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ABSTRACT
Soil rutting caused by forest operations has negative economic and ecological effects and thus limits for
rutting are set by forest laws and sustainability criteria. Extensive data on rut depths are necessary for
post-harvest quality control and development of models that link environmental conditions to rut
formation. This study explored the use of a Light Detection and Ranging (LiDAR) sensor mounted on a
forest harvester and forwarder to measure rut depths in real harvesting conditions in Southern Finland.
LiDAR-derived rut depths were compared to manually measured rut depths. The results showed that at
10–20 m spatial resolution, the LiDAR method can provide unbiased estimates of rut depth with root
mean square error (RMSE) < 3.5 cm compared to the manual rut depth measurements. The results
suggest that a LiDAR sensor mounted on a forest vehicle can in future provide a viable method for the
large-scale collection of rut depth data as part of normal forestry operations.
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Introduction

Mechanized forest operations can cause harmful impacts on
the environment through soil rutting, erosion and compac-
tion, especially when the forest trafficability conditions are
not optimal and the bearing capacity of soil is low
(Wästerlund 1985; Smith et al. 1997; Nugent et al. 2003;
Vega-Nieva et al. 2009; Murphy G et al. 2009; Labelle &
Jaeger 2011; Duncker et al. 2012; Goutal et al. 2013; Sirén
et al. 2013; Uusitalo & Ala-Ilomäki 2013; Pierzchała et al.
2016; Niemi et al. 2017). Based on economic and ecological
criteria, excessive rutting and damage to soils are not accep-
table and rutting is regulated by forest laws in many countries
(e.g. Forest Act of 1996 in Finland) and considered as a
crucial aspect in the international forest certification stan-
dards (Programme for the Endorsement of Forest
Certification [PEFC] 2010; Forest Stewardship Council
[FSC] 2015).

To avoid soil rutting, one needs to understand and predict
forest trafficability conditions at the time and location of the
operation. The variations in trafficability are strongly linked
to the bearing capacity of soil, which is in turn influenced by
soil type, stoniness, soil moisture and vegetation characteris-
tics such as stand volume and root mass (Saarilahti 2002;
Suvinen et al. 2009; Campbell et al. 2013; Uusitalo & Ala-
Ilomäki 2013; Ågren et al. 2015; Niemi et al. 2017). Low
bearing capacity of soil means higher risk for soil displace-
ment and compaction when exposed to heavy machinery
traffic (Labelle & Jaeger 2011; Goutal et al. 2013; Klaes et al.
2016).

Minimizing the risk for soil rutting at mechanized forest
operations requires careful timing, route planning and selec-
tion of vehicle equipment (McDonald et al. 1995; Ala-Ilomäki
et al. 2011; Solgi et al. 2016). Recently, novel Geographic
Information System (GIS)-based tools have been presented
that could assist forest managers and machine operators in
making better decisions on route planning and timing of
operations. These include cartographic depth-to water index
(DTW) (Murphy et al. 2007, Murphy PNC et al. 2009; Ågren
et al. 2014, 2015; Niemi et al. 2017) and various aggregations
of wetness indices, open GIS data sources (e.g. soil maps and
digital terrain models) and soil-bearing capacity models
(Suvinen 2006; Suvinen et al. 2009; Vega-Nieva et al. 2009;
Campbell et al. 2013; Jones & Arp 2017).

Future improvements can be expected from dynamic for-
est terrain trafficability models based on high resolution and
up-to-date data on soils, stand characteristics of growing
stock (volume, root mass, species), and hydrological condi-
tions (Suvinen et al. 2009; Vega-Nieva et al. 2009). Currently,
static geospatial data and hydrologic and weather observa-
tions are increasingly available but soil-bearing capacity data
for model calibration and validation are still largely missing.
Acquiring spatially and temporally extensive data on soil-
bearing capacity by conventional methods such as penetrom-
eter measurements is, if not impossible, too laborious and
expensive and alternative methods are needed.

Extensive data on rut depths caused by harvesting opera-
tions could serve as a proxy for soil-bearing capacity. Such
data are also central to quality control of harvesting
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operations and monitoring activities that are currently per-
formed through random sampling at a very limited extent
and often consisting of qualitative classification of severity of
soil rutting (Finnish Forest Centre 2013). Obviously, manual
collection of an extensive rut depth dataset is infeasible and
more automated methods need to be assessed and developed.

Indeed, a few alternative methods and instrumentations
have already been developed for rut measurement (Talbot
et al. 2017). Pierzchała et al. (2014, 2016) and Haas et al.
(2016) have evaluated the potential of photogrammetric
methods acquired with consumer-grade cameras, which
could be mounted on forest machinery to collect stereo
images. The images can be converted to high-accuracy 3D
point cloud data of the soil surface and used to detect the
wheel ruts and estimate their dimensions. The photogram-
metric method can only be used in favorable light conditions,
and therefore Light Detection and Ranging (LiDAR) can
potentially provide a better alternative for extensive data
collection.

Koreň et al. (2015) used a ground-based terrestrial laser
scanner and performed static before-after type analysis of soil
surface relief to evaluate soil disturbance and rutting after
skidding operations. Terrestrial laser scanning has also been
used successfully in many other applications ranging from
sediment deposition and erosion (Stenberg et al. 2016) to
mapping landslides (Jaboyedoff et al. 2012) and estimating
forest stand characteristics (Liang et al. 2016). Mounting a
LiDAR sensor to a moving vehicle has been reported by
Ordonez et al. (2011), Laurent et al. (2012), Hyyti and
Visala (2013) and Kage and Matsushima (2015). Until
recently this has been considered too costly for rut depth
extraction in timber harvesting. Also, the uncertainties related
to location and speed measurement of forest machinery, and
the lack of computational methodologies have prevented the
application of LiDAR sensors with forest machines
(Pierzchała et al. 2016). Due to recent developments, mount-
ing a cost-efficient 2D LiDAR sensor on forest machinery
may in the future offer a viable option for large-scale and
efficient wheel rut data collection.

