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Abstract: The application of metabolomics technology to epidemiological studies is emerging as
a new approach to elucidate disease etiology and for biomarker discovery. However, analysis of
metabolomics data is complex and there is an urgent need for the standardization of analysis workflow
and reporting of study findings. To inform the development of such guidelines, we conducted a
survey of 47 cohort representatives from the Consortium of Metabolomics Studies (COMETS) to
gain insights into the current strategies and procedures used for analyzing metabolomics data in
epidemiological studies worldwide. The results indicated a variety of applied analytical strategies,
from biospecimen and data pre-processing and quality control to statistical analysis and reporting
of study findings. These strategies included methods commonly used within the metabolomics
community and applied in epidemiological research, as well as novel approaches to pre-processing
pipelines and data analysis. To help with these discrepancies, we propose use of open-source
initiatives such as the online web-based tool COMETS Analytics, which includes helpful tools to guide
analytical workflow and the standardized reporting of findings from metabolomics analyses within
epidemiological studies. Ultimately, this will improve the quality of statistical analyses, research
findings, and study reproducibility.

Keywords: metabolomics; epidemiology; statistical analysis; reporting; analytical methods; data
analysis; pre-processing

1. Introduction

Recent advances in high-throughput methods to characterize the human metabolome present
an unprecedented opportunity to strengthen epidemiological research and broaden its scope.
Metabolomics is being utilized to shed light on disease etiology through objective biomarkers of
exposures that are otherwise fraught with measurement error; to refine or complement our current
methods of phenotypic assessment; to understand biological pathways linking exposures to health
outcomes; identify early onset disease; and subtype diseases with heterogeneous etiologies [1].
Metabolomics is the comprehensive characterization of small molecules present in biospecimens such
as plasma, urine, and stool. Since these small molecules reflect influences from environmental factors,
as well as endogenous factors such as genetics, epigenetics, transcription, protein structure and function,
and gut microbiota, metabolomics has the potential to provide a more nuanced assessment of physiology
(or pathophysiology) that is often unachievable with traditional epidemiological approaches such as
evaluation of single biomarkers, or self-reported data collected via questionnaires. Diverse research
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fields including epidemiology, systems biology, biochemistry, microbiology, pharmacology, toxicology,
clinical science, and biostatistics converge through metabolomics to advance a multidisciplinary
understanding of health and disease [2].

To date, metabolomics has shown success in screening newborns for inborn errors of metabolism,
for identifying candidate biomarkers for early disease detection, particularly for some diseases like
diabetes and cancer [3,4], for understanding disease mechanisms [5], and has been used to develop
better measures of disease risk factors like smoking, diet, and obesity [6–8]. As this emerging technology
is increasingly incorporated into disease research, including epidemiological studies, a bottleneck to
advancing the field is the complexity and lack of standard protocols or best practices for analyzing
metabolomics data [9]. Indeed, metabolomics has a unique data structure that depends on the platform
(e.g., targeted quantification of defined groups of chemically characterized and biochemically annotated
metabolites or untargeted semi-quantified analyses of all measurable analytes), which determines the
analytical strategy to be taken. Challenges in the analysis of metabolomics data are multi-fold [10],
including workflow choices for data harmonization, pre-processing (alignment, filtering), metabolite
identification/annotation, data preparation (centering, scaling, and transformation) [11], imputation,
and statistical approaches [12]. Moreover, since there is a high degree of collinearity between
metabolites according to biochemical pathway, considering the pattern of metabolite values in addition
to individual metabolites can create additional statistical obstacles. Metabolomics data management
and data analysis consist of a series of complex steps that can be performed in many ways with
no defined order, and some of these are optional depending on the study aims. This complexity is
further compounded by the lack of adherence to a set of standard reporting guidelines [13], which
makes it difficult to determine common or best practices, and leads to problems in replicating
results, comparing findings, and conducting systematic reviews and meta-analyses. The purpose
of this study was to summarize current practices of investigators participating in the international
Consortium of Metabolomics Studies (COMETS) [14] in the analysis of metabolomics data from
epidemiological studies.

2. Results

2.1. Response Rate

Thirty-three out of 47 (70%) of the participating COMETS cohorts responded to an online
questionnaire up to October 2018 (See Supplementary Table S1 for a summary of all results).
The questionnaire inquired about current practices in the preparation, analysis, and reporting of
metabolomics data. The total number of respondents was used as the denominator in calculating
response rate (%). Respondents could check multiple options for each question (all that apply),
and follow-up questions were asked based on some responses. When questions were unanswered,
the response was denoted as “missing”. Most respondents were Principal Investigators (42%) followed
by postdoctoral fellows (16%), research analysts (13%), research scientists (8%), biostatisticians (5%),
and PhD students (3%). Respondents reported having conducted a median of 6 (range 1–30) analyses
of metabolomics data. Multiple analyses were conducted on the same datasets, with different
analysis goals.

