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Complete positivity, finite-temperature effects, and additivity of noise for time-local qubit dynamics
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We present a general model of qubit dynamics which entails pure dephasing and dissipative time-local master
equations. This allows us to describe the combined effect of thermalization and dephasing beyond the usual
Markovian approximation. We investigate the complete positivity conditions and introduce a heuristic model
that is always physical and provides the correct Markovian limit. We study the effects of temperature on the
non-Markovian behavior of the system and show that the noise additivity property discussed by Yu and Eberly
[Phys. Rev. Lett. 97, 140403 (2006)] holds beyond the Markovian limit.
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I. INTRODUCTION

For decades, noise induced by the environment has been
considered the major enemy of quantum technologies. It is
nowadays recognized that this initial belief was wrong [1].
Not only can noise be used to generate quantum properties
such as entanglement [2–5], but also the dynamics of an
open system, e.g., its coherence time, can be modified by
reservoir engineering. Generally, there are a number of ways
to change the properties of the environment in a selective
and controllable way. Typical examples are modifications of
the spectral density of the electromagnetic field acting as an
environment, such as in cavity quantum electrodynamics or
photonics band gap materials [6,7], and dynamical decoupling
methods [8–11]. These techniques are nowadays routinely
performed in laboratories [12].

At the same time, the experimental ability to isolate from
the environment and coherently control individual qubits
in solid-state systems such as nitrogen vacancy centers in
diamonds [13] and superconducting Josephson junctions [14]
has made them ideal candidates for quantum technologies.
However, despite the advances of the last decade, the effects
of noise in these systems still needs to be taken into account
to study their robustness, efficiency, and lifetime in realistic
physical conditions.

The rising importance of both reservoir engineering tech-
niques and solid-state qubits highlights the need to investigate
open quantum system models which go beyond the Marko-
vian approximation usually used in quantum optics. During
the last few years, research on non-Markovian dynamics
has flourished. The study of memory effects, characterizing
non-Markovian systems, has been linked with a partial
revival of information on the open system [15,16]. Several
ways to quantify information flow and backflow have been
proposed in order to understand the physical phenomena
underlying non-Markovian evolution [17–24]. Finally, intense
research activity is currently focused on the understanding
of the conditions and the potential advantages of memory
effects to enhance the performance of quantum devices
[25–29].

The main difficulty when dealing with non-Markovian
models is the lack of a general theorem which guarantees the
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physicality of the state as time evolves. From a mathematical
point of view, one of the reasons why Markovian master
equations have been so popular is indeed the existence of
the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) theo-
rem characterizing completely positive and trace preserving
(CPTP) dynamical maps [30,31]. This in turn guarantees that,
in the absence of initial system-environment correlations, the
time evolution of any quantum state of the open system, as
described by the solution of the GKSL master equation, is
always physical.

Because of this difficulty, dealing with generalized non-
Markovian master equations is always a tricky business
[32–35]. Even for a single qubit, where conditions for complete
positivity are known [36,37], all studies of non-Markovianity
have mostly focused on very simple models for which an
exact solution of the total, i.e., system plus environment,
dynamics is available [38,39]. This indeed guarantees phys-
icality by construction. Typical examples are the purely
dephasing model [40–45], the Pauli channel model [46],
and the amplitude damping model [47,48]. The latter one
goes beyond unital dynamics but is restricted to the case
in which the two-state system dissipatively interacts with a
zero-temperature reservoir.

In this paper we go beyond the existing literature in several
ways. First, we solve and study the CPTP conditions of a
generic time-local master equation which contains heating,
dissipation, and pure dephasing terms. This allows one to
assess the question of additivity of noise under non-Markovian
dynamics, extending the results of Ref. [49]. Secondly, we
discuss the effects of temperature in a nonunital model
which, in the Markovian limit, gives the standard Markovian
master equation for a two-level atom interacting with a
thermal bath. Finally, we show that, as one might expect, the
occurrence of non-Markovianity now has a more complicated
origin being linked to both the dephasing and the dissipative
terms.