While efficient and extensive collection of rut data poses
one challenge, another is related to the scale, resolution and
accuracy of the rut-depth measurements. Integration of var-
ious data for trafficability predictions deals with combining
different types and scales of data with different levels of
uncertainty and detail. In Finland, for example, geospatial
data are openly available ranging from 2 m resolution eleva-
tion models (National Land Survey of Finland [NLS] 2017) to
16 m resolution of forest inventory data (Mäkisara et al. 2016)
and of topographic wetness index (Salmivaara et al. 2017).
Soil information is provided at most detail in 1:20,000 scale
for parts of the country while the entire country is covered by
a coarser 1:200,000 scale soil map (Geological Survey of
Finland [GSF] 2015). On the other hand, various terrain
characteristics such as water elements and roads are available
as detailed line elements in vector forms with rather good
accuracy in the topographical database (NLS 2017).

A static classification of forest harvesting conditions has
already been made for parts of Finland in 16 m spatial
resolution (Arbonaut Ltd/MEOLO 2017), which is likely to

be a practical compromise between various resolutions. To
allow further development of trafficability models, the rut
depth data collected should be applicable and representative
at this resolution.

In this article we tested the hypothesis that a LiDAR sensor
mounted on a forest machine could provide an efficient and
reliable way to collect data on rut depths. For this, we ana-
lyzed LiDAR sensor-derived ruts collected from test sites in
real harvesting conditions, and compared those rut depths to
manual reference measurements. We discuss the main chal-
lenges and uncertainties of the LiDAR method and give
recommendations for further development of the approach.
In addition, we consider the potential of the approach to
collect spatio-temporally extensive rut depth data and discuss
the related resolution issues.

Materials and methods

Field study

A field study was carried out in mid-May 2016 in Vihti,
Southern Finland (X: 355,750 Y: 6,700,250 in ETRS-
TM35FIN, 60°24.48ʹN, 24º23.23ʹE in WGS84). A route of
1.3 km (Figure 1) was driven first by an eight-wheeled Ponsse
Scorpion King harvester with a mass of 22,500 kg. The rear
wheels of each bogie were equipped with chains. Thereafter, a
loaded eight-wheeled Ponsse Elk forwarder with a mass of
30,000 kg passed the route 2–4 times with varying driving
directions. The rear wheels of the front bogie were equipped
with chains and the rear bogie was equipped with Olofsfors Eco
Tracks. Tire width was 710 mm in both the harvester and
forwarder. The route passed through various soil types: clay,
sandy till, and bedrock partly covered by 5–15 cm layer of fine-
grained mineral soil and organic material (Figure 1). The
terrain profile varied from flat to slightly undulating, and
significant soil moisture variations occurred along the route.
Part of the route was covered with logging residue.

An outdoor version of a 2D Light Detection and Ranging
(LiDAR) sensor (SICK LMS-511) was mounted in the back of
the forest machines at a 45 degree angle (Figure 2). In the
harvester, it was possible to mount the LiDAR sensor in
the middle but in the forwarder, the sensor was mounted
above the right-side back wheel. The first pass with the harvester
and forwarder was driven in the same direction and every
second forwarder pass was driven in the opposite direction
ensuring equal scanning of both wheel ruts. The LiDAR sensor
measured in 25Hz frequency the distance and the angle to target
ranging over 190 degrees with an angular resolution of 0.1667
degrees. Mounting the sensor at a 45 degree angle enabled the
measurement of both the position and the speed independently
from the forest machine’s Global Positioning System (GPS)
through the identification of objects next to the ruts and above
ground level as trees and calculating the distance traveled in
relation to those tree objects. The speed measurements are not
further dealt with in this article.

For reference measurements, 10 ≈ 20-m long test sites
were selected along the 1.3-km route (Figure 1). The rut
depths were manually measured at 1-m intervals from both
ruts (n ~ 40) after each vehicle pass (n = 3. . .5) using a
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horizontal hurdle and a measuring rod (Figure 3) to provide
reference for the LiDAR-derived rut depths. Rut depths were
measured from the lowest point in the perpendicular section
of each measurement spot. Locations of manual measurement
were marked on the ground with spray paint to enable con-
sistent consecutive measurements between vehicle passes.
Test site T2 was covered with logging residue to examine
whether the LiDAR sensor was capable of detecting the
ground surface through the brash mat. As this study was
part of a larger research project, soil samples were also
taken from each test site and analyzed in the laboratory for

grain-size distribution, and organic matter fraction. However,
only soil type is reported in this article.

The ruts were labeled as rut “A” and rut “B” and their depth
was measured after each pass in constant order despite the
changing driving direction. Accurate GPS coordinates of the
start and end points of the test sites were recorded, and marked
with a structure made of three vertical pieces of board detect-
able in the point cloud produced by the LiDAR sensor
(Figure 3). These structures were attached to remaining trees
and the locations of these trees caused the lengths of the test
sites to slightly differ from the intended 20 m.

Figure 1. Field test route (red line) and the ten 20-m-long test sites (light blue dots) located on various soil types. Test sites T1–T3 are enlarged into an aerial photo
to show rut “A” and rut “B.” Source for soil map: GSF 1:20,000, for base map: NLS Topographic database 2016).

Figure 2. The 2D Light Detection and Ranging (LiDAR) sensor mounted on the rear of the Ponsse Scorpion King harvester (left) and on the Ponsse Elk forwarder
(right).
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Pre-processing of LiDAR sensor data to produce raw rut
depth data

The LiDAR-derived point cloud data were processed with
specially designed software developed by Argone Ltd to pro-
duce raw rut depth data with x- and y-coordinates. The out-
puts with 25 Hz frequency (40 ms interval) calculated from
2D LiDAR data included momentary position, vehicle speed
and the maximum rut depth for rut “A” and rut “B”. Position
and speed were calculated by recognizing the trees on both
sides of the track from the point cloud data (Figure 4). This
was mainly for allowing the comparison of LiDAR data to
manual measurements in the test sites, and such procedure
would not be needed for operational rut depth data collection.