2.2. Datasets

Metabolomics data were derived predominantly from untargeted metabolomics platforms (55%),
with 27% derived from combining untargeted and targeted platforms and 18% from targeted only.
The analysis goals were largely for biomarker discovery (91%) and/or to investigate disease etiology
(82%), methodology development (31%), and other purposes (18%; e.g., metabolome-wide association
study) (Figure 1a). Different study designs were used to generate metabolomics data, including:
17 cohorts, 15 nested case-control studies, 8 case-control studies, 8 case-cohorts, 5 randomized trials,
and 4 cross-sectional analyses within prospective studies, with an average of 3302 participants (standard



Metabolites 2019, 9, 145 4 of 21

deviation 3972) (Figure 1b). Reported outcomes being analyzed included cancer (39%), cardiovascular
disease (CVD) (30%), diabetes (21%), and pregnancy outcomes (6%). Human-immunodeficiency virus
(HIV) infection, cardiometabolic measures, asthma, and amyotrophic lateral sclerosis (ALS) were each
reported as outcomes by one respondent.
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Figure 1. Description of study purpose (a) and study design (b) of participating Consortium of
Metabolomics Studies (COMETS) cohorts.

2.3. Power Calculations

Approximately 45% of respondents anticipated power or sample size prior to analysis. Of those
that did sample size or power calculations, most were performed in Quanto (n = 6) or R (n = 4).
Other resources used were Power V3 (n = 2), PASS (n = 1), and GPower (n = 1).

2.4. Outliers and Technical Variability

Extreme metabolite values (i.e., outliers) were evaluated by 39% of respondents, predominantly
by using principal component analysis (PCA; n = 13). A subset used principal component partial
R-square (PC-PR2) (n = 2) or analysis of variance (ANOVA) (n = 2) to identify outliers.

Of those that evaluated sources of metabolite variability, reported sources included batch effects
(n = 6), run order (n = 3), plate, time to sample collection, and time from sample collection to freezing
(all n = 1) (Figure 2a). However, most respondents did not exclude metabolites based on these
sources of variability. Ten respondents reported adjusting for batch-to-batch variability (Figure 2b).
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Methods included adding case-control sets to each batch (n = 3), adjusting for batch in analysis (n = 4),
standardizing metabolites to the batch median (n = 2), or using the Rosner approach [15] (n = 1).Metabolites 2019, 9, x FOR PEER REVIEW 6 of 23 
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Figure 2. Reliability measures among participating COMETS cohorts. (a) Sources of technical variability;
(b) Batch-to-batch variability; (c) Platform reliability; (d) Metabolite exclusion criteria. Missing refers to
the proportion of respondents that did not answer the question.
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Nineteen respondents measured platform reliability using coefficient of variation (CV) (n = 17)
and/or intraclass correlation coefficient (ICC) (n = 12) (Figure 2c). The range of CVs reported for
completed studies was 0–78% (most up to 20%), while the range of ICCs reported was up to 1.0
(most > 0.90). Seven respondents reported using this information to exclude metabolites from analysis,
but criteria for exclusion were variable (e.g., CV > 20% or ICC < 0.40) (Figure 2d).

2.5. Data Preparation

Centering, scaling, and data transformation are data preparation methods used in metabolomics
studies [11]. Thirty-nine percent of respondents reported centering individual metabolite values while
42% did not (15% missing). The most common method was centering to the mean (n = 10). Scaling
methods included Pareto-scaling (n = 2), auto-scaling/z-transformation/standard-deviation scaling
(n = 7), probit-score scaling (n = 1), and median absolute deviation (MAD) (n = 1). Most respondents
reported transforming metabolite data (85%; 15% missing), including by log-transformation (n = 21).

2.6. Missing Data

Most respondents (85%) reported that their metabolomics data had missing values. Missingness
was due to the limit of detection (LOD)/quantification of the platform (n = 24), low abundance (n = 13),
and rare metabolites (n = 8). Co-elution issues and failed quality control (QC) were also reported
(n = 1 each) (Figure 3a).
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Figure 3. Data pre-processing steps conducted among participating COMETS cohorts. (a) Missingness;
(b) Imputation of missing values.

Twenty-one respondents reported imputing the missing values while seven did not (n = 5 did not
answer). The most common approach to treat missing values was to replace these by a fraction of the
lowest value (n = 15). Replacing missing values by zero or by the minimum value were each reported
by three respondents. K-nearest neighbor imputation (KNN) [16] was used by one respondent while
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none used multiple imputation by chained equations (MICE) or Markov chain Monte Carlo (MCMC)
(Figure 3b). Most respondents (n = 15) reported excluding metabolites with a percent of missingness
above a certain threshold (median 50%; range 5% to 90%). Dichotomization, categorization as missing
or min-median or median-max, imputation to the mean, flagging, and complete exclusion were each
reported by one respondent.

