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Abstract

Background: Accurate, objective pain assessment is required in the health care domain and clinical settings for appropriate
pain management. Automated, objective pain detection from physiological data in patients provides valuable information to
hospital staff and caregivers to better manage pain, particularly for patients who are unable to self-report. Galvanic skin response
(GSR) is one of the physiologic signals that refers to the changes in sweat gland activity, which can identify features of emotional
states and anxiety induced by varying pain levels. This study used different statistical features extracted from GSR data collected
from postoperative patients to detect their pain intensity. To the best of our knowledge, this is the first work building pain models
using postoperative adult patients instead of healthy subjects.

Objective: The goal of this study was to present an automatic pain assessment tool using GSR signals to predict different pain
intensities in noncommunicative, postoperative patients.

Methods: The study was designed to collect biomedical data from postoperative patients reporting moderate to high pain levels.
We recruited 25 participants aged 23-89 years. First, a transcutaneous electrical nerve stimulation (TENS) unit was employed to
obtain patients' baseline data. In the second part, the Empatica E4 wristband was worn by patients while they were performing
low-intensity activities. Patient self-report based on the numeric rating scale (NRS) was used to record pain intensities that were
correlated with objectively measured data. The labels were down-sampled from 11 pain levels to 5 different pain intensities,
including the baseline. We used 2 different machine learning algorithms to construct the models. The mean decrease impurity
method was used to find the top important features for pain prediction and improve the accuracy. We compared our results with
a previously published research study to estimate the true performance of our models.

Results: Four different binary classification models were constructed using each machine learning algorithm to classify the
baseline and other pain intensities (Baseline [BL] vs Pain Level [PL] 1, BL vs PL2, BL vs PL3, and BL vs PL4). Our models
achieved higher accuracy for the first 3 pain models than the BioVid paper approach despite the challenges in analyzing real
patient data. For BL vs PL1, BL vs PL2, and BL vs PL4, the highest prediction accuracies were achieved when using a random
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forest classifier (86.0, 70.0, and 61.5, respectively). For BL vs PL3, we achieved an accuracy of 72.1 using a k-nearest-neighbor
classifier.

Conclusions: We are the first to propose and validate a pain assessment tool to predict different pain levels in real postoperative
adult patients using GSR signals. We also exploited feature selection algorithms to find the top important features related to
different pain intensities.

International Registered Report Identifier (IRRID): RR2-10.2196/17783

(JMIR Mhealth Uhealth 2021;9(5):e25258) doi: 10.2196/25258
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Introduction

Pain assessment is a key factor in successful pain management
[1]. Inaccurate postoperative pain assessment may cause
illnesses [2] and even long-term chronic issues [3]. Pain
assessment tools for clinical use are in great demand. If
communication ability is limited or even lost due to surgery or
illness complications, it is difficult for a doctor to determine
the patient's feelings. A proper pain assessment tool can offer
an approximate pain level of that patient for further treatment.
For now, the wide range of pain assessment methods still cannot
determine the precise pain prevalence and levels for adults in
hospitals [4]. That may cause incorrect treatment and lead to
various problems and risks for patients. Painkillers have many
side effects, and overtreatment of pain can trigger respiratory
depression in the short term or substance use disorder in the
long term [5]. However, undertreatment of pain may result in
chronic pain, more health care costs, and physiological and
psychological suffering [3,6]. All these issues mentioned are
prevalent among noncommunicative patients [7]. A valid pain
assessment tool would be truly transformative to health care
delivery as clinicians could deliver pain treatments and assess
response in real time. This would decrease unwanted side effects
and recovery time from illness or a procedural intervention.

With the rapid development of Internet-of-Things (IoT) devices,
including wearable devices, automated and continuous objective
pain intensity assessment is possible [8]. The accuracy of these
wearable devices has been evaluated in several studies. As an
example, Mehrabadi et al [9] validated the accuracy of these
devices in terms of sleep. Researchers try to identify nervous
reaction to pain by monitoring the fluctuation in patients'
physiological data, including electromyography,
electrocardiography, photoplethysmography, and electrodermal
activity (EDA) in real time [10,11]. Other research uses facial
expression and head movement to accompany the physiological
data [12,13]. These methods can quantify pain intensity,
especially for poorly communicating patients [14]. However,
all these methods to date use stimulated pain and were evaluated
on healthy participants. Based on this observation, we developed
the UCI iHurt Dataset (UCI_iHurtDB) [15]. The UCI_iHurtDB
is the first multimodal dataset collected from postoperative adult
patients suffering from real pain in hospitals. This dataset is
planned to be released for research purposes in the near future.