Test site start and end points were marked manually by the
user when detecting the structures in the software.

Wheel ruts were located and tracked by using a simple
version of the Monte Carlo localization method (Thrun
2002), in which the position of the vehicle is used to forecast
consecutive rut locations. The Monte Carlo filtering method
limits the possible rut positions using the known tire width.
Expected positions and related uncertainties of one standard
deviation limited the measurement points that were used for
rut depth estimation. The lowest point was selected from this
subset of measurement points connected to each rut (green
triangles within the green circle for rut “A” and yellow
squares within the yellow circle for rut “B” in Figure 4) and

Figure 3. Start and end points of the test sites were marked with a detectable structure made of boards (left). The depths of both ruts (“A” & “B”) were manually
measured at 1-m intervals with a horizontal hurdle and measuring rod.

Figure 4. Point cloud analysis and rut detection. Preliminary terrain level (thin blue line) is adjusted according to the terrain level found between the wheels (thick
red line). Ruts were located and tracked with the Monte Carlo localization method. Circles (from left to right) indicate the points located in rut “A” (in green
triangles), the points located between the ruts (in red stars) and the points located in rut “B” (in yellow squares). Temporary tree map (vertical cylinders) enables
tracking the distance traveled.
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this location was then used to forecast the filtered rut loca-
tions and uncertainties for the next measurement.

The point cloud data were divided into 1 m subparts
perpendicular to the moving direction at each scan, i.e.
every 40 ms, and the lowest point in each subpart was con-
sidered as representing the terrain level. The lowest 12.5% (1/
8) and highest 37.5% (3/8) of these points were excluded and
linear least squares method was used to fit a line to the
remaining set of the points (thin blue line in Figure 4). This
level of the terrain was then lowered or lifted according to the
terrain level (thick red line in Figure 4) defined by the points
located between the wheels (red star shapes circled in
Figure 4) and this adjusted level was used as reference for
calculating the rut depths.

Finally, rut depth was calculated simply as the difference
between terrain level and the lowest point from the rut.

Data preparation and statistical analyses for comparison

Data for comparing LiDAR and manual rut depth measure-
ments were picked from the raw rut depth data by taking an
average of the raw rut depths located at ± 25 cm distance
from the manual measurement spot.

The Kolmogorov-Smirnov test, Kruskal-Wallis test and
Student’s t-tests (McDonald 2014) were performed for test-
ing the similarity of the rut depth distributions from the
manually measured and the LiDAR-derived rut depth data.
Then, descriptive statistics were computed for manual and
LiDAR measurements at each test site. The statistics
included arithmetic average, standard deviation, root
mean square error (RMSE) (Equation 1) firstly within the
test site after each vehicle pass and secondly across all the
test sites and machine passes. In addition to differences in
test site means after each pass (Equation 2), the absolute
differences were explored as percentages of the manually
measured average (Equation 3) and as a percentage of the
standard deviation of manually measured ruts (Equation 4)
to explore the differences in relation to magnitude of rut
depths.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN per test site and no of passesð Þ

i¼1

ðLiDAR derived ruti �manually measured rutiÞ2

vuuut

(1)

dif ¼ 1
N

XN per test site of each passð Þ

i¼1

LiDAR derived ruti

-
1
N

XN per test site of each passð Þ

i¼1

manually measured ruti (2)

dif as % of manual average

¼ difj j
manual mean rut

� 100 (3)

dif as % of manual std ¼
difj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N�1

PN per test site and no of passesð Þ
i¼1

manually measured ruti �manual mean rutð Þ2

vuut
� 100

(4)

A linear model and a linear mixed effects model were fitted to
the calculated averages of the test sites per vehicle pass (n = 42
with 3–5 passes in the 10 test sites). If the LiDAR sensor
measures the ruts similarly to the manual measurements, the
regression slope should have a coefficient close to 1 and the
intercept should be 0. We considered the effect of the test sites
(e.g. varying soil type, Figure 1) by taking the test site as a
random effect to the linear mixed effect model to explore poten-
tial site-specific errors that could affect the application of
LiDAR-based method in varying sites.

All data processing was conducted in the R software (R
Core Team 2017).

Results

Distributions of raw rut depth data

Variability of terrain and stand conditions on the test sites
lead to highly varying rut depths. At some sites there were
almost no ruts even after five vehicle passes, while almost 30-
cm deep ruts were observed already after the first pass on sites
most prone to rutting.

The two-sample Kolmogorov-Smirnov test conducted for
the manually measured and LiDAR-derived rut depth data
gave D = 0.13915 with a p-value of 1.7 × 10−14 indicating that
the null hypothesis of same continuous distribution has to be
rejected. Figure 5 shows the histograms of the raw ruts depths
from both measurement techniques and the quantile-quantile
(Q-Q) plots indicating the log-normally distributed manually
measured rut depths (n = 1700) and exponentially distributed
LiDAR-derived rut depths (n = 1659).

Based on the Kruskal-Wallis test and the Student’s t-test,
however, the medians and means of the two rut depth data-
sets did not differ statistically (p-values for Kruskal-Wallis:
0.4954 and Student’s t-test: 0.2162).

For the test site means of manual and LiDAR-derived data-
sets the Kolmogorov-Smirnov test gave D = 0.14286 with a p-
value of 0.7848, and thus, according to null hypothesis the
means calculated for the test sites with both measurement
techniques followed the same log-normal distribution
(Figure 6).

Test site averages and descriptive statistics

The descriptive statistics together with the soil information
from soil map (GSF 2015) and soil samples taken during the
field campaign are shown in Table 1. While the overall RMSE
for the mean rut depths across the test sites and vehicle passes
was 3.5 (cm), in certain test sites (T2, T3, T10) the errors were
higher than in others. Considering the ruts in rough classes of
0–10, 10–20 and deeper than 20 cm, we got five cases out of
42 where the LiDAR-derived ruts would fall in different
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classes compared to manually measured ruts (highlighted
with light red and light blue in Table 1).