The paper is structured as follows. In Sec. II we in-
troduce the general time-local master equation, present
its solution, and show that the noise additivity property
holds beyond the Markovian approximation. In Sec. III we
study the complete positivity conditions, while in Sec. IV
we introduce a heuristic master equation which is always
physical and discuss the interplay between temperature ef-
fects and non-Markovianity. Finally in Sec. V we present
conclusions.
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II. THE MODEL

A. The master equation

Let us consider the following time-local master equation
for the qubit density matrix ρ in the interaction picture and in
units of �,

dρ

dt
= Lt (ρ) ≡ −iω(t)[σz,ρ] + γ1(t)

2
L1(ρ) + γ2(t)

2
L2(ρ)

+ γ3(t)

2
L3(ρ), (1)

where γi(t) are time-dependent rates, ω(t) is a time-dependent
frequency shift, and the dissipators Li(ρ) are defined
as

L1(ρ) = σ+ρσ− − 1
2 {σ−σ+,ρ}, (2)

L2(ρ) = σ−ρσ+ − 1
2 {σ+σ−,ρ}, (3)

L3(ρ) = σzρσz − ρ. (4)

In the equations above, σ± = 1
2 (σx ± iσy) are the inversion

operators and σi (i = x,y,z) are the Pauli operators. The three
dissipators L1, L2, and L3 describe heating, dissipation, and
dephasing, respectively. However, contrarily to the typical
GKSL master equation [30,31], the decay rates are not positive
constants but time-dependent functions which need not be
positive at all times. The master equation (1) describes phase
covariant noise and has been considered recently in the context
of quantum metrology in noisy channels [29].

Special cases of master equations of the form of Eq. (1)
are those considered, e.g., in Refs. [15,17,25,27], for γ1(t) =
γ3(t) = 0 describing an amplitude damping model, and
the pure dephasing master equation considered, e.g., in
Refs. [16,25,27,43–45] for γ1(t) = γ2(t) = 0. These two spe-
cial cases can be derived by means of an exact approach
starting from a microscopic Hamiltonian model for system and
environment. Hence the resulting dynamics is always CPTP.
In the more general case considered in this paper, however,
the master equation is introduced phenomenologically, since
an exact microscopic derivation is unfeasible. As a conse-
quence, restrictions on the form of the time-dependent decay
rates arise in order to preserve the CPTP character of the
dynamics.

The master equation (1) is one of the most general time-
local master equations for a qubit. Indeed, it combines the
effects of pure dephasing terms and dissipative terms. The
dynamics is nonunital and the heating term L1 accounts for
the presence of a finite temperature environment. The
corresponding dynamical map can be written as �t =
T exp(− ∫ t

0 Lsds), with T the chronological ordering operator.
Whenever one of the time-dependent rates takes negative
values then the dynamical map is not CP-divisible, i.e., the
propagator �t,s defined by �t = �t,s�s , with s � t , is not
CP. In the following we define as Markovian a dynamics such
that �t,s is CP ∀t,s.

B. The solution

Let us indicate with |1〉 and |2〉 the ground and excited states
of the qubit, respectively. From Eq. (1) one straightforwardly

derives the following equations for the ground state probability
P1(t) = 〈1|ρ(t)|1〉 and the coherence α(t) = 〈1|ρ(t)|2〉:

dP1

dt
+ γ1(t) + γ2(t)

2
P1(t) = γ2(t)

2
, (5)

dα

dt
= α(t)

[
2iω(t) − 1

2

(
γ1(t) + γ2(t)

2
+ 2γ3(t)

)]
. (6)

The equations above are linear first-order differential equations
and can be solved for any values of the time-dependent decay
rates. The solution reads as follows:

P1(t) = e−	(t)[G(t) + P1(0)], (7)

α(t) = α(0)ei
(t)−	(t)/2−	̃(t), (8)

where

	(t) =
∫ t

0
dt ′[γ1(t ′) + γ2(t ′)]/2, (9)

	̃(t) =
∫ t

0
dt ′γ3(t ′), (10)


(t) =
∫ t

0
dt ′2ω(t ′), (11)

G(t) =
∫ t

0
dt ′e	(t ′)γ2(t ′)/2. (12)

If the time-dependent coefficients quickly attain a stationary
positive constant value, after an initial short time interval τc,
known as the correlation time of the environment, one obtains
the approximated GKSL master equation by coarse-graining
over τc and extending to infinity the limit of integration
in Eqs. (9)–(11). More precisely one obtains the following
Markovian limits for the quantities defined in Eqs. (9)–(12).