Skin conductance or the EDA signal is considered a useful
biomedical data point that corresponds to pain perception. Our

skin produces sweat via over 3 million small tubular sweat
glands. Sweat glands are distributed across the body but with
the highest densities on the soles of the feet, palms and fingers,
and forehead and cheeks. If a patient is exposed to a certain
group of stimuli, they can be triggered to secrete moisture,
termed emotional sweating. This results in a decrease in skin
resistance, or in other words, an increase in skin conductance
[16], which is also known as EDA or galvanic skin response
(GSR). Other than pain, the EDA signal can extract a variety
of valuable information from the human body. Rostami et al
[17] highlighted an important insight that, by using the GSR
signal, the biological impact of food on a person’s body can be
captured.

Pain assessment research only using EDA data is limited.
Eriksson et al [18] and Munsters et al [19] validated the
relationship between EDA and pain for newborn infants, suitable
for automated pain assessment due to their inability to
communicate. By monitoring the EDA data during routine blood
sampling or care intervention, they found EDA can differentiate
between pain and no pain; however, more research is needed
to achieve a clinical-grade level. Manivannan et al [20] verified
whether the EDA could be used as a valid pain indicator for
hypnotic analgesia with 10 participants. They used an iron disk
to create mechanical pain in a laboratory setup. The
experimental results show a clear relation between pain scores
and EDA. None of these mentioned works used machine
learning algorithms to create a classification model for pain
assessment. Furthermore, their dataset includes healthy patients
with various stimulus methods to cause pain. In another work,
Susam et al [21] attempted to assess postoperative pain using
EDA through a machine learning model. Their model could
distinguish between clinical moderate-to-severe pain and no-pain
conditions. However, their work only focused on children as a
population.

To the best of our knowledge, for the first time in this paper,
we present an automatic and versatile pain assessment tool to
predict different pain levels in postoperative adults using only
EDA signals as a physiological signal. In our pain assessment
tool, we used 11 different time-domain features extracted from
EDA signals for prediction. A feature selection algorithm is
used to increase our tool's prediction accuracy and find the
top-most important features related to pain intensity. To evaluate
our results, we used different types of machine learning
algorithms. Machine learning techniques and neural networks
have been widely used in health monitoring domains. Zargari
et al [22] used a combination of convolutional neural networks
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and recurrent neural networks to accurately track the position
of in-mouth nutrient sensors. Mehrabadi et al [23] used
convolutional neural networks to detect COVID-19 in patients
with acute respiratory distress syndrome. These techniques are
not limited only to health care domains. Ashrafiamiri et al [24]
used deep neural networks to secure autonomous driving. To
accurately validate our pain assessment algorithm's performance,
we compared our results with the accuracy achieved for the pain
models presented in [13]. Werner et al [13] used the BioVid
Heat Pain database in their work in which participants were
subjected to painful heat stimuli under controlled settings. This
comparison aims to show that despite all the challenges in real
hospital settings, our models can achieve comparable results.
This also shows the feasibility of using artificial
intelligence–based objective pain assessment for real patients.

Methods

All methods of the study, including the data collection and pain
assessment, were approved by the University of California Irvine
Institutional Review Board (IRB, HS: 2017-3747). Potential
candidates were screened for eligibility using the Acute Pain
Service schedule and provided with a copy of the consent form
to review for at least 24 hours before participation in research
procedures.