Testing performance with linear models and exploring
sources of errors

The performance of the LiDAR sensor was further exam-
ined by fitting a linear model on the LiDAR-derived rut
depth data to explain the manually measured average rut
depths per test site after each vehicle pass. The linear
model showed that the slope was close to 1 with a statis-
tically significant p-value, while the intercept 0.32 was not
significantly different from zero (Table 2). The standard
error of residuals was 3.54 (cm). Figure 7 shows the man-
ual rut depths plotted against the LiDAR-derived rut
depths with the linear model depicted red line. The dis-
tribution of the points across the linear model (i.e. resi-
duals) shows that there was no systematical over- or
underestimation by the LiDAR sensor, and residuals were
independent of magnitude of rut depth.

The linear mixed effect model indicated that the intercept,
while varying across the test sites (Table 2), was not statistically
different from zero meaning that test site characteristics did not

explain the variation better than the linear model. The slope was
0.86 which is further away from 1, and thus a poorer result
compared to the slope of the linear model. The test sites with
clearly different from zero values for the intercept (Table 2) were
the ones where the errors were also the greatest. These test sites
represented various conditions and the values were both under-
and overestimated showing no pattern in measurement accuracy
due to test site characteristics. The residuals of both models were
normally distributed.

The manually measured and LiDAR-derived rut depths
in four test sites are shown point-by-point in Figures 8
and 9. They suggest that in some test sites the LiDAR-
derived and manually measured rut depths agreed well (in
test site T1 for rut “A” and “B” and in test site T9 rut “A”
3rd pass). In other test sites there were possibly slight
locational errors (rut “B” in test site T3 5th pass, rut
“A” in test site T9 2nd pass) or clear mismatches (rut
“A” in test site T3 3rd pass, for example) stemming from
calculation errors. These errors, as will be discussed next,
can be caused by poorly defined reference terrain level,
errors in location calculation or in measured ruts or
missed measurements due to tilting of the forest machine,
for example.

Figure 5. Histograms of manually measured raw rut depths (n = 1700) and LiDAR-derived rut depths (n = 1659) (left). Manually measured rut depths (middle) are
log-normally distributed while the Light Detection and Ranging (LiDAR)-derived ruts depths (right) follow the exponential distribution.

Figure 6. Log-normal Q-Q plot for manually measured test site means (left) and Light Detection and Ranging (LiDAR)-derived test site means (right). All vehicle
passes are considered (n = 42).
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Table 1. Descriptive statistics of manually measured and LiDAR-based rut depths at each test site and test site soil characteristics. When classifying ruts to classes of
< 10 cm, 10–20 cm and > 20 cm, the differing classification by LiDAR-derived ruts are marked with bold font (wavy underlined when underestimated rut class;
double underlined when overestimated rut class).

Test site, soil type Descriptive statistics

Manual LiDAR

1st
pass

2nd
pass

3rd
pass

4th
pass

5th
pass

1st
pass

2nd
pass

3rd
pass

4th
pass

5th
pass

T1 mean 3.7 5.2 6.4 6.7 6.9 4.1 5.3 5.5 6.8 6.2
bedrock fine sand moraine std 4.5 4.5 4.7 4.0 4.4 4.7 6.6 6.7 5.9 6.7

n 38 38 38 38 38 38 38 38 38 38
RMSE 6.2 8.4 7.6 6.7 6.7
dif in means 0.4 0.1 −0.9 0.1 –0.7
dif as % of manual
mean

10% 3% 15% 1% 10%

dif as % of manual std 8% 3% 20% 3% 16%
T2 mean 1.9 2.1 4.1 4.8 4.6 4.7 8.8 7.0 8.3 7.7
(logging residue):
bedrock/ coarse sand moraine fine sand
moraine

std 4.5 6.4 5.5 5.4 5.8 10.8 8.6 9.4 9.3 8.1

n 38 40 40 40 40 38 40 40 40 40
RMSE 11.4 13.5 10.3 12.8 9.6
dif in means 2.8 6.7 2.9 3.6 3.1
dif as % of manual
mean

149% 319% 70% 74% 67%

dif as % of manual std 63% 105% 53% 66% 53%
T3 mean 7.9 11.6 17.8 25.2 30.1 4.9 4.0 16.5 17.8 25.5
bedrock/ clayish coarse sand clayish fine
sand

std 6.4 7.8 12.6 14.9 15.6 8.8 10.3
40

16.9 16.2
40

20.4

n 40 40 40 40 40 40 40 40
RMSE 10.1 16.1 22.4 26.2 14.8
dif in means −3.0 −7.6 −1.2 −7.3 −4.5
dif as % of manual
mean

38% 66% 7% 29% 15%

dif as % of manual std 46% 97% 10% 49% 29%
T4 mean 3.0 6.6 7.1 8.3 8.4 5.0 5.9 5.8 7.2 8.7
silty clay/clay std 2.1 2.7 2.7 2.9 2.7 6.5 7.5 7.5 7.4 7.7

n 42 42 42 42 40 42 42 42 42 40
RMSE 6.5 7.3 7.1 7.4 6.8
dif in means 2.0 −0.7 −1.3 −1.1 0.3
dif as % of manual
mean

67% 11% 18% 14% 4%

dif as % of manual std 95% 26% 46% 39% 11%
T5 mean 2.2 4.2 4.9 5.6 5.7 2.5 6.2 4.2 7.5 4.0
bedrock/san d moraine/fine sand moraine std 3.9 3.8 4.2 4.9 5.4 11.5 6.0 9.6 7.5 9.0

n 32 40 40 40 40 32 40 40 40 40
RMSE 12.4 8.1 11.1 9.2 10.9
dif in means 0.3 2.1 −0.7 1.9 −1.7
dif as % of manual
mean

12% 50% 14% 33% 29%

dif as % of manual std 7% 55% 16% 38% 31%
T6 mean 3.6 9.8 15.7 28.1 NA 1.2 7.5 10.4 25.4 NA
clay/ sandy silt std 4.5 5.0 9.9 18.4 9.3 11.8 10.3 19.1

n 40 40 38 36 40 40 38 36
RMSE 11.8 12.5 13.1 23.0
dif in means −2.4 −2.3 −5.3 −2.7
dif as % of manual
mean