2.7. Statistical Analysis Methods

Respondents used multiple statistical analysis strategies to analyze metabolomics data (Figure 4).
The most common strategy was univariate regression (e.g., linear regression of a single exposure
on a single metabolite) (76%) followed by multiple/multivariable analysis of metabolites on the
exposure of interest, with adjustment for covariates (67%), principal component analysis (PCA,
61%), metabolome-wide association study (MWAS, 48%), partial least squares-discriminant analysis
(PLS-DA, 42%), partial correlation (30%), partial least squares analysis (PLS, 18%), and hierarchical
clustering (18%). The following analysis techniques were each reported by one respondent: canonical
correspondence analysis (CCA), treelet transform, K-means clustering, least absolute shrinkage and
selection operator regression (LASSO), supervised gradient descent, random forest, support vector
machines (SVM), weighted gene co-expression network analysis (WGCNA), metabolite set enrichment
analysis, over-representation analysis, differential networks, hierarchical cluster analysis, Bayesian
non-parametric methods, orthogonal projections to latent structures discriminant analysis (OPLS-DA)
and generalized linear mixed models (GLM). A third of respondents reported having used variable
selection methods incorporating penalization, including LASSO, SVM, and sparse seemingly unrelated
regression (SUR). Mediation analysis was conducted by 15% of respondents.
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Almost half of the respondents (48%) assessed the performance of biomarker classification using
area under the receiver operator characteristic curve (AUC) (n = 16), net reclassification improvement
(n = 2), sensitivity/specificity/positive predictive value/ negative predictive value (n = 1) and PLS-DA
(n = 1).

Approximately 40% of respondents measured metabolite intercorrelations. The most common
method for assessing metabolite intercorrelations was partial correlation (n = 11). Gaussian graphical
modeling (GGM; n = 2) and WGCNA (n = 1) were also used for this purpose.

A quarter of respondents conducted network analyses. WGCNA (n = 3) and unspecified methods
incorporated into programs within the analytic resource MetaboAnalyst (n = 2) were the most common
approaches followed by GGM with linkage to biological pathway, BayesNet, Gene-Set Enrichment
Analysis (GSEA), over representation analysis (ORA), Metscape, and yED graphical networking
software (n = 1 each).
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2.8. Cross Validation and External Validation

Seven respondents (21%) performed cross-validation (CV) analysis. Six respondents used k-fold
CV and one reported simulation/permutation of data. The proportion of training data varied (60% to
90%) as did the proportion of testing data (10% to 40%). Five respondents used bootstrapping, and 11
externally validated findings in another cohort.

2.9. Visualization

Respondents visualized results using heat maps (n = 17), volcano plots (n = 6), Manhattan plots
(n = 5), forest plots (n = 2), and individual approaches (n = 1).

2.10. Multiple Testing Correction

Correcting for testing multiple hypotheses following analysis of metabolomics data (e.g., when
regressing multiple metabolites on an exposure, separately) was done by 79% of respondents (Figure 5).
The Benjamini-Hochberg false discovery rate (FDR) was the most common approach (n = 22), followed
by Bonferroni correction (n = 12), Bonferroni-Holm, Dunn-Sidak, and permutation tests (n = 1 each).

Metabolites 2019, 9, x FOR PEER REVIEW 9 of 23 

 

90%) as did the proportion of testing data (10% to 40%). Five respondents used bootstrapping, and 
11 externally validated findings in another cohort. 

2.9. Visualization 

Respondents visualized results using heat maps (n = 17), volcano plots (n = 6), Manhattan plots 
(n = 5), forest plots (n = 2), and individual approaches (n = 1). 

2.10. Multiple Testing Correction 

Correcting for testing multiple hypotheses following analysis of metabolomics data (e.g., when 
regressing multiple metabolites on an exposure, separately) was done by 79% of respondents (Figure 
5). The Benjamini-Hochberg false discovery rate (FDR) was the most common approach (n = 22), 
followed by Bonferroni correction (n = 12), Bonferroni-Holm, Dunn-Sidak, and permutation tests (n 
= 1 each). 

 

Figure 5. Strategies for correcting for multiple hypothesis testing among participating COMETS 
cohorts. (a) Use of multiple testing correction (yes/no); (b) Methods for correcting for multiple 
hypothesis tests. 

2.11. Meta-Data 

In total, 9 of 33 respondents (27%) appended metabolite meta-data for publication (Figure 6). 