	M = (γ1 + γ2)t/2, (13)

	̃M = γ3t, (14)


M = 2ωt, (15)

GM = γ2

γ1 + γ2
(e(γ1+γ2)t/2 − 1). (16)

Using these expressions one can recover the well-known
Markovian formulas for populations and coherences:

P1(t) = e−(t/2)(γ1+γ2)P1(0) + γ2

γ1 + γ2
(1 − e−(t/2)(γ1+γ2)), (17)

α(t) = α(0)ei2ωt−(γ1+γ2)t/4−γ3t . (18)

The approximated GKSL master equation, obtained from
Eq. (1) by simply replacing the time-dependent coefficients
with the corresponding positive constants, has been investi-
gated, e.g., in Ref. [49] to study additivity of noise in the
Markovian limit and for T = 0. There the authors show
that, while for a single qubit additivity holds, composite
systems may violate this property. In the single qubit case,
additivity simply means that the decay rates of the off-diagonal
elements of the density matrix, when the qubit is subjected to
independent sources of noise, is just the sum of the decay rates
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arising from the interaction with each individual environment.
This is straightforwardly seen in Eq. (18).

In this paper we generalize the results presented in Ref. [49]
to the case of general temperatures and beyond the Markovian
approximation. Equation (8), indeed, straightforwardly proves
that additivity holds for the general time-local master equa-
tion (1), provided that the solution is physical. The additivity
condition arises, already in the Markovian case, from certain
properties of the master equation, and hence of its solution,
which are reflected in its structural form. More precisely, from
a physical point of view, additivity of noise stems from the fact
that dephasing and dissipation act as independent sources of
noise on the system. This fact translates into the mathematical
structure of the master equation as the corresponding terms
are added in the total dissipator. The same observation holds
for the time-local non-Markovian model considered here,
since the operatorial form of the master equation remains the
same.

In the following section we will thoroughly investigate the
conditions under which the master equation (1) gives rise to
a physically admittable dynamics described by a CPTP map
and we will give examples of both physical and unphysical
behavior for specific choices of the time-dependent decay
rates.

III. COMPLETE POSITIVITY

Let us begin by expressing the solution in terms of compo-
nents of the Bloch vector defined by ρ(t) = 1

2 (I + v · σ ), with
I the identity operator, σ the Pauli operators vector having
as components σi (i = x,y,z), and v = (x1,x2,x3) the Bloch
vector. The evolution of the latter one is given by

v(t) = �(t)v(0) + T(t), (19)

where � is known as the damping matrix and T(t) =
[0,0,t3(t)] is the translation vector given by

t3(t) = e−	(t)[1 + 2G(t)] − 1. (20)

The eigenvalues of the damping matrix can be written as

λ1(t) = e−	(t)/2−	̃(t)+i
(t), (21)

λ2(t) = e−	(t)/2−	̃(t)−i
(t), (22)

λ3(t) = e−	(t). (23)

A. CP criteria

Complete positivity conditions can be expressed in terms
of inequalities involving the Bloch vector components [36].
In the following we will use the formulation introduced in
Ref. [37].

|p(t)|,|q(t)| � 1
2 , (24)

y(t)2 �
[

1
2 − p(t)

][
1
2 + q(t)

]
, (25)

w(t)2 �
[

1
2 − q(t)

][
1
2 + p(t)

]
, (26)

where

p(t) = 1
2 [t3(t) + λ3(t)], (27)

q(t) = 1
2 [t3(t) − λ3(t)], (28)

w(t) = 1
2 [λ1(t) + λ2(t)], (29)

y(t) = 1
2 [λ1(t) − λ2(t)]. (30)

Using the analytical expressions given by Eqs. (20)–(23),
the CP necessary and sufficient conditions read as follows:

(i) 0 � e−	(t)[G(t) + 1] � 1, (31)

(ii) 0 � e−	(t)G(t) � 1, (32)

(iii) −e−	(t)−2	̃(t) sin2 
(t)

� e−	(t)G(t){1 − e−	(t)[G(t) + 1]}, (33)

(iv) e−	(t)−2	̃(t) cos2 
(t) � e−	(t)[1 − e−	(t)G(t)][G(t) + 1].

(34)

We notice that the validity of conditions (i) and (ii) (positivity
conditions) implies that condition (iii) is always satisfied, as
the left-hand side of the inequality is always nonpositive and
the right-hand side is always non-negative. We also stress
that the dephasing term described by L3 directly influences
only conditions (iii) and (iv) via the decoherence term 	̃(t).
Finally we note that 	(t) � 0 and 1 � G(t) � 0 are sufficient
conditions for positivity, i.e., for (i) and (ii).