66% 23% 34% 10%

dif as % of manual std 53% 45% 54% 15%
T8 mean 2.7 3.8 5.0 5.3 NA 10.0 3.9 3.7 6.9 NA
clayish fine std 2.5 2.9 2.6 2.9 16.9 6.4 5.9 7.4
silt /clay n 42 42 40 42 42 42 40 42

RMSE 18.7 7.6 6.2 7.7
dif in means 7.3 0.1 −1.5 1.6
dif as % of manual
mean

269% 3% 30% 30%

dif as % of manual std 290% 3% 58% 56%
T9 mean 10.8 21.3 25.8 NA NA 9.6 22.3 31.6 NA NA
clay/ clayish coarse silt std 7.4 10.3 13.7 12.1 13.1 18.6

n 35 42 42 35 42 42
RMSE 12.7 14.5 19.9
dif in means −1.2 1.0 5.8
dif as % of manual
mean

11% 5% 22%

dif as % of manual std 16% 10% 42%
T10 mean 5.5 8.5 11.0 NA NA 9.6 14.9 19.1 NA NA
sand moraine/ fine sand std 5.7 6.6 8.9 14.6

34
18.8
40

14.2

(Continued )
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Discussion

Accuracy of LiDAR-based method and its potential for
large-scale rut depth data collection

Based on our results from a single field study, we suggest
that a forest machine-mounted LiDAR sensor can, with
careful treatment of raw point cloud data, provide an effi-
cient and reliable method for collecting rut depth data at
10–20 m spatial resolution. This resolution would be rele-
vant for developing nationwide forest trafficability maps in
Finland. The RMSE in test site averages was less than
3.5 cm for LiDAR compared to manual measurements,
which was slightly higher than that of Pierzchała et al.
(2016) for the photogrammetric method. Compared to
their study, we did not adjust the data with the Iterative
Closest Point (ICP) algorithm (that finds the smallest
RMSE by rigid transformation to the dataset to be com-
pared). In addition, our measurements were conducted
during the harvest operation by a forest machine-mounted
device when the measurement conditions are likely to be
more challenging compared to post-operation conditions
with measurements by a static device. Haas et al. (2016)
also achieved more accurate rut depth measurements; how-
ever, their measurement setting was static and allowed
before-after type comparison, which often leads to less
error.

Hyyti and Visala (2013) report a study where two rotated
2D laser scanners were used to measure tree trunks and
terrain from a moving all-terrain vehicle. They found the
vehicle movement caused outliers to the data, and concluded
the “mean” elevation of the 1 m grid terrain model was more
robustly predicted by median than arithmetic average terrain
level. In our study, no distinct difference between arithmetic
average and median rut depths was found.

The test sites were about 20 m long and they varied in
their soil and vegetation characteristics and surface topo-
graphy; yet the LiDAR method provided rather accurate
rut depth measurements across all test sites. This was
confirmed by the linear model and particularly by the
linear mixed effects model that showed no statistical sig-
nificance for the intercept varying across the test sites

(Table 2). These results suggest that the method is applic-
able across a range of forest conditions, a prerequisite for
extensive data collection. While there are differences and
clear dislocations, the manual measurements and the
LiDAR-derived rut depths agree reasonably well, and
that it was possible to distinguish test sites where deep
ruts were formed and also those test sites where soil
rutting was not occurring (Figures 8 and 9, Table 1).
The increase in the rut depths after each pass was also
well captured on the test sites where it took place (sites
T3, T6, and T9).

The Government Decree on Sustainable Management and
Use of Forests (1308/2013) based on the Finnish Forest Act
(1093/1996) and related field control instructions by the
Finnish Forest Centre (2013) regulate that ruts over 10 cm
(mineral soils) and 20 cm (peatlands) are classified as
damaged. The results show that the majority of rut depths
measured by both methods were below 10 cm (Figures 5 and
7) and generally the errors did not depend on the magnitude
of the rut depth. However, we had some test sites where rut
depths were under- or overestimated with the LiDAR sensor
and those are critical for ensuring reliable rut depth measure-
ments. If we examine the ruts in rough classes of 0–10 cm,
10–20 cm and above 20 cm, five out of 42 cases (or 11.9%)
were misclassified (i.e. under- or overestimated) by the
LiDAR sensor measurements (Table 1). Considering the
uncertainties related to manual measurements, this accuracy
seems sufficient enough for collecting large-scale rut depth
data at a 10–20 m resolution.

Challenges for rut depth measurements

Based on our results from LiDAR and manual measurements,
it seems that difficulties in measuring the rut depth do not
relate to the instrument per se but to the difficulty in defining
the reference terrain level. In an undulating forest environ-
ment this is a difficult task both computationally and con-
ceptually, and concerns both the LiDAR and manual
measurements. Due to surface microtopography, dense
understory vegetation and logging residue, the calculation of
local terrain level is prone to random uncertainties that are

Table 1. (Continued).

Test site, soil type Descriptive statistics

Manual LiDAR

1st
pass

2nd
pass

3rd
pass

4th
pass

5th
pass

1st
pass

2nd
pass

3rd
pass

4th
pass

5th
pass

n 34 40 40 40
RMSE 17.7 20.5 15.7
dif in means 4.1 6.5 8.1
dif as % of manual
mean

75% 76% 74%

dif as % of manual std 72% 98% 91%
T11 mean 2.6 3.4 4.3 NA NA 0.9 3.7 3.9 NA NA
clay/ clayish medium silt std 2.3 2.7 2.8 3.1 4.8 4.8

n 32 36 42 32 36 42
RMSE 4.6 5.8 4.5
dif in means −1.7 0.3 −0.4
dif as % of manual
mean

65% 10% 8%

dif as % of manual std 73% 13% 13%
RMSE per test site averages: 3.5

LiDAR, Light Detection and Ranging; RMSE, root mean square error
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reflected in the rut depth data. For instance, rocks and stumps
between the wheels cause outlier values in the LiDAR-mea-
sured rut depth data. Due to these, rut depths can be over-
estimated at certain locations. On the other hand, a slight side
slope downhill next to the trail can cause a rut depth that
could be depicted as negative i.e. a “rut” to be above the
reference terrain level. This might be a real case if the wheel
dislocates a large amount of soil; however, in our test this
occurred also at sites where soil was not displaced and accu-
mulated. Despite the logging residue in test site T2 making
the reference terrain level definition and rut depth measuring
very challenging, our results showed that the LiDAR-based
rut depths still agreed with manual measurements.