Unique identifiers such as those from publicly available metabolomics databases such as Human 

Metabolome Database (HMDB) and PUBCHEM were most often appended to metabolomics study 

results (n = 5). The addition of pathway information and mass-to-charge ratio (m/z ratio) were also 

reported (n = 4) along with retention time (n = 3) and internal database compound tracking number 

in the platform’s chemical library (COMP ID) (n = 1). 

 

Figure 6. Appending metabolite meta-data in publications of findings from participating COMETS 
cohorts. (a) Include meta-data for publication (yes/no); (b) Information provided in appended meta-
data. 

Figure 5. Strategies for correcting for multiple hypothesis testing among participating COMETS cohorts.
(a) Use of multiple testing correction (yes/no); (b) Methods for correcting for multiple hypothesis tests.

2.11. Meta-Data

In total, 9 of 33 respondents (27%) appended metabolite meta-data for publication (Figure 6).
Unique identifiers such as those from publicly available metabolomics databases such as Human
Metabolome Database (HMDB) and PUBCHEM were most often appended to metabolomics study
results (n = 5). The addition of pathway information and mass-to-charge ratio (m/z ratio) were also
reported (n = 4) along with retention time (n = 3) and internal database compound tracking number in
the platform’s chemical library (COMP ID) (n = 1).
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2.12. Annotations

Eight respondents (24%) annotated metabolites. Of those, databases that were used for annotation
included HMDB (n = 6), Metlin (n = 3), KEGG pathways (n = 2), Metabolon proprietary system (n = 1),
and the National Institute for Standards and Technology (NIST) library (n = 1) (Figure 7).
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2.13. Coding Language

Most respondents (61%) wrote their statistical code in R (Figure 8). Other popular coding languages
included SAS (33%) and STATA (15%). Fewer respondents used other languages (e.g., Python, Haskell,
Matlab; n = 1 each). Four respondents (19%) used a statistical coding style guide (e.g., tidyverse,
Google’s R style guide) in the design of their code.
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2.14. Software

Of the numerous open source software packages available online (for examples, see Table 1), none
were leveraged by respondents to this survey. Rather, they reported writing original code or using R
packages for analysis of metabolomics data.
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2.15. Minimum Reporting Standards

There were many suggested minimum reporting standards for analysis of metabolomics data,
including reporting: study aim and objectives; study hypothesis; statistical assumptions; overall
analytical strategy; metabolomics data standard operating procedures; pre-analytical processing
measures; analytical platform; quality control measures used; statistical packages and software used;
strategy for adjustment for multiple comparisons; meta-data; effect estimates and confidence (betas,
confidence intervals, P-values and Q-values for both nominal and statistically adjusted results);
confounder selection; cross-validation strategy; external validation strategy; and providing statistical
code for replication.

3. Discussion

The application of metabolomics in epidemiological studies has increased dramatically in
recent years [17]. The COMETS consortium is currently collaborating on large-scale replication
studies and meta-analyses of metabolomics data [14]. With an overall study population in excess of
130,000 participants, median age 51 years (range 0–100 years) representing European, Asian, African,
Hispanic, native Hawaiian and other mixed populations, COMETS is a rich resource for addressing
research questions that leverage blood metabolomics data. Given that application of metabolomics
technology to epidemiological studies is an emerging field, we conducted a survey of participating
COMETS cohort representatives to gain insights into the strategies and procedures used for analyzing
metabolomics data, including data pre-processing, analysis, and reporting of results. With a range of
experience levels analyzing metabolomics data, participating COMETS cohorts have analyzed and
published on both targeted and untargeted metabolomics data from a variety of study designs in
relation to disease risk factors [8,18–27] and many disease outcomes, predominantly cancer, CVD,
and diabetes [28–40]. However, there was little consensus on approaches to data pre-processing,
statistical analysis or reporting of results, which is echoed in the broader metabolomics community [13].

Metabolomics studies have predominantly investigated disease etiology or biological mechanisms
underlying progression and for biomarker discovery, using metabolomics data generated on both
targeted or untargeted platforms in the context of a variety of epidemiological study designs [23,40–43].
The type of study design selected is typically related to the research question of interest in addition to
the availability of metabolomics data and the frequency of the outcomes of interest in that same study.
Importantly, statistical analytical considerations will differ depending on study design. For instance,
a nested case-control study may require propensity-score matching to avoid ascertainment bias,
by controlling for the probability to be included in the metabolomics data based on eligibility criteria [38].
By contrast, large cohort studies that investigate rarer outcomes may utilize multivariable regression
or tree-based analysis. Furthermore, data reduction approaches may be needed for high-dimensional
untargeted metabolomics data.