Let us focus on the case in which the purely dephasing
term vanishes, namely, γ3(t) = 0. In this case one sees that
condition (iv) simplifies and can be recast as follows:

e−	(t) cos2 
(t) � e−	(t) + e−	(t)G(t){1 − e−	(t)[G(t) + 1]}.
(35)

For 
(t) = 0 one sees immediately that the inequality above
is automatically satisfied whenever the positivity conditions
(i) and (ii) are satisfied. In the more general case in which

(t) �= 0, the condition is still valid provided the positivity
conditions hold since, at any time, the left-hand side of the
inequality (35) is upper bounded by e−	(t).

From the reasoning above one can reach a simple conclu-
sion regarding the physicality of the general form of master
equation (1). Indeed in this case, assuming that conditions
(i) and (ii) are verified, a sufficient condition for complete
positivity is that the term 	̃(t) � 0.

B. Weak-coupling and short-time limits

We conclude this section by looking at the weak-coupling
and short-time limits. In the weak-coupling limit the following
approximations hold.

e−	(t)[G(t) + 1] � 1 −
∫ t

0
γ1(t ′)dt ′, (36)

e−	(t)G(t) �
∫ t

0
γ2(t ′)dt ′. (37)
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Using these approximations a straightforward calculation
shows that conditions (i), (ii), and (iv) correspond to

(i)
∫ t

0
γ2(t ′)dt ′ � 0, (38)

(ii)
∫ t

0
γ1(t ′)dt ′ � 0, (39)

(iv)
∫ t

0
γ3(t ′)dt ′ � 0. (40)

As for the short-time approximation, by considering the
Taylor expansion around t = 0 of the exponential terms, i.e.,
e−	(t) and of the term e−	(t)G(t), it is easy to convince oneself
that the CP conditions amount at (i) γ1(0) � 0, (ii) γ2(0) � 0,
(iv) γ3(0) � 0. Inequalities (38)–(40) imply that, contrarily
to what happens in certain time-local master equations (see,
e.g., Ref. [50]), in models admitting a weak-coupling limit,
the integrals of the decay rates cannot take negative values.
Let us further elaborate on this point. Comparing the master
equation (1) with that of Ref. [50] one notices that they
coincide if and only if we choose γ1(t) = γ2(t) = 2γ (t) and
ω(t) = 0. It is straightforward to see that in this case the
dynamics is unital. An interesting specific example considered
in Ref. [50] is the one corresponding to γ (t) = 1 and γ3(t) =
−tanh(t), which is shown to lead to CP dynamics. For this
choice of time-dependent coefficients it is easy to prove that the
general CP criteria of Eqs. (31)–(34) hold. However, one of the
weak-coupling CP inequalities, namely, Eq. (40), is violated.
This apparent contradiction is resolved when noticing that the
weak-coupling limit cannot be straightforwardly applied to the
model of Ref. [49]. This is because of the lack of an overall
coupling parameter to use in the weak-coupling perturbative
expansion. In other words, this example does not immediately
lend itself to weak-coupling approximation, but it is consistent
with the short-time approximation.

IV. THERMAL EFFECTS AND NON-MARKOVIANITY

Let us now consider the following heuristic model. We
assume that the open quantum system of interest is coupled
to both a thermal reservoir and a dephasing environment at
the same temperature T . The former one induces heating and
dissipation at rates given by γ1(t)/2 = Nf (t) and γ2(t)/2 =
(N + 1)f (t), with N the mean number of excitations in the
modes of the thermal environment. We notice that, for a zero T

environment, the heating rate γ1(t) = 0, while the dissipation
rate γ2(t) = f (t). Hence, we consider as a possible physically
reasonable choice for the time-dependent function f (t) the one
obtained in the exactly solvable zero-T model presented, e.g.,
in Ref. [48]. In this model the function f (t) takes the form

f (t) = −2Re

{
ċ(t)

c(t)

}
, (41)

with

c(τ ) = e−τ/2

[
cosh(dτ/2) + sinh(dτ/2)

d

]
c(0), (42)

where d = √
1 − 2R, and R is a dimensionless positive

number measuring the overall coupling between the two-state
system and the environment with respect to the width of the

spectral density of the environment. The coefficient 	(t) can
be analytically calculated and yields the simple expression