Study Description, Participants, and Recruitment
This study is a biomedical data collection study with
postoperative patients reporting varying degrees of pain
symptoms under local IRB approval supervision. We recruited
25 participants (age: 23-89 years) from the University of
California, Irvine Medical Center. We recruited similar numbers
of men and women (13 men and 12 women). We removed 3
participants' data from the final dataset due to data recording
accidents such as excessive motion artifacts induced by hand
movements, and 2 participants’ data were excluded since they
were wearing the Empatica E4 watch on their IV arm, which
resulted in unreliable EDA signal due to conditions such as skin
rash and itching. The criteria for participant selection were as
follows: (1) 18 years of age or older, (2) would receive a consult
by the Acute Pain Service, (3) no barriers to communication,
(4) able to provide written informed consent, and (5) have intact
and healthy facial skin. Participants were excluded if they had
any of the following: (1) any diagnosed condition affecting
cognitive function like dementia or psychosis; (2) any diagnosed
condition affecting the central nervous system, facial nerves,
or muscles; (3) deformities on the hand or other parts of the
body that prevent sensor placement; and (4) significant facial
hair growth in the area for sensor attachment. Patients were

selected if they satisfied the inclusion and exclusion criteria and
determined to be enrolled in this study voluntarily. Verbal and
written consent was acquired before initiation of the study.

Study Design
After the recruitment procedure, GSR data were collected for
approximately 30 minutes continuously from the patients in
their private room. We separated these 30 minutes of data
monitoring into 2 phases. In the first phase, an artificial pain
generator called a transcutaneous electrical nerve stimulation
(TENS) [25] unit was used to let participants have an initial
impression of multiple pain levels and let researchers obtain
baseline biosignals from the person. The TENS unit stimulates
different levels of acute pain by delivering small electrical
impulses through electrodes attached to the participant's skin
with adhesive pads. Participants were told to gradually increase
the TENS unit's intensity to a tolerable level for them and then
hold it for at least 10 seconds. After this, we decreased the
intensity back to level 0. In the second phase, participants
engaged in low-intensity activities such as walking, coughing,
sitting up, or lifting legs that caused an expected degree of pain.
To improve data reliability for the following analysis, the entire
data monitoring process was repeated sequentially. The
monitored person's self-report of pain was measured using the
Numeric Rating Scale (NRS), a segmented numeric version of
the Visual Analogue Scale (VAS). The VAS is a validated,
subjective measure for acute and chronic pain. Pain scores are
recorded by making a mark on a 10-cm line representing a
sequence between “no pain” and “worst pain.” NRS quantifies
the pain intensity to 10 levels (0 is no pain, and integers 1 to 10
represent different pain levels, with 10 being the highest pain
imaginable) [26,27].

Data Collection
We used the Empatica E4, the commercially available wristband,
to monitor the EDA data. The wristband is simple to position,
and participants can maneuver easily without the device
impeding their movements in any way. The wristband's internal
memory allows recording up to 36 hours of data and wireless
data transmission. The E4 wristband is rechargeable, with a
charging time of fewer than 2 hours. An EDA sensor is
embedded in the E4 wristband. This sensor measures the
fluctuating changes in certain electrical properties of the skin. 

GSR Feature Extraction Pipeline Architecture
Figure 1 shows our pipeline architecture for preparing the data
and extracting the set of features for classification. There are 3
different sections in this pipeline: (1) Data Preparation, (2)
pyEDA [28], (3) Post Feature Extraction.

Figure 1. Galvanic skin response (GSR) feature extraction pipeline. EDA: electrodermal activity.
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Data Preparation
The primary purpose of the Data Preparation in our pipeline is
to synchronize the data with the labels. To prepare the data for
feature extraction, we extracted the original signals’ slices that
match with their corresponding labels. With this aim, the slices

of GSR data and their labels are collected in this part to be fed
to the pyEDA for pre-processing and feature extraction.

pyEDA
The architecture of the pyEDA is shown in Figure 2. According
to this figure, Preprocessing and Feature Extraction are the 2
main stages in this pipeline.

Figure 2. Pipeline architecture of the pyEDA. EDA: electrodermal activity; GSR: galvanic skin response.

In the preprocessing stage of the pyEDA pipeline, at first, the
data are down-sampled; then, a moving average is used to
smooth the data and reduce the artifacts such as body gestures
and movements. In the end, the data are normalized to become
suitable for classification models.

If the GSR data are collected at 128 Hz, it can safely be
down-sampled to a 20 Hz sampling rate. This down-sampling
has been done to conserve memory and processing time of the
data. In this work, we did not down-sample the data since the
original data are already sampled at 4 Hz, which is good in
terms of time and memory usage.

In this work, several steps were taken to remove motion artifacts
from the GSR signal. First, we used a moving average across
a 1-second window to remove the motion artifacts and smooth
the data. Second, a low-pass Butterworth filter on the phasic
data was applied to remove the line noise. Lastly, preprocessed
GSR signals corresponding to each different pain level were
visualized to ensure the validity of the signals.