3.1. Data Pre-Processing

A first step in analysis of metabolomics data includes data pre-processing. Extreme metabolite
values are frequently observed even after applying any one of a variety of normalization methods
to large metabolomics datasets [10], yet less than half of respondents evaluated them. A variety of
sources drive extreme metabolite values including pre-analytical conditions (e.g., processing delay),
batch variability (due to a variety of technical factors), misalignment (between or within batches),
chemical instability (typically manifesting as within-batch variation), true biological variation that
may arise from rare genetic determinants or rare exposures, other random effects that are not easily
classifiable, or some combination of the above [44]. Filtering or censoring extreme values can reduce the
skewness of a distribution and stabilize metabolite variance, improving reliability and interpretability of
statistical analysis results. However, this approach could lead to misclassification or loss of information,
particularly for metabolites that may represent rare exposures that could be associated with rare
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outcomes (e.g., certain drugs, chemicals, or foods) or extreme manifestations of common outcomes.
Alternately, transformations based on rank only, such as the probit transformation, represent an elegant
solution and avoid such exclusions. Log scaling and winsorization are other strategies to reduce the
influence of outliers.

Missingness among metabolite data was also a common occurrence. Missing values may be due
to biological factors, such as metabolites being absent (e.g., drug metabolites), and various technical
limitations in computational detection, including separation of metabolite signal to noise, low signal
intensity (e.g., lower value for detection), and measurement error [45]. Various analytical approaches
for imputation were reported, including replacement with zero, half (or another proportion) of the
minimal detected value, or more complex statistical approaches such as KNN [16], PCA, or random
forest imputation [45]. Missing values are often assumed to be due to technical limitations including
being below the metabolomics platform’s LOD; however, truly absent values must be considered. It is
challenging to distinguish between the two as this task requires extensive biochemical knowledge.
However, imputing missing values when the metabolite is absent (e.g., for a drug metabolite), is not
meaningful and may result in spurious results. Another important consideration is the percentage
of missing values per metabolite. Imputation for metabolites with a large proportion of missing
values may result in a metabolite with low information content but increasing the multiple testing
burden. In this case, exclusion of the metabolite or dichotomization to missing/not-missing values may
represent more suitable alternatives. Prior to removing such metabolites, evaluating their relationship
with the experimental condition or exposure of interest should still be considered to ensure that
valuable information is not discarded. Therefore, analysts must consider the chemical nature or source
of extreme or missing metabolite values in determining how to deal with them.

Batch variability or signal drift adjustments were not commonly conducted. These are considered
a standard part of the workflow in the field. It is likely that the lack of reporting batch adjustments
was due to the use of commercial platforms (e.g., Metabolon Inc. [46] and the Broad Institute [47]) that
conduct batch and other laboratory adjustments as part of their standard operating procedures. In some
cases when data pre-processing is done by the metabolomics laboratory (or bioinformaticians who
work closely with the laboratory), the steps used are not always available to the end user. Additionally,
depending on the type of analytical instrument used (i.e., NMR versus MS-based), pre-processing
steps could be drastically different [48]. We found that centering, scaling, and transformation of
metabolomics data were common, such as adjustment of feature/metabolite intensity by the median
across samples, or standard normalization approaches like log2 or log10 transformation [11,49–51].
The most appropriate normalization method for any given large cohort experiment depends on the
type of mass spectrometry method used and the size of the cohort experiment; ongoing work is being
done to investigate the relative performance of different normalization methods applied to large cohort
metabolomics data [52,53].

Most respondents (58%) calculated reliability measures such as metabolite CVs and ICCs, although
they generally did not exclude metabolites using these criteria. Encouragingly, of those that measured
ICCs, reliability was excellent, on average (ICC>0.9). The variability of metabolite levels in population
studies is an important consideration when estimating study power and the true compared with
observed study effect estimates. Three main sources of variability include (1) between-subject variability
or usual level in the population, (2) within-subject variability representing the usual level within an
individual (e.g., year-to-year variability), and (3) technical or laboratory reproducibility or variance
expected from identical samples. These components can be integrated into the technical ICC or the
proportion of the total variation that is attributable to biologic variance versus random laboratory
error [54]. Studies with higher biologic variance and lower technical metabolite variance (e.g., cohorts
enriched with certain disease risk traits and measures of primarily highly abundant metabolites) may
have higher study power to detect epidemiological associations. Repeated samples can also reduce
within-individual variability and improve study power [54,55].
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3.2. Data Analysis

3.2.1. Analytic Approaches

Following multivariate dimension reduction and/or identification of relevant metabolites,
epidemiological methods such as multivariable regression analysis were commonly used for data analysis,
but novel and more complex approaches such as adaptations of penalized regression and network analysis
are also emerging [56–58]. While the data pre-processing pipeline should be consistent, the data analysis
techniques used are driven by the goals of the study. For instance, predictive models like LASSO may be
useful for biomarker discovery, but methods applied to the study of mechanisms or metabolomic profiles
associated with exposures will depend on the directionality of the underlying biology. Our findings are
consistent with a recent survey of the broader metabolomics community that surveyed metabolomics
workflow and computation strategies [59]. As an emerging field, metabolomics databases are still
incomplete and thus interpreting results from metabolomics datasets in a biological context is challenging.
Data-driven network-based approaches support a better understanding of the biological processes driving
exposure-disease associations [60], and can provide biological information independent of background
databases as well as incorporating unknown metabolites [61]. Examples include Gaussian graphical
modeling [62], weighted gene co-expression network analysis [63], sparse network modeling [64], Bayesian
approaches [65], and machine learning methods such as random forests [66].