	(t) = (2N + 1)
∫ t

0
f (t ′)dt ′ = − ln

[(
c(t)

c(0)

)2(2N+1)
]

≡ − ln[x(t)2N+1], (43)

where we have used Eq. (41) and defined x(t) = [c(t)/c(0)]2.
We note that 0 � x(t) � 1 and that x(t) presents oscillations
in time only for R > 1/2 (strong coupling, broad spectral
density) while it decays monotonically for R < 1/2 (weak
coupling, narrow spectral density). It is straightforward to
see by explicitly calculating the decay rates γ1(t) and γ2(t)
that they are always positive whenever R < 1/2 (divisible
dynamics) and attain temporarily negative values for R > 1/2
(nondivisible dynamics).

By inserting Eq. (43) into Eq. (7) one obtains the following
analytic expression for the ground state population:

P1(t) = x(t)2N+1P1(0) + N + 1

2N + 1
[1 − x(t)2N+1]. (44)

It is straightforward to verify that, for this model, the positivity
conditions (i) and (ii) are verified at all times and for all values
of R > 0. We notice that, in the absence of the pure dephasing
term, i.e., whenever γ3(t) = 0, condition (iv) is automatically
satisfied and the corresponding T -temperature master equation
is always physical. Moreover, not only does this model by
construction reduce to the exact zero-T model, but it also
gives the correct Markovian limit for a two-level system in a
thermal bath at T temperature. Indeed, if we indicate with γM

the Markovian limit of γ2(t) in the exact zero-T model, one can
easily see that the Markovian expressions of the decoherence
factor e−	(t) and of the ground state probability P1(t), obtained
for R 
 1, read

e−	(t) → e−(N+1/2)γM t ,

P1(t) → e−(N+1/2)γM t

[
P1(0) + N + 1

2N + 1
(1 − e−(N+1/2)γM t )

]
,

respectively.
We now go back to the situation in which the pure dephasing

term γ3(t) is present in Eq. (1). The coefficient γ3(t) does not
influence the behavior of the populations. In Fig. 1 we plot
the time evolution of the ground state population P1(t) as a
function of time for different temperatures, i.e., N , in both
the Markovian case [Fig. 1(a)] and the non-Markovian case
[Fig. 1(b)]. We notice that, for R � 1 and for increasing values
of temperature, the oscillations in ground state population are
quickly damped, even if the dynamics continues to be non-
Markovian because both the γ1(t) and the γ2(t) decay rates
take negative values. Hence, the presence of oscillations in the
ground or excited state probability is not just connected to the
Markovian or non-Markovian character of the dynamics, as it
was for the exact model of Ref. [48], but depends also on the
temperature of the environment.

We now consider the effect of the pure dephasing term.
As done before, we will again use a model of pure dephasing
which arises from an exact microscopic description [40–42].
In this case the analytic expression for the dephasing rate is
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FIG. 1. Dynamics of the ground state population (a) in the
weak-coupling (Markovian) regime, R = 0.01, and (b) in the strong-
coupling (non-Markovian) regime, R = 10, for different values of N

(temperature). Notice that the evolution of the ground state probability
is independent of γ3(t).

given by

γ3(t) = 2
∫

dω J (ω) coth(ω/kBT ) sin(ωct), (45)

where kB is the Boltzmann constant and the spectral density is
assumed to be of the Ohmic class:

J (ω) = α
ωs

ωs
c

e−ω/ωc , (46)

with α an overall coupling constant and ωc the cutoff
frequency.

It is worth stressing that this model always leads to 	̃(t) �
0, hence the dynamics is not only positive but also completely
positive since condition (iv) is verified at all times. In Ref. [43]
the non-Markovianity of this model was studied in detail and
was found to be linked to the value of the Ohmicity parameter
s. Hence, the two parameters governing the Markovian to non-
Markovian crossover are R and s. In other words, the dynamics
of the whole system can be non-Markovian also for values of

R � 1/2 provided that the Ohmicity parameter is such that
γ3(t) < 0 for certain time intervals. This in general depends
on the temperature and, specifically, it occurs whenever s >

scrit(T ), where scrit(T ) increases monotonically with T , with
scrit(0) = 2 and scrit(T → ∞) = 3 [43].