The pyEDA uses 2 different algorithms for feature extraction
(Statistical Feature Extraction and Deep Learning Feature
Extraction). The parameters of the Deep Learning Feature
Extraction part of the pipeline are set and tuned for stress
detection; therefore, in this work, we only used the features
extracted by the Statistical Feature Extraction algorithm.

The number of peaks, the mean, and the max peak amplitude
are the 3 different statistical features that are extracted in the
pyEDA. The GSR signals consist of 2 main components: skin
conductance level, also known as the tonic level of GSR, and
skin conductance response, also called the phasic component
of GSR. The GSR peaks or bursts are considered the variations
in the phasic component of the signal. Therefore, the most

important part in extracting the peaks of the GSR signal is to
extract its phasic component. Based on Figure 2, the pyEDA
tool uses the cvxEDA algorithm [29] to extract the phasic
component. Then, the phasic component and the preprocessed
GSR data are fed to the Statistical Feature Extraction module
to extract the 3 mentioned features (number of peaks, mean
GSR, and max peak amplitude).

Post Feature Extraction
We also extracted the features that were used in the work by
Werner et al [13] for the GSR signals. The preprocessed GSR
signals and the set of features (number of peaks, mean GSR,
and max peak amplitude) were fed into the Post Feature
Extraction module to extract these features.

The maximum value of the peaks, range, standard deviation,
interquartile range, root mean square, mean value of local
maxima, mean value of local minima, mean of the absolute
values of the first differences, and mean of the absolute values
of the second differences are the extra features that were
extracted in this part. Table 1 shows all the extracted features
with their descriptions.

The mean of the absolute values of the first differences (mavfd)
is calculated as:

The mean of the absolute values of the second differences
(mavsd) is calculated as:
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Table 1. Extracted galvanic skin response (GSR) features with their descriptions.

DescriptionFeature

The number of peaksNumber of peaks

The mean value of the signalMean

The maximum value of the peaksMax

The difference between the maximum and the minimum value of the signalRange

Standard deviation of the signalSTD

The difference between upper and lower quartiles of the signalIQR

Root mean square of the signalRMS

The mean value of local minima of the signalMean minima

The mean value of local maxima of the signalMean maxima

The mean of the absolute values of the first differencesmavfd

The mean of the absolute values of the second differencesmavsd

Classification

Feature Selection
One of the key components in machine learning is to select the
set of features that has the highest importance in classification.
Performing feature selection on the data reduces overfitting,
reduces training time, and improves accuracy. By removing the
set of features that are not informative for our classification and
only add complexity to our model, there is less opportunity to
make decisions based on noise, making the model less
over-fitted. Fewer data means less training time. In the end, by
having more informative data and fewer misleading data, the
accuracy of the model increases.

Random forests [30] are among the most popular machine
learning methods. They provide 2 methods for feature selection:
mean decrease impurity and mean decrease accuracy. In this
work, we used a mean decrease impurity method for feature
selection.

Mean decrease impurity is also sometimes called Gini
importance. Random forest is an ensemble learning algorithm
consisting of several decision trees. The decision tree is a
tree-like model of decisions in which every node is a condition
on one of the features. These nodes separate the data into 2
different sets so that in the optimal scenario, the data with the
same labels end up in the same set. Impurity is the measure
based on which the optimal condition is chosen on every node.
Mean decrease impurity for each feature is defined as the total
decrease in node impurity averaged over all ensemble trees.
The features are ranked according to this measure.

Labeling the Features
Table 2 shows the distribution of labels in the UCI_iHurtDB.
There exists 11 different pain levels in this dataset. It is
noticeable that the distribution of different pain levels for the
patients is imbalanced (4 occurrences of pain level 10, but 83
occurrences of pain level 4, as an example). This is
understandable due to the subjective nature and the different
sources of pain among our patients.

Table 2. Distribution of labels in the UCI_iHurtDB before down-sampling.