In operational applications we can overlook the need to
match the LiDAR-derived rut depths to the exact location of
manual measurements. However, we still need to consider the
limitations to accurate measures stemming from the positioning
inaccuracy if the data is being used for trafficability model
development. The Global Navigation Satellite System (GNSS)
improves the accuracy of the location information but still in
some areas at certain times we might have up to a 10 m error in
location (Kaartinen et al. 2015). This aspect influences the
spatial resolution of the rut depth data, and thus the practical
operational resolution would possibly lie somewhere between 10
and 20 m. We obtained our results for the 20 m section, but in
some areas a shorter length could bemore suitable if we consider
that the standard deviation should not be equal to or higher than
the mean (as opposite to some test sites in Table 1).

Implications of mounting the LiDAR sensor at a 45
degree angle

Several issues arise from the angle in which the LiDAR sensor is
mounted on the forest machine. Firstly, underestimation of the

Figure 7. Manually measured rut depth [cm] versus Light Detection and
Ranging (LiDAR)-derived rut depth and the linear model fitted to the data
(gray line).
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rut depth can be brought by water gathering at the bottom of the
rut between the few seconds of passing the point and measuring
it due to the angle of the LiDAR sensor. On the wettest sites this
is long enough for the water to cover the bottom of the rut. This
effect can be minimized by direct downward mounting of the
LiDAR sensor since the measurement occurs directly after the
wheel has moved from the spot. Secondly, the terrain slope is
not considered in the rut depth calculations and this naturally
affects the LiDAR measurements as the angle varies along with
the tilting of the forest machine. This could be corrected by a
separate tilting sensor in the back of the forest machine. Tilting
and rocking of the forest machine can cause the LiDAR beam to
miss certain areas extending up to 50 cm in length despite the 25
Hz measurement frequency. Again, mounting the sensor facing
directly downward would reduce the effect of tilting and rocking
to the rut depth measurements and enable the sensor to reach
more accurate rut depth results.

However, mounting the sensor directly downward reduces the
ability to collect data on speed and location that was used in this
study to facilitate point-by-point comparison of manually mea-
sured rut depths to the nearest LiDAR-based estimates. In addi-
tion, two LiDAR sensors would be required since scanning both
ruts is not possible due to limited visibility when scanning directly

downward. In mounting the LiDAR sensor at a 45 degree angle,
one device is enough as our results (Figures 8 and 9) suggest that
the right-side location of the sensor on the forwarder was not
clearly detectable when examining the errors in the LiDAR-
derived rut depths (the sensor was on top of rut “A” during the
3rd and 5th pass and on top of rut “B” during the 2nd and 4th
pass).

Conclusions

Spatially and temporally extensive data on rut depths is needed
for post-harvest quality control and for developing trafficability
models based on open big data within the forest environment.

Using a tailored field experiment in real harvesting condi-
tions, we evaluated whether forest machine-mounted LiDAR
can provide a robust method for measuring rut depths caused
by forest operations. We found that at a spatial resolution of
10–20 m, the LiDAR method provided unbiased estimates
of rut depths with uncertainty (RMSE) comparable to that
of other available methods. The LiDAR method shows great
potential for operationalization. As Talbot et al. (2017) also
recommend, mounting the LiDAR sensor on an operational
forest vehicle can provide a cost-efficient tool for extensive

Figure 8. Manually measured rut depths (black dotted line) and Light Detection and Ranging (LiDAR)-derived rut depths (thick gray line) on rut “A” in test sites T1,
T2, T3, and T9. Test site T2 was covered with logging residue. The horizontal axis shows distance from beginning of the test site.
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on-site rut depth data collection as part of normal forestry
operations.

Acknowledgments

We would like to thank Kalle Einola from Ponsse Oyj and Antti Peltola
from Creanex Oy for technical support in data collection and analysis and
Mr Ari Ryynänen (LUKE) for assisting in setting up the field study and
data collection. Collaboration with Mr Lari Melander and Prof. Risto Ritala
from the Technical University of Tampere is also greatly acknowledged.
Prof. Juha Heikkinen (LUKE) is acknowledged for the help in refining the
statistical methods. The two anonymous reviewers are also thanked for
comments and suggestions for improvements. Overall the research project
was enabled by the Academy of Finland Grant 295337, FOTETRAF.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This works was supported by the Academy of Finland under Grant
[295337, FOTETRAF]. Field studies were carried out in collaboration
with project “Enhancing efficiency and quality of forest operations by
benefitting information related working conditions (Metsäoperaatioiden

tehostaminen ja laadun parantaminen olosuhdetiedon hyödyntämisen
avulla)” coordinated by Finnish Natural Resources Institute (Luke) and
funded by Ministry of Agriculture and Forestry of Finland (Maa- ja
Metsätalousministeriö).

ORCID

Leena Finér http://orcid.org/0000-0001-7623-9374
Jari Ala-Ilomäki http://orcid.org/0000-0002-6671-7624

References

Ågren AM, Lidberg W, Ring E. 2015. Mapping temporal dynamics in a
forest stream network—implications for riparian forest management.
Forests. 6:2982–3001.

Ågren AM, Lidberg W, Strömgren M, Ogilvie J, Arp PA. 2014.
Evaluating digital terrain indices for soil wetness mapping–a
Swedish case study. Hydrol Earth Syst Sci. 18:3623–3634.