Generally, the dynamics of the coherences, given by
Eq. (18), will be damped because of both the heating and
dissipation terms and the dephasing term. We notice, however,
that some of the characteristic phenomena typical of pure
dephasing in Ohmic-like environments, e.g., coherence trap-
ping [43], will not occur in this model because the coefficient
e−	(t) will always eventually erase the coherences and drive
the system towards a thermal mixed state.

V. CONCLUSIONS

We have solved and investigated the dynamics of a
general time-local master equation which combines dissipative
and pure dephasing terms showing that decoherence is still
additive. Guided from the knowledge of the exact microscopic
amplitude damping and pure dephasing master equations, we
have introduced an intuitive heuristic model which is always
CPTP. This model allows us to study the effects of finite
temperature on the dynamics of the qubit in the non-Markovian
regime. As expected, when increasing the temperature of the
environment, decay of both populations and coherences is
faster and faster. Moreover, thermalization destroys phenom-
ena such as coherence trapping which are present in purely
dephasing systems. We have pointed out that the conditions
for non-Markovian dynamics are now dependent on both the
characteristic parameter of the dissipative terms, R, and on
the corresponding parameter for the pure dephasing term, s.
Finally we have seen that finite temperature effects quickly
destroy the oscillatory behavior of populations even in the
strongly non-Markovian regime R � 1.

Given the importance of studies of fundamental non-
Markovian models, we believe that our results will be of
use for both reservoir engineering and to model noise in
solid-state devices in realistic experimental conditions, i.e.,
when finite-temperature effects cannot be neglected. As an
example, an interesting future direction is the investigation of
whether and how memory effects may affect the break down
of additivity property in bipartite systems, as happens in the
Markovian case [49].
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[46] D. Chruściński and F. Wudarski, Phys. Lett. A 377, 21 (2013).
[47] B. M. Garraway, Phys. Rev. A 55, 2290 (1997).
[48] L. Mazzola, S. Maniscalco, J. Piilo, K.-A. Suominen, and B. M.

Garraway, Phys. Rev. A 80, 012104 (2009).
[49] T. Yu and J. H. Eberly, Phys. Rev. Lett. 97, 140403 (2006).
[50] M. J. W. Hall, J. D. Cresser, L. Li, and E. Andersson, Phys. Rev.

A 89, 042120 (2014).