Frequency, nPain level

37PL0

52PL1

37PL2

61PL3

83PL4

44PL5

32PL6

16PL7

46PL8

26PL9

4PL10

In the work by Werner et al [13], there were 5 different pain
levels, including the baseline level. To properly compare our

pain assessment algorithm with their work, we down-sampled
our 11 classes to 5 classes. The key factor in this down-sampling
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is to ensure that the distribution of the labels is as balanced as
possible. As a result, we considered pain levels 1-3 as new pain
level 1 (PL1), pain level 4 as new pain level 2 (PL2), pain levels
5-7 as new pain level 3 (PL3), and pain levels 8-10 as new pain
level 4 (PL4). Based on Table 2, there are only 37 data points
for the baseline. To increase the number of samples for the
baseline to make our labels more balanced, we up-sampled PL0
based on the reported PL0 data by the patients. We ensured
these new baseline data were close enough to the reported pain
level 0 labels (less than 10 seconds difference) and had no
overlap with other labels. These assumptions were made to

make sure (1) we were not reproducing any data and (2) the
patients had the same pain level 0 for these new timestamps.
By doing this procedure for all the participants, our number of
samples for pain level 0 increased from 37 to 86.

Table 3 shows the distribution of the down-sampled labels and
the new baseline. The distribution of the new labels is
appropriately balanced. Still, for PL1, the number of samples
is slightly higher than the rest of the classes. This is because we
down-sampled our pain levels to 4 different classes to make our
settings comparable with the work by Werner et al [13].

Table 3. Distribution of labels in the UCI_iHurtDB after down-sampling.

Frequency, nPain level

86PL0

150PL1

83PL2

92PL3

76PL4

Machine Learning Algorithms
We used machine learning–based algorithms to evaluate the
performance of our pain assessment algorithm. Two different
classification methods were used here: (1) k-nearest-neighbor
with k between 1 and 20 and (2) random forest with a depth
between 1 and 10. The k-nearest-neighbor method uses k number
of nearest data points and predicts the result based on a majority
vote [31]. The random forest classifier is an ensemble learning
algorithm that fits several decision tree classifiers on various
subsamples of the dataset and uses averaging to improve the
predictive accuracy and control over-fitting [30]. We used the
Scikit-learn library to create our classification models [32].
Scikit-learn is a free software machine learning library for the
Python programming language. It features various classification,
regression, and clustering algorithms, including
k-nearest-neighbor and random forest.

To accurately evaluate the performance of our classification
models, we used a cross-validation method [33].
Cross-validation is one of the most popular algorithms used to
truly estimate a machine learning model's accuracy on unseen
data. It achieves this by training a model using different subsets
of data and obtaining the average accuracy on the rest of the
data as a test. In this work, we used leave-one-out
cross-validation to evaluate our result. We considered all the
data acquired from one of the patients as a test and created our
pain model using the rest of the patients. We repeated this
procedure for each patient as a test. Each time, we created our

pain model from scratch without considering the current test
patient data or any information from the previous pain models.
The final accuracy of the model was obtained by averaging the
accuracy of all constructed pain models.

Results

A total of 25 patients with acute pain were engaged by the Acute
Pain Service and recruited for this study. Of these 25
participants, 5 were removed from our study due to problems
in the data collection process due to rapid hand movements or
unreliable EDA signal due to conditions such as skin rash and
itching resulting from wearing the Empatica E4 watch on their
IV arm. The average age of patients in this study was 54.45 (SD
17.44, range 23-89) years; 55% (11/20) of the patients were
male, and 45% (9/20) of patients were female. All patients were
taking the standard-of-care postoperative pain medications at
the time of the study. Enrolled participants agreed to perform
the research protocol for a median of 4 (IQR 3-6) days after
surgical intervention. The nature of the procedures for each
participant included the following domains: 45% (9/20) general
surgery (diagnostic laparoscopy, exploratory laparotomy, and
vascular), 15% (3/20) trauma (thoracic pain and rib plating),
and 10% (2/20) urology (cystectomy and bladder augmentation).
Also, 40% (8/20) of enrolled participants received
standard-of-care epidural analgesia provided by the acute pain
service team at the time of research participation. The remaining
participants were receiving oral and intravenous analgesics for
pain control (Table 4).
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Table 4. Summary of patients’ demographic characteristics for this study including exclusions.