Ala-Ilomäki J, Högnäs T, Lamminen S, Sirén M. 2011. Equipping a conven-
tional wheeled forwarder for peatland operations. Int J For Eng. 22:7–13.

Arbonaut Ltd./MEOLO. 2017. Staattinen kulkukelpoisuusluokitus [Static
trafficability classification]. [accessed 2017 Sep 1]. Project website:
https://www.luke.fi/projektit/meolo/

Campbell DMH, White B, Arp PA. 2013. Modeling and mapping soil
resistance to penetration and rutting using LiDAR-derived digital
elevation data. J Soil Water Conserv. 68:460–473.

Figure 9. As Figure 8 but for rut “B.”

INTERNATIONAL JOURNAL OF FOREST ENGINEERING 51

https://www.luke.fi/projektit/meolo/


Duncker PS, Raulund-Rasmussen K, Gundersen P, Katzensteiner K, De
Jong J, Ravn HP, Smith M, Eckmüllner O, Spiecker H. 2012. How forest
management affects ecosystem services, including timber production
and economic return: synergies and trade-offs. Ecol Soc. 17:50.

Finnish Forest Centre. 2013. Suomen metsäkeskuksen maastotarkastu-
sohje [Field control instructions of Finnish Forest Centre]. [accessed
2016 Aug 1]. http://www.metsakeskus.fi/sites/default/files/smk-maas
totarkastuohje.2013.pdf. Finnish.

Forest Act of 1996. Ministry of agriculture and forestry of Finland.
Forest Act (1093/1996). [accessed 2017 Aug 1]. http://www.finlex.fi/
fi/laki/smur/1996/19961093.

Forest Stewardship Council (FSC). 2015. FSC® international standard,
FSC principles and criteria for forest Stewardship. [accessed 2017 Aug
1]. https://www.fsc.org/

Geological Survey of Finland (GSF). 2015. Bedrock 1:200 000 and superficial
deposits 1:20 000 and 1:50 000. [accessed Apr 1] https://hakku.gtk.fi/en

Goutal N, Keller T, Défossez P, Ranger J. 2013. Soil compaction due to
heavy forest traffic: measurements and simulations using an analytical
soil compaction model. Ann For Sci. 70:545–556.

Haas J, Ellhöft KH, Schack-Kirchner H, Lang F. 2016. Using photo-
grammetry to assess rutting caused by a forwarder—a comparison of
different tires and bogie tracks. Soil Tillage Res. 163:14–20.

Hyyti H, Visala A. 2013. Feature based modeling and mapping of tree
trunks and natural terrain using 3D laser scanner measurement
system. IFAC Proc Vol. 46:248–255.

Jaboyedoff M, Oppikofer T, Abellán A, Derron M, Loye A, Metzger R,
Pedrazzini A. 2012. Use of LIDAR in landslide investigations: a
review. Nat Hazards. 61:5–28.

Jones M-F, Arp PA. 2017. Relating cone penetration and rutting resis-
tance to variations in forest soil properties and daily moisture fluctua-
tions. Open J Soil Sci. 7:149–171.

Kaartinen H, Hyyppä J, Vastaranta M, Kukko A, Jaakkola A, Yu X,
Pyörälä J, Liang X, Liu J, Wang Y, et al. 2015. Accuracy of kinematic
positioning using global satellite navigation systems under forest
canopies. Forests. 6:3218–3236.

Kage T, Matsushima K. 2015. Rut detection using lasers and in-vehicle
stereo camera. J Adv Control Autom Robot. 1:59–63.

Klaes B, Struck J, Schneider R, Schüler G. 2016. Middle-term effects after
timber harvesting with heavy machinery on a fine-textured forest soil.
Eur J For Res. 135:1083–1095.

Koreň M, Slančík M, Suchomel J, Dubina J. 2015. Use of terrestrial laser
scanning to evaluate the spatial distribution of soil disturbance by
skidding operations. iForest. 8:386–393.

Labelle ER, Jaeger D. 2011. Soil compaction caused by cut-to length
forest operations and possible short-term natural rehabilitation of soil
density. Soil Sci Soc Am J. 75:2314–2329.

Laurent J, Hébert JF, Lefebvre D, Savard Y 2012. Using 3D laser profiling
sensors for the automated measurement of road surface conditions.
In: 7th RILEM International Conference on Cracking in Pavements.
157–167. (RILEM Bookseries, vol. 4)

Liang X, Kankare V, Hyyppä J, Wang Y, Kukko A, Haggrén H, Yu X,
KaartinenH, Jaakkola A, Guan F, et al. 2016. Terrestrial laser scanning in
forest inventories. J Photogramm Remote Sens. 115:63–77.

Mäkisara K, Katila M, Peräsaari J, Tomppo E. 2016. The multi-source
national forest inventory of Finland 2013. Helsinki: Natural Resources
Institute Finland.

McDonald JH. 2014. Handbook of biological statistics. 3rd ed. Baltimore,
MD: Sparky House Publishing.

McDonald TP, Stokes BJ, Aust WM. 1995. Soil physical property changes
after skidder traffic with varying tire widths. J For Eng. 6:41–50.

Murphy G, Brownlie R, Kimberley M, Beets P. 2009. Impacts of forest
harvesting related soil disturbance on end-of-rotations wood quality
and quantity in a New Zealand Radiata pine forest. Silva Fenn.
43:147–160.

Murphy PNC, Ogilvie J, Arp P. 2009. Topographic modelling of soil
moisture conditions: a comparison and verification of two models.
Eur J Soil Sci. 60:94–109.

Murphy PNC, Ogilvie J, Connor K, Arp PA. 2007. Mapping wetlands: A
comparison of two different approaches for New Brunswick, Canada.
Wetlands. 27:846–854.

National Land Survey of Finland (NLS). 2017. The topographic database.
[accessed Apr 1] http://www.maanmittauslaitos.fi/en/e-services/open-
data-file-download-service.

Niemi M T, Vastaranta M, Vauhkonen J, Melkas T, Holopainen M.
2017. Airborne LIDAR-derived elevation data in terrain trafficability
mapping. Scand J For Res. 32:762–773.