052103-6

http://dx.doi.org/10.1088/0034-4885/63/4/201
http://dx.doi.org/10.1088/0034-4885/63/4/201
http://dx.doi.org/10.1088/0034-4885/63/4/201
http://dx.doi.org/10.1088/0034-4885/63/4/201
http://dx.doi.org/10.1103/PhysRevA.58.2733
http://dx.doi.org/10.1103/PhysRevA.58.2733
http://dx.doi.org/10.1103/PhysRevA.58.2733
http://dx.doi.org/10.1103/PhysRevA.58.2733
http://dx.doi.org/10.1103/PhysRevLett.82.2417
http://dx.doi.org/10.1103/PhysRevLett.82.2417
http://dx.doi.org/10.1103/PhysRevLett.82.2417
http://dx.doi.org/10.1103/PhysRevLett.82.2417
http://dx.doi.org/10.1103/PhysRevLett.87.270405
http://dx.doi.org/10.1103/PhysRevLett.87.270405
http://dx.doi.org/10.1103/PhysRevLett.87.270405
http://dx.doi.org/10.1103/PhysRevLett.87.270405
http://dx.doi.org/10.1103/PhysRevLett.93.130406
http://dx.doi.org/10.1103/PhysRevLett.93.130406
http://dx.doi.org/10.1103/PhysRevLett.93.130406
http://dx.doi.org/10.1103/PhysRevLett.93.130406
http://dx.doi.org/10.1038/nature07951
http://dx.doi.org/10.1038/nature07951
http://dx.doi.org/10.1038/nature07951
http://dx.doi.org/10.1038/nature07951
http://dx.doi.org/10.1016/j.physrep.2013.02.001
http://dx.doi.org/10.1016/j.physrep.2013.02.001
http://dx.doi.org/10.1016/j.physrep.2013.02.001
http://dx.doi.org/10.1016/j.physrep.2013.02.001
http://dx.doi.org/10.1038/nature10122
http://dx.doi.org/10.1038/nature10122
http://dx.doi.org/10.1038/nature10122
http://dx.doi.org/10.1038/nature10122
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1038/nphys2085
http://dx.doi.org/10.1038/nphys2085
http://dx.doi.org/10.1038/nphys2085
http://dx.doi.org/10.1038/nphys2085
http://dx.doi.org/10.1103/PhysRevLett.100.180402
http://dx.doi.org/10.1103/PhysRevLett.100.180402
http://dx.doi.org/10.1103/PhysRevLett.100.180402
http://dx.doi.org/10.1103/PhysRevLett.100.180402
http://dx.doi.org/10.1103/PhysRevLett.101.150402
http://dx.doi.org/10.1103/PhysRevLett.101.150402
http://dx.doi.org/10.1103/PhysRevLett.101.150402
http://dx.doi.org/10.1103/PhysRevLett.101.150402
http://dx.doi.org/10.1103/PhysRevLett.105.050403
http://dx.doi.org/10.1103/PhysRevLett.105.050403
http://dx.doi.org/10.1103/PhysRevLett.105.050403
http://dx.doi.org/10.1103/PhysRevLett.105.050403
http://dx.doi.org/10.1103/PhysRevA.84.052118
http://dx.doi.org/10.1103/PhysRevA.84.052118
http://dx.doi.org/10.1103/PhysRevA.84.052118
http://dx.doi.org/10.1103/PhysRevA.84.052118
http://dx.doi.org/10.1103/PhysRevA.82.042103
http://dx.doi.org/10.1103/PhysRevA.82.042103
http://dx.doi.org/10.1103/PhysRevA.82.042103
http://dx.doi.org/10.1103/PhysRevA.82.042103
http://dx.doi.org/10.1103/PhysRevA.86.044101
http://dx.doi.org/10.1103/PhysRevA.86.044101
http://dx.doi.org/10.1103/PhysRevA.86.044101
http://dx.doi.org/10.1103/PhysRevA.86.044101
http://dx.doi.org/10.1103/PhysRevA.88.020102
http://dx.doi.org/10.1103/PhysRevA.88.020102
http://dx.doi.org/10.1103/PhysRevA.88.020102
http://dx.doi.org/10.1103/PhysRevA.88.020102
http://dx.doi.org/10.1103/PhysRevLett.112.120404
http://dx.doi.org/10.1103/PhysRevLett.112.120404
http://dx.doi.org/10.1103/PhysRevLett.112.120404
http://dx.doi.org/10.1103/PhysRevLett.112.120404
http://dx.doi.org/10.1038/srep05720
http://dx.doi.org/10.1038/srep05720
http://dx.doi.org/10.1038/srep05720
http://dx.doi.org/10.1038/srep05720
http://dx.doi.org/10.1103/PhysRevA.83.042321
http://dx.doi.org/10.1103/PhysRevA.83.042321
http://dx.doi.org/10.1103/PhysRevA.83.042321
http://dx.doi.org/10.1103/PhysRevA.83.042321
http://dx.doi.org/10.1103/PhysRevLett.109.233601
http://dx.doi.org/10.1103/PhysRevLett.109.233601
http://dx.doi.org/10.1103/PhysRevLett.109.233601
http://dx.doi.org/10.1103/PhysRevLett.109.233601
http://dx.doi.org/10.1038/srep04620
http://dx.doi.org/10.1038/srep04620