Automated text mining is a bioinformatics approach and queries databases to provide biological
context based on a metabolite list [61]. As metabolomics technologies continue to evolve and expand
to include larger numbers of novel (i.e., unknown) molecules, the ability for existing databases
to provide structure for network analyses becomes more limited. For chemically characterized
metabolites, chemical pathway analysis [67] can identify biologically meaningful metabolite groups
(i.e., representing biochemical pathways) using information from biochemical databases, and may also
serve to strengthen power to detect associations compared with evaluating single metabolites.

To facilitate metabolomics analyses, which are considerably more complex than traditional
epidemiological studies, online platforms that aid in identification of relevant biochemical pathways,
such as Metaboanalyst [68], the Metabolomics Workbench [69], and others [70] were developed.
Moreover, an increasing number of studies are measuring more than one ‘omics data type [71,72] and
methods that integrate multiple ‘omics datasets are also under development. Examples of useful tools
available for processing and analysis of metabolomics data are presented in Table 1.

Table 1. Resources available for analysis and interpretation of metabolomics data. a

Resource Name Description Website

Consortia and
Societies

Consortium of METabolomics
Studies (COMETS)

Consortium of prospective studies with blood
metabolomics data. https://epi.grants.cancer.gov/comets/ [14]

Metabolomics Society Summary of metabolomics databases. http://metabolomicssociety.org/
COordination of Standards in
MetabOlomicsS (COSMOS) Standards for data dissemination. http://cosmos-fp7.eu/ [73]

Statistical Analysis
Tools; Meta-Data
and Other
Resources

Metabolomics Workbench Metabolomics resource sponsored by the Common
Fund of the National Institutes of Health. http://www.metabolomicsworkbench.org/ [69]

MetaboAnalyst Program for statistical, functional and integrative
analysis of metabolomics data.

https://www.metaboanalyst.ca/
MetaboAnalyst/faces/home.xhtml [68]

Metabox A toolbox for metabolomic data analysis,
interpretation, and integrative exploration. http://kwanjeeraw.github.io/metabox/ [74]

MZmine
A modular framework for processing, visualizing,
and analyzing mass spectrometry-based molecular
profile data.

http://mzmine.github.io/ [75]

XCMSOnline Metabolomics data processing and analysis platform. https://xcmsonline.scripps.edu/landing_page.
php?pgcontent=mainPage [76]

Workflow4Metabolomics Collaborative research infrastructure for
computational metabolomics. https://workflow4metabolomics.org/ [77,78]

PhenoMeNal Cloud-based platform for metabolomics processing
and analysis. http://phenomenal-h2020.eu/home/ [79]

Metabolomics Tools Wiki Classified and searchable list of metabolomics
software and tools. https://raspicer.github.io/MetabolomicsTools/

MetaboLights Database for metabolomics experiments and
derived information. https://www.ebi.ac.uk/metabolights/ [80]

MetabolomeXchange An international data aggregation and notification
service for metabolomics. http://www.metabolomexchange.org/site/

a The metabolomics resources cited here are provided as a summary of existing tools rather than an endorsement of
specific tools.

https://epi.grants.cancer.gov/comets/
http://metabolomicssociety.org/
http://cosmos-fp7.eu/
http://www.metabolomicsworkbench.org/
https://www.metaboanalyst.ca/MetaboAnalyst/faces/home.xhtml
https://www.metaboanalyst.ca/MetaboAnalyst/faces/home.xhtml
http://kwanjeeraw.github.io/metabox/
http://mzmine.github.io/
https://xcmsonline.scripps.edu/landing_page.php?pgcontent=mainPage
https://xcmsonline.scripps.edu/landing_page.php?pgcontent=mainPage
https://workflow4metabolomics.org/
http://phenomenal-h2020.eu/home/
https://raspicer.github.io/MetabolomicsTools/
https://www.ebi.ac.uk/metabolights/
http://www.metabolomexchange.org/site/
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3.2.2. Correction for Multiple Statistical Testing

One of the most important differences between conducting a single biomarker versus a
metabolomics analysis within an epidemiological study is the number of tested hypotheses. In order
to account for the high number of study hypotheses in many metabolomics studies (particularly
for untargeted metabolomics), several methods are available to reduce the rate of Type I errors.
Respondents predominantly used the false discovery rate (FDR), which is considered a less stringent
approach, followed by Bonferroni correction to account for testing multiple hypotheses. These reflect
the most widely used methods currently, although FDR approaches that account for highly correlated
data are lacking. A detailed description of these approaches together with proposed alternatives,
such as resampling-based strategies, have been reported elsewhere [81]. There is a need to determine
the most appropriate method for correcting for multiple statistical testing given the correlated nature
of metabolomics data.