RangeValueVariable

N/Aa3 (12)Patients excluded for hand movement noise, n (%)

N/A2 (8)Patients excluded for IV arm effect, n (%)

23-8954.45 (17.44)Age (years), mean (SD)

N/A11 (55)Gender, male, n (%)

52.2-10275.24 (14.60)Weight (kg), mean (SD)

154.9-185.9170.07 (9.00)Height (cm), mean (SD)

15.1-38.626.21 (5.75)BMI (kg/m2), mean (SD)

Nature of the procedure, n (%)

N/A9 (45)General surgery

N/A6 (30)Orthopedics

N/A3 (15)Trauma

N/A2 (10)Urology

aN/A: not applicable.

To show that our pain assessment algorithm can achieve
comparable results to the work by Werner et al [13], we used
identical settings as their work. Werner et al [13] used 5 different
pain levels, including the baseline. They also considered
5.5-second windows for the GSR data. Therefore, in the Data
Preparation part of our pipeline, we considered 5.5-second
windows for the slices of the GSR data for feature extraction
(2.75 seconds before and after each timestamp). Furthermore,
as discussed in the Methods section, we down-sampled the pain
levels from 11 classes to 5 classes to make them similar with
their labels.

At first, we used the set of features that was used in the work
by Werner et al [13] for classification without any feature

selection. The maximum value of the peaks, range, standard
deviation, interquartile range, root mean square, mean value of
local maxima, mean value of local minima, mean of the absolute
values of the first differences, and mean of the absolute values
of the second differences are the features that were used here.

We used leave-one-person-out cross-validation using
k-nearest-neighbor and random forest algorithms. We reported
the accuracy based on 4 different pain models (BL vs PL1, BL
vs PL2, BL vs PL3, and BL vs PL4). Table 5 shows the
comparison of the validation accuracy achieved by our
classifiers with that by the pain models of Werner et al [13].

Table 5. The validation accuracies in comparison with Werner et al [13] using the same set of features.

Werner et al [13]KNNbRFaBinary classification

55.474.484.0BL vs PL1

60.267.566.3BL vs PL2

65.965.057.2BL vs PL3

73.853.055.2BL vs PL4

aRF: random forest.
bKNN: k-nearest-neighbor.

According to these data, for the first 2 pain models (BL vs PL1
and BL vs PL2), we achieved a higher accuracy using both of
our classifiers in comparison with Werner et al [13]. For the
third pain model, our accuracy is also close to their models,
with less than 1% difference using the k-nearest-neighbor
classifier. For the fourth model, the accuracy of our models was
noticeably lower than their models. As the next step, we added
2 more features (the number of peaks and the mean of the GSR
data) to our set of features and then selected the most important
ones using the mean decrease impurity method to improve the
accuracy.

To obtain the best set of classification features, we ran
leave-one-person-out cross-validation on different pain models
using random forest classifiers. We computed the Gini
importance of the features on the training data and selected the
top k number of features for training the model and classification
(2-11 were considered to be possible values for k). Since we
had a different number of folds, we could have different sets of
features for each fold. We considered the set of features that
was used in most of the folds as the final set of features for the
current pain model. Table 6 shows the selected features for each
pain model. Descriptions for each of these features can be found
in Table 1.
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Table 6. Selected set of features for each pain model.

Set of featuresPain models

Mean, max, RMSa, and mean maximaBL vs PL1

Mean, max, RMS, and mean maximaBL vs PL2

Max and RMSBL vs PL3

Mean, max, IQR, RMS, and mean maximaBL vs PL4

aRMS: root mean square.

According to this table, the maximum value and root mean
square of the signal are 2 features that were selected in all the
pain models. The mean value of the local maxima and the mean
value of the signal were also selected for all the pain models
except the third one. The difference between upper and lower
quartiles of the signal (IQR) is a feature that was selected as an
important feature for classification only for the BL vs PL4 pain
model.

After the set of features for each pain model were obtained, we
ran one-person-leave-out cross-validation for k-nearest neighbor

and random forest algorithms using these sets of new selected
features to achieve the final results.

Table 7 shows the validation accuracy comparison of our models
with those by Werner et al [13] using feature selection for
5.5-second windows. As shown in this table, by using feature
selection, our classifiers' accuracy improved compared to those
shown in Table 5. For all the pain models except the fourth one,
we were able to achieve higher accuracy than the pain models
by Werner et al [13]. For BL vs PL4, our accuracy was still
about 10% less than their work. In the Discussion section, we
explain the potential reasons for this difference in our model.