Nugent C, Kanali C, Owende PM, Nieuwenhuis M, Ward S. 2003.
Characteristic site disturbance due to harvesting and extraction
machinery traffic on sensitive forest sites with peat soils. For Ecol
Manag. 180:85–98.

Ordonez C, Chuy OY, Collins EG, Liu X. 2011. Laser-based rut detection
and following system for autonomous ground vehicles. J Field Robot.
28:158–179.

Pierzchała M, Talbot B, Astrup R. 2014. Estimating soil displacement
from timber extraction trails in steep terrain: application of an
unmanned aircraft for 3D modelling. Forests. 5:1212–1223.

Pierzchała M, Talbot B, Astrup R. 2016. Measuring wheel ruts with
close-range photogrammetry. Forestry. 89:383–391.

Programme for the Endorsement of Forest Certification (PEFC). 2010.
International standard. PEFC Council, Luxembourg. [accessed 2017
Aug 1]. https://www.pefc.org/standards/technical-documentation/
pefc-international-standards-2010

R Core Team. 2017. R: A language and environment for statistical
computing. Vienna (Austria): R Foundation for Statistical
Computing.

Saarilahti M. 2002. Soil Interaction model. University of Helsinki,
Department of Forest Resources Management. [accessed 2016 Aug
1]. http://ethesis.helsinki.fi/julkaisut/maa/mvaro/publications/31/soi
linte.pdf.

Salmivaara A, Launiainen S, Tuominen S, Ala-Ilomäki J, Finér L. 2017.
Topographic wetness index for Finland. Natural resources Institute
Finland. Etsin research data finder.[accessed 2017 Aug 1]. http://urn.
fi/urn:nbn:fi:csc-kata20170511114638598124

Sirén M, Ala-Ilomäki J, Mäkinen H, Lamminen S, Mikkola T. 2013.
Harvesting damage caused by thinning of norway spruce in unfrozen
soil. Int J For Eng. 24:60–75.

Smith CW, Johnston MA, Lorentz S. 1997. The effect of soil compaction
and soil physical properties on the mechanical resistance of South
African forestry soils. Geoderma. 78:93–111.

Solgi A, Naghdi R, Labelle ER, Tsioras PA, Nikooy M. 2016. Effect of
varying machine ground pressure and traffic frequency on the physi-
cal properties of clay loam soils located in mountainous forests. Int J
For Eng. 27:161–168.

Stenberg L, Tuukkanen T, Finér L, Marttila H, Piirainen S, Kløve B,
Koivusalo H. 2016. Evaluation of erosion and surface roughness in
peatland forest ditches using pin meter measurements and terrestrial
laser scanning. Earth Surf Proc Landforms. 41:1299–1311.

Suvinen A. 2006. A GIS-based simulation model for terrain tractability. J
Terramech. 43:427–449.

Suvinen A, Tokola T, Saarilahti M. 2009. Terrain trafficability prediction
with GIS analysis. For Sci. 55:433–442.

Talbot B, Pierzchała M, Astrup R. 2017. Applications of remote and
proximal sensing for improved precision in forest operations. Croat J
For Eng. 38:327–336.

The Government Decree on Sustainable Management and Use of Forests
(1308/2013). [accessed 2017 Aug 1]. http://www.finlex.fi/fi/laki/smur/
2013/20131308.

Thrun S. 2002. Particle filters in robotics. In: Proceedings of the 18th
conference on uncertainty in artificial intelligence; August 1–4;
Alberta, Canada. San Francisco, CA: Morgan Kaufmann Publishers
Inc. p. 511–518.

Uusitalo J, Ala-Ilomäki J. 2013. The significance of above-ground
biomass, moisture content and mechanical properties of peat
layer on the bearing capacity of ditched pine bogs. Silva Fennica.
47:1–18.

Vega-Nieva DJ, Murphy PNC, Castonguay M, Ogilvie J, Arp PA. 2009. A
modular terrain model for daily variations in machine-specific forest
soil trafficability. Can J Soil Sci. 89:93–109.

Wästerlund I. 1985. Compaction of till soils and growth tests with
Norway spruce and Scots pine. For Ecol Manage. 11:171–189.

52 A. SALMIVAARA ET AL.

http://www.metsakeskus.fi/sites/default/files/smk-maastotarkastuohje.2013.pdf
http://www.metsakeskus.fi/sites/default/files/smk-maastotarkastuohje.2013.pdf
http://www.finlex.fi/fi/laki/smur/1996/19961093
http://www.finlex.fi/fi/laki/smur/1996/19961093
https://www.fsc.org/
https://hakku.gtk.fi/en
http://www.maanmittauslaitos.fi/en/e-services/open-data-file-download-service
http://www.maanmittauslaitos.fi/en/e-services/open-data-file-download-service
https://www.pefc.org/standards/technical-documentation/pefc-international-standards-2010
https://www.pefc.org/standards/technical-documentation/pefc-international-standards-2010
http://ethesis.helsinki.fi/julkaisut/maa/mvaro/publications/31/soilinte.pdf
http://ethesis.helsinki.fi/julkaisut/maa/mvaro/publications/31/soilinte.pdf
http://urn.fi/urn:nbn:fi:csc-kata20170511114638598124
http://urn.fi/urn:nbn:fi:csc-kata20170511114638598124
http://www.finlex.fi/fi/laki/smur/2013/20131308
http://www.finlex.fi/fi/laki/smur/2013/20131308

	Abstract
	Introduction
	Materials and methods
	Field study
	Pre-processing of LiDAR sensor data to produce raw rut depth data
	Data preparation and statistical analyses for comparison

	Results
	Distributions of raw rut depth data
	Test site averages and descriptive statistics
	Testing performance with linear models and exploring sources of errors

	Discussion
	Accuracy of LiDAR-based method and its potential for large-scale rut depth data collection
	Challenges for rut depth measurements
	Implications of mounting the LiDAR sensor at a 45 degree angle

	Conclusions
	Acknowledgments
	Disclosure statement
	Funding
	References

