of available correspondence information among disparate
datasets. The currently available manifold alignment tools are
unsupervised, such as MATCHER [83] which has been applied on
matched and unmatched single-cell transcriptome and DNA
methylation data. The method assumes that the variation among
cells can be explained mainly by a single latent variable. Another
tool, Manifold-Aligning GAN (MAGAN) [82], is a generative adver-
sarial network (GAN) based manifold alignment tool for single-cell
multi-omics analysis. It has demonstrated its efficiency in integrat-
ing scRNA-seq and proteomic (mass cytometry) datasets. Other
manifold tools that have been introduced for single-cell multi-
omics include, for example, Unicom [89] and MMD-MA [84].

Autoencoders [109] are neural networks that unfold the under-
lying nonlinear patterns from multiple high-dimensional datasets
by compressing them into a unified lower-dimensional subspace.
Architecturally, autoencoders have an input, hidden and output
layers with the bottleneck in the middle showing the most com-
pressed form of the input data at subspace. The encoder part of
the neural network compresses the input data so as to store the
compressed data at the bottleneck layer, whereas the decoder part
decompresses the data to regenerate the original input data as an
output. The compressed data can then be used for further analysis.
Two variations of autoencoders have been recently applied in
single-cell multi-omics, variational autoencoders (VAE) [86,88],
and adversarial autoencoders (AAE) [110]. The advantage of varia-
tional autoencoders is that they encode the latent attributes of the
input in a probabilistic distribution instead of a deterministic sin-
gle value. This approach has been used in totalVI [88] for jointly
transforming the RNA and protein data into joint lower-
dimensional cell states. The single-cell multimodal variational
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autoencoder (scMVAE) was recently used in integrative analysis of
scRNA-seq and scATAC-seq data [86]. Additionally, an adversarial
autoencoder method [110] was recently developed and applied
to integrate scRNA-seq and imaging data. Adversarial autoencoders
take advantage of GANs to more accurately integrate the data lay-
ers [111].
4.3. Statistical modeling-based approaches

Bayesian framework allows probabilistic modeling of multi-
omics data. For instance, Dirichlet mixture model can be used to
construct a context-dependent Bayesian clustering framework that
can be used for clustering multiple omics datasets on the level of
individual omics, while also simultaneously extracting global
multi-omics structure [112]. The probabilistic model-based algo-
rithm BREM-SC [90] utilizes Dirichlet multinomial distribution
and introduces specific random effects in order to correlate
between different omics layers. It was recently applied on gene
expression and surface protein expression data. Clonealign [91]
also implements a statistical framework for integrating gene
expression and copy number profiles from unmatched single-cell
RNA-seq and scDNA-seq data to assign gene expression states to
cancer clones. The inference is done using a mean field variational
Bayes approach. Other Bayesian frameworks for integrative model-
based clustering have been proposed for clustering multi-omics
data in bulk studies [113,114]. Such methods can be a useful asset
to be tested in the context of single-cell multimodal cluster
analysis.
5. Summary and outlook

Single-cell technology is having enormous impact on the dis-
covery of novel cell-types and defining more accurate cell differen-
tiation trajectories, as well as translational effects on precision
medicine. Clustering is a widely used unsupervised machine learn-
ing method used for analyzing cellular heterogeneity in both
single-cell mono- and multi-omics analysis. In the multi-omics
analysis, we discussed early, intermediate and late data integration
strategies together with recently introduced single-cell multi-
omics analytical tools. These tools apply algorithms and analysis
methods that have previously been developed in a wider frame-
work of multi-view analysis [115,116] in different fields, such as
text mining [54], image/video analysis [116,117] and bulk multi-
omics analysis [49,50,118]. Many of these methods still remain
unexplored in single-cell multi-omics analysis and we expect them
to be intensively examined in that context in the near future. Here
we expand our previous description of the specific tools already
used in the field of single-cell multi-omics by discussing multi-
view approaches that have been utilized in other fields not yet
applied to single-cell multi-omics.

Currently the most widely used multi-omics integration
approaches reduce the datasets to a single data matrix from multi-
ple omics datasets using CCAs, manifold alignments, graph-based
integration techniques, or autoencoders before performing cluster
analysis. The CCAs, that have most often been used via for instance
Seurat3, could in the future be further developed to take into
account the potential advances of sparse CCA [100,101,119]. The
non-linearity aspect of the high-dimensional single-cell multi-
omics data could be also dealt with other CCA variants, such as ker-
nel CCA [103,120] or deep CCA [121]. Further, importantly, new
unified distributional embedding methods, such as Multi-view
Neighborhood Embedding (MvNE) [50] are potentially relevant
additions in single-cell omics.

In general, data integration approaches where each of the omics
datasets are jointly used for optimization can be considered to
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have advantage. For this there still remains a variety of clustering
implementations for multi-view data in a co-training fashion that
have not been properly tested for single-cell multi-omics cluster-
ing, while their utility in other disciplines such text mining is more
established. For example, multi-view k-means clustering has
proved its effectiveness in the fields of image analysis [122–127],
whereas Cluster-of-clusters analysis (COCA) [75], Kernel Learning
Integrative Clustering (KLIC) [76] and perturbation-based cluster-
ing [128] have been used in bulk multi-omics cluster analysis
but have not yet been widely applied for single-cell multi-omics.
The benefit of late integration approaches, on the other hand, is
the flexibility for the different algorithms that are used at each of
the individual omics layers before integration into an ensemble
solution.

Currently, several single-cell multi-omics tools have been
developed to address the integration and clustering of multi-
omics datasets (Table 1), but comprehensive and objective com-
parison and benchmarking of these recent methods is yet to be
conducted and in high demand. Additionally, the current multi-
modal analysis tools mostly focus on integrative clustering of
multi-omics data with the aim to identify the shared cell type
heterogeneity. More tools are needed that are capable of address-
ing various biological questions from matched single-cell multi-
omics data, such as integrative motif discovery and inference of
gene regulatory networks or combining spatial expression patterns
with liquid based sequencing results.

The future is likely to bring more robust and improved techno-
logical advancement in the area of single-cell multi-modal profil-
ing, enabling multitudes of omics and other data such as imaging
from a single cell. This will open up new opportunities in finding
novel insights in relation to the biological mechanisms answering
key questions related to diseases and advances in personalized
medicine. Future developments include advanced simultaneous
assays for three [59] or more omics modalities, and more solutions
for preserved samples in order to enhance practicality of wet-lab
and the possibility to study large clinical cohorts. Also, there
remain challenges in relation to data storage, management and
analytical aspects. In terms of data storage and management, there
are few efforts to aggregate the multi-omics data in bulk setups
[34,129–132]. So far, however, there is no unified single-cell
multi-omics platform that encompasses the multi-modal single-
cell omics data in a repository, except some efforts taken by the
recent activities under the human cell atlas project [133]. There-
fore, gathering the growing multi-modal single-cell multi-omics
data in a unified repository would facilitate a collaborative work
towards computational multi-omics analysis. In terms of cluster
analytics, the multi-modal single-cell analysis has already bene-
fited from the recently advanced multi-view machine learning
methodologies [54,134,135] and these will continue to advance
the computational analysis of single-cell multi-omics data.
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