3.2.3. Classification Performance

Reporting of classification performance is an important step in translating risk factor or disease
biomarkers to a clinical setting. Approximately half of respondents noted conducting such analyses.
Inconsistent reporting of biomarker classification performance and poor transparency in reporting
prediction algorithms have been observed among the broader metabolomics community [82]. Biomarker
discovery includes selecting biomarkers that maximally discriminate cases from controls, validating
the biomarker panel, and deriving a final model with a fixed mathematical algorithm for predicting the
clinical outcome [82]. Measures of biomarker sensitivity, specificity, and receiver operator characteristic
(ROC) curves are used to assess the performance of biomarkers for classifying disease diagnosis,
prognosis, and risk factor or prediction biomarkers [83]. For disease biomarkers, reporting of ROC
curves for disease classification would support biomarker comparison across studies.

3.2.4. Meta-Data

Metabolite metadata includes information on metabolomics platform and procedures such as
software used, reliability (CV, ICC), chemical identification, mass-to-charge ratio and retention time,
chemical pathway, and biological information, among others. This information was not commonly
presented in publications. Metadata is crucial for linkage across metabolite databases to retrieve
metabolite information, conducting between-study comparisons, metabolite annotation, and informing
replication efforts. Databases such as the Human Metabolome database (HMDB) [84] and PubChem [85]
assign unique identifiers and compile useful accompanying metadata from previous studies. Quality of
metabolomics metadata has been reviewed previously [86]. In an epidemiological setting, appending
metabolite metadata will support future replication and meta-analysis efforts, such as those proposed
within COMETS.

3.2.5. Validation

Cross- and external validation of metabolomics analyses were uncommon among COMETS
respondents. External validation represents the gold-standard approach to show generalizability
of results. The lack of independent validation is a major challenge in metabolomics biomarker
discovery [87]. Validation is particularly important when not all metabolites are stable over long
periods of time and across sample collection methods [88]. Extensive costs of acquiring metabolomics
data and difficulties in obtaining suitable samples (e.g., in case of a rare disease) may complicate
external validation. In that case, as an alternative one may choose to apply cross-validation [89] or
double cross-validation [90] by conducting the main analysis on a subset of the study participants
and validating the results on the remaining subset. This may often represent the only way to validate
results, but the investigators must keep in mind that this approach leads to lower power in both the
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discovery and validation datasets. COMETS provides a unique opportunity for increased biomarker
validation in cohorts with diverse participant demographics and clinical features.

3.2.6. Coding Language

Most statistical programming was conducted in R. There are many freely available software
packages for metabolomics analysis, summarized by the Metabolomics Society [91] and elsewhere [92].
Moreover, platforms such as Galaxy, originally designed for developing genomics research workflow
pipelines, have been applied to metabolomics [59]. The recognized advantages of using R and other
open source coding languages include the open source framework, which allow investigators and
programmers to fully access each line of code and edit or adapt code as needed for a given data
management or analysis purpose. For this reason, flexible and open tools are likely to continue being
developed in R, with more user-friendly adaptations of code being developed as ready-to-use R
packages. Standardizing statistical analysis approaches in workflows developed as R packages will
also help to augment potential for replication of analyses across large cohort study designs.