Table 7. Validation accuracies in comparison with the work by Werner et al [13] using feature selection.

Werner et al [13]KNNbRFaBinary classification

55.476.886.0BL vs PL1

60.269.170.0BL vs PL2

65.972.169.8BL vs PL3

73.860.061.5BL vs PL4

aRF: random forest.
bKNN: k-nearest-neighbor.

Discussion

Strengths
We are the first to develop an automatic and versatile pain
assessment tool using GSR signals to accurately predict different
pain intensities in postoperative adult patients. According to
our results, using identical settings and even the exact GSR
features used in the work by Werner et al [13], we can achieve
higher accuracy in 2 of the 4 different pain models (BL vs PL1
and BL vs PL2). Also, for the third pain model (BL vs PL3),
using the k-nearest-neighbor classifier, we can achieve the same
level of accuracy with less than 1% difference. Machine learning
algorithms and feature selection are not a part of the pain
assessment algorithm settings. As a result, to show the true
strength of our pain assessment algorithm, first, we added 2
more features to our set of features (the number of peaks and
the mean value of the signal). Then, we used the mean decrease
impurity method to select the most important features for
classification. According to Table 7, we can achieve higher
accuracy for the first 3 pain models using this procedure. Based
on our results, for the first pain model (BL vs PL1), our accuracy
is considerably higher than the accuracy achieved by Werner
et al [13] (with and without feature selection). By feature

selection, we are using a much lower number of features in our
pain models. This reduces the complexity of our pain models. 

Furthermore, we present the most important features for each
classification model. According to Table 5, the maximum value
and root mean square of the signal appear to be the 2 most
important features for pain classifications for postoperative
adult patients. The mean value and mean value of the local
maxima of the signal are considered to be the next 2 important
features for classification.

Our results show that, in addition to healthy participants from
previous studies, we can detect different intensities of pain using
only GSR data in real-life patients in the hospital. GSR data
can easily be collected using affordable wearable devices such
as the Empatica E4 used in our study. Therefore, our pain
assessment algorithm is really beneficial in providing valuable
information to hospital staff and caregivers to better manage
pain, especially for those patients who cannot communicate.

Limitations
As our work's limitations, we used data collected from
postoperative adult participants in our pain assessment
algorithm. Data collection in real life may have led to more
motion artifact noise in our physiological signals than data
collection in a lab setting (especially for GSR data collected
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from Empatica E4 connected to their wrist). The motion artifacts
were stronger for higher pain levels since the patient was in
more unbearable pain. 

Another limitation in our work can be the lack of balanced pain
levels for all the patients. Since our data were collected from
real postoperative adult participants, it is possible that the
patients in the experiment did not experience and report all
different pain levels. This limitation could be more noticeable
at higher pain levels.

Based on our results, we were not able to achieve the accuracy
of that by Werner et al [13] for BL vs PL4 (with a 10%
difference). The limitations mentioned in previous paragraphs
can explain the potential reasons behind this difference. 

Furthermore, we could not find a significant difference between
different pain levels in our study. We believe this is because
the variations in GSR signal response to different pain levels
are more alike to be distinguished easily. It is worth mentioning
that most state-of-the-art pain assessments mainly focus on
comparing baseline with other pain levels (eg, Werner et al [13],
if the patient is in pain or not).

According to our results, the accuracy of our pain models
generally decreases with increasing pain levels. This is the
opposite of the models from Werner et al [13]. We believe this
is due to our work's limitations mentioned in the earlier
paragraph (motion artifact in signals and lack of balanced pain
levels for all the patients). Both of these mentioned limitations
could be more noticeable at higher pain levels. Therefore, it is
understandable that in this work, where the data were collected
from postoperative patients in real life, our models' accuracy
decreased with increasing pain levels.

Conclusions
In conclusion, according to our results, we can evaluate the
performance of our pain assessment algorithm. This evaluation
shows that it is feasible to predict different pain levels in real
postoperative adult participants using only the EDA data.
Furthermore, we showed that the mean value, maximum value,
root mean square, and mean value of the local maxima of the
signal are the most important features for pain classification of
real patients in pain. Multimodel pain assessment methods can
be implemented as future work to increase our pain assessment
models' performance.
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NRS: Numeric Rating Scale
TENS: transcutaneous electrical nerve stimulation
VAS: Visual Analogue Scale
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