http://dx.doi.org/10.1038/srep04620
http://dx.doi.org/10.1038/srep04620
http://dx.doi.org/10.1103/PhysRevLett.116.120801
http://dx.doi.org/10.1103/PhysRevLett.116.120801
http://dx.doi.org/10.1103/PhysRevLett.116.120801
http://dx.doi.org/10.1103/PhysRevLett.116.120801
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1063/1.522979
http://dx.doi.org/10.1063/1.522979
http://dx.doi.org/10.1063/1.522979
http://dx.doi.org/10.1063/1.522979
http://dx.doi.org/10.1103/PhysRevA.64.033808
http://dx.doi.org/10.1103/PhysRevA.64.033808
http://dx.doi.org/10.1103/PhysRevA.64.033808
http://dx.doi.org/10.1103/PhysRevA.64.033808
http://dx.doi.org/10.1103/PhysRevA.81.062120
http://dx.doi.org/10.1103/PhysRevA.81.062120
http://dx.doi.org/10.1103/PhysRevA.81.062120
http://dx.doi.org/10.1103/PhysRevA.81.062120
http://dx.doi.org/10.1103/PhysRevA.75.062103
http://dx.doi.org/10.1103/PhysRevA.75.062103
http://dx.doi.org/10.1103/PhysRevA.75.062103
http://dx.doi.org/10.1103/PhysRevA.75.062103
http://dx.doi.org/10.1103/PhysRevA.73.012111
http://dx.doi.org/10.1103/PhysRevA.73.012111
http://dx.doi.org/10.1103/PhysRevA.73.012111
http://dx.doi.org/10.1103/PhysRevA.73.012111
http://dx.doi.org/10.1016/S0024-3795(01)00547-X
http://dx.doi.org/10.1016/S0024-3795(01)00547-X
http://dx.doi.org/10.1016/S0024-3795(01)00547-X
http://dx.doi.org/10.1016/S0024-3795(01)00547-X
http://dx.doi.org/10.1103/PhysRevA.59.3290
http://dx.doi.org/10.1103/PhysRevA.59.3290
http://dx.doi.org/10.1103/PhysRevA.59.3290
http://dx.doi.org/10.1103/PhysRevA.59.3290
http://dx.doi.org/10.1103/RevModPhys.88.021002
http://dx.doi.org/10.1103/RevModPhys.88.021002
http://dx.doi.org/10.1103/RevModPhys.88.021002
http://dx.doi.org/10.1103/RevModPhys.88.021002
http://dx.doi.org/10.1088/0034-4885/77/9/094001
http://dx.doi.org/10.1088/0034-4885/77/9/094001
http://dx.doi.org/10.1088/0034-4885/77/9/094001
http://dx.doi.org/10.1088/0034-4885/77/9/094001
http://dx.doi.org/10.1016/0378-4371(90)90299-8
http://dx.doi.org/10.1016/0378-4371(90)90299-8
http://dx.doi.org/10.1016/0378-4371(90)90299-8
http://dx.doi.org/10.1016/0378-4371(90)90299-8
http://dx.doi.org/10.1098/rspa.1996.0029
http://dx.doi.org/10.1098/rspa.1996.0029
http://dx.doi.org/10.1098/rspa.1996.0029
http://dx.doi.org/10.1098/rspa.1996.0029
http://dx.doi.org/10.1103/PhysRevA.65.032326
http://dx.doi.org/10.1103/PhysRevA.65.032326
http://dx.doi.org/10.1103/PhysRevA.65.032326
http://dx.doi.org/10.1103/PhysRevA.65.032326
http://dx.doi.org/10.1103/PhysRevA.87.010103
http://dx.doi.org/10.1103/PhysRevA.87.010103
http://dx.doi.org/10.1103/PhysRevA.87.010103
http://dx.doi.org/10.1103/PhysRevA.87.010103
http://dx.doi.org/10.1103/PhysRevA.89.024101
http://dx.doi.org/10.1103/PhysRevA.89.024101
http://dx.doi.org/10.1103/PhysRevA.89.024101
http://dx.doi.org/10.1103/PhysRevA.89.024101
http://dx.doi.org/10.1103/PhysRevA.85.060101
http://dx.doi.org/10.1103/PhysRevA.85.060101
http://dx.doi.org/10.1103/PhysRevA.85.060101
http://dx.doi.org/10.1103/PhysRevA.85.060101
http://dx.doi.org/10.1103/PhysRevA.55.2290
http://dx.doi.org/10.1103/PhysRevA.55.2290
http://dx.doi.org/10.1103/PhysRevA.55.2290
http://dx.doi.org/10.1103/PhysRevA.55.2290
http://dx.doi.org/10.1103/PhysRevA.80.012104
http://dx.doi.org/10.1103/PhysRevA.80.012104
http://dx.doi.org/10.1103/PhysRevA.80.012104
http://dx.doi.org/10.1103/PhysRevA.80.012104
http://dx.doi.org/10.1103/PhysRevLett.97.140403
http://dx.doi.org/10.1103/PhysRevLett.97.140403
http://dx.doi.org/10.1103/PhysRevLett.97.140403
http://dx.doi.org/10.1103/PhysRevLett.97.140403
http://dx.doi.org/10.1103/PhysRevA.89.042120
http://dx.doi.org/10.1103/PhysRevA.89.042120
http://dx.doi.org/10.1103/PhysRevA.89.042120
http://dx.doi.org/10.1103/PhysRevA.89.042120