3.3. Reporting of Data Analysis Workflow

Pre-analytical and analytical strategies are often poorly reported within scientific manuscripts [93].
A recent review of 27 studies published between 2008 and 2014 assessed the standard of reporting of
data management and analysis steps in metabolomics biomarker discovery studies and investigated
whether the level of detail reported allows basic understanding of the steps employed and/or reuse
of the protocol [13]. The authors concluded that there is unclear and incomplete reporting of these
procedures in metabolomics studies that preclude replication in another study. Standardized reporting
of observational studies in epidemiology is outlined by the STROBE statement [94] and CONSORT
statement [95], with application to genetic epidemiology studies through the Standardized Reporting
of Genetic Association Studies (STEGA) [96], among others. Recommendations for standardizing
reporting of epidemiological studies with metabolomic analyses and infrastructure to support it have
also been proposed [59,77,97], including: experimental design; analytical dataset format; sample
handling and data acquisition parameters; post-instrument data processing; multivariate statistical
procedures; data modeling; and model validation. Based on our findings, a summary of observed
workflow is presented in Figure 9.Metabolites 2019, 9, x FOR PEER REVIEW 16 of 23 
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In summary, there is a need to develop standardized analytical workflows, reporting standards,
and tools for analysis of metabolomics data in epidemiological studies. Our survey was conducted
among a small number of respondents, but they were representatives of their respective prospective
cohorts and therefore represent the views of a larger population of analysts. Nonetheless, conducting
similar surveys in a larger sample would strengthen the current findings. To coordinate and streamline
consortium-based data analyses, COMETS developed COMETS Analytics, a secure online statistical
analysis platform for metabolomics data analysis [98]. COMETS Analytics processes summary data
generated by participating cohorts, as opposed to individual-level data. The web-based application
performs three main tasks: it harmonizes metabolite identifiers across cohorts that utilized different
metabolomics platforms, conducts statistical analyses in large batches of user-defined models (including
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correlation analysis and multivariable regression), and produces standardized, meta-analysis ready
output. The data pre-processing steps are completed by each cohort according to their workflow
prior to analysis in COMETS Analytics. The source code is publicly available through GitHub
(https://rdrr.io/github/CBIIT/R-cometsAnalytics/). The platform aims to accelerate data analysis and
lower error rates compared with more conventional approaches [14]. Educational tools are under
development to guide analytical workflow and reporting of findings. These resources are intended to
be open-source and freely available to the public to support rigorous research efforts and training in
the analysis of metabolomics data.

4. Materials and Methods

4.1. Study Population

The study population included representatives of 47 prospective cohorts participating in the
Consortium of Metabolomics Studies (COMETS) [14]. Representatives were cohort Principal Investigators
and those with hands-on experience conducting analyses of metabolomics data from their respective
cohorts (i.e., research analysts, biostatisticians, research scientists, postdocs, and graduate students).

4.2. Questionnaire

Participants were invited to complete an online questionnaire designed to collect information
on the workflow and analytical strategies used for past and current metabolomics analyses of
epidemiological data within their cohort. The questionnaire was conducted using Survey Monkey (https:
//www.surveymonkey.com) between 8 June and 5 October 2018. Questions were informed by common
reporting of metabolomics analysis methods in the literature and were either multiple choice or multiple
choice with the option of open-ended responses. Topics included: (1) Study information (purpose of
the analysis, study design, type of analysis [targeted, untargeted, or both]); (2) Exploratory analyses
and pre-processing (power calculations, data normalization, dealing with missing data, assessing
technical platform reliability); (3) statistical analysis (analytic strategies, visualizations, cross-validation);
(4) metabolite annotations; (5) other (statistical software, biostatistician input, open-source packages
used, statistical coding language, minimal reporting standards). Responses were collated and
summarized as frequency of responses (N/%) based on total number of respondents. Open-ended
responses were summarized. The questionnaire can be found in the Supplementary Materials.

5. Conclusions

We conducted a survey of 47 participating COMETS cohort representatives to gain insights into the
strategies and procedures used for analyzing metabolomics data in epidemiological studies worldwide.
Our results indicate a large variety of analytical strategies being applied, from data pre-processing and
quality control to statistical analysis and reporting of the findings. These methods are both common
epidemiological approaches and emerging novel methods. We found that there was consensus on
several aspects of metabolomics analysis workflow, including data transformation/normalization,
dealing with missing values, multiple testing correction, and choice of statistical software. However,
more thought is merited on what would be most appropriate for metabolomics data, such as the
optimal multiple testing correction given its highly correlated nature. Moreover, there is a clear
need to establish benchmarks in relation to other data pre-processing steps, use of cross and external
validation, and minimum reporting standards including reporting metabolite reliability estimates
and appending meta-data to study results. Although there was a wide range of analytic approaches
applied to metabolomics data, it is likely that analytical choices will continue to depend on the study
question and the nature of the data (i.e., targeted or untargeted). Altogether, our results indicate the
need for standardized analytical workflows, reporting standards, and openly shared tools for analysis
of metabolomics data in large-scale epidemiological studies—an approach that has catalyzed scientific
progress in other similarly expansive fields [99]. Accordingly, the open-source COMETS Analytics

https://rdrr.io/github/CBIIT/R-cometsAnalytics/
https://www.surveymonkey.com
https://www.surveymonkey.com
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initiative [98] is currently developing a set of educational modules and analytic code using common
statistical coding language to support the analysis and interpretation of large-scale metabolomics
data derived from epidemiological studies. Our current findings can be leveraged to inform the
development of minimum reporting standards for metabolomics data analysis to support best practices
and study reproducibility. Ultimately, we anticipate this will improve the quality of metabolomics
data analysis and results and enable a better comparison and interpretation of the results across
metabolomics studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/7/145/s1,
Table S1: Summary of Questionnaire Responses from COMETS Cohort Representatives (n = 33).
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