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Abstract Results from a study of automatic aurora classification using machine learning techniques
are presented. The aurora is the manifestation of physical phenomena in the ionosphere-magnetosphere
environment. Automatic classification of millions of auroral images from the Arctic and Antarctic is
therefore an attractive tool for developing auroral statistics and for supporting scientists to study auroral
images in an objective, organized, and repeatable manner. Although previous studies have presented
tools for detecting aurora, there has been a lack of tools for classifying aurora into subclasses with a
high precision (>90%). This work considers seven auroral subclasses: breakup, colored, arcs, discrete,
patchy, edge, and faint. Six different deep neural network architectures have been tested along with the
well-known classification algorithms: k-nearest neighbor (KNN) and a support vector machine (SVM).
A set of clean nighttime color auroral images, without clearly ambiguous auroral forms, moonlight,
twilight, clouds, and so forth, were used for training and testing the classifiers. The deep neural networks
generally outperformed the KNN and SVM methods, and the ResNet-50 architecture achieved the highest
performance with an average classification precision of 92%.

1. Introduction
Spectacular auroral displays can be seen on the night sky at high latitudes if the solar wind, magnetospheric,
and ionospheric conditions are opportune. The auroral excitation processes are activated by energetic
electrons and protons from the magnetosphere. The charged particles follow the magnetic field from the
plasma sheet down to their magnetic footprint in the ionosphere where the energy is dissipated by ioniza-
tion, excitation, and heating of thermospheric particles. The auroral displays, with typical emission intensity
peaks at altitudes between 100 and 130 km, are therefore an indicator of dynamical processes that occur
much further out into the Earth's magnetotail. Understanding how different ionospheric and magneto-
spheric conditions are manifested in the shape, color, intensity, and time evolution of the aurora is not
well understood, even over 100 years after the first big auroral imaging campaigns in Bossekop, Norway
(Störmer, 1913).

Since the first auroral imaging campaigns, millions of auroral images have been taken in the Arctic and
Antarctic regions, and auroral scientists now have access to more data than what is possible to search and
analyze by visual inspections. During recent decades, it has been demonstrated that machine learning meth-
ods are a valuable and highly applicable tool for automatically classifying large image data sets, for instance,
by letter, brain tumor, and facial recognition. Machine learning techniques are, however, not widely used
within the auroral research community. Automatic classification of millions of images captured every year
will make it easier for scientists to study the images that are of interest in an organized, objective, and
repeatable manner. This will further make statistical studies easier to conduct. For example, probability
distributions of different auroral structures will facilitate studies of the temporal evolution of the aurora
under different geomagnetic condition. In addition, statistical studies of the ionosphere-magnetosphere
environment can be conducted by investigating the occurrence of auroral classes which are related to
physical processes in the magnetosphere, such as the occurrence and evolution of patchy aurora that can
be statistically studied in relation to the pitch angle scattering due to wave-particle interactions in the
ionosphere-magnetosphere system.

Machine classification of aurora is a difficult task due to the transparent nature of the emission and thus
the soft boundaries of the observed forms. Manual classification of auroral images is also a challenging task
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since no two auroral events are alike and the aurora is a very dynamic phenomena which changes rapidly
and manifests differently depending on geomagnetic conditions. An additional complication is that there
is no clear consensus about how many nighttime auroral classes exist and what they are. Nevertheless,
some automatic classification and feature extraction techniques have been developed and tested over the
last two decades, for instance, using k-nearest neighbor (KNN) (Syrjäsuo & Donovan, 2002, 2004), Fourier
descriptors (Syrjäsuo et al., 2007), support vector machines (SVMs) (Rao et al., 2014), and polynomial fitting
(Partamies et al., 2015). However, none of the developed tools have achieved broader usage, possibly due to
the techniques not being general enough, low classification accuracy, or few and/or unwanted auroral labels.
It should also be noted that machine learning techniques have been extensively used for dayside aurora
classification in the cusp region using hidden Marcov models (Yang et al., 2012) and to find key features
detected by the cycle-consistent generative adversarial network (CycleGAN) (Yang et al., 2019). However,
the developed dayside tools cannot be used on nightside aurora images without additional training due to
the differences in auroral morphology. In a recent study, Clausen and Nickisch (2018) presented automatic
nighttime auroral classification results by employing a pretrained deep neural network (DNN) and 5,824
labeled images. Clausen and Nickisch (2018) achieved 81.7 ± 0.1% classification accuracy, distributed into
six labels: arc, discrete, diffuse, cloudy, moon, and clear/no aurora. Furthermore, when clustering together
the auroral classes (arc, discrete, and diffuse) and the nonauroral classes (cloudy, moon, and clear/no aurora),
an accuracy of 95.60 ± 0.03% was achieved for detecting aurora versus no aurora conditions.

Following the previous work, the main purpose of this study was to classify color (RGB) nighttime auroral
images (manually preselected to contain clear skies) with higher precision and into more labels than those
in the previous studies. Classification error rates of <10% are considered sufficient for operational purposes
(Syrjasuo & Partamies, 2011); this study therefore aimed at an average classification precision of >90%. An
additional objective was to define auroral labels which represent an exclusive production mechanism or
characterize a physical property of the aurora when possible. Finally, several neural networks and machine
learning techniques were tested and compared in this study. The pretrained DNN considered in Clausen
and Nickisch (2018) is among the evaluated classifiers. In total, 14,030 auroral images were labeled. Out of
these, 3,854 auroral images did not contain clearly ambiguous auroral forms and were therefore selected for
network training and testing. The methodology is described in section 2. A comparison of the performance
of the different algorithms and an analysis of misidentified images is presented in section 3, with a more
general discussion in section 4.

2. Methodology
A description of the data processing, the auroral labels, and the applied machine learning techniques are
presented in this section. A detailed description of auroral classification ergonomics and potential biases in
the data set is presented in McKay and Kvammen (2020).

2.1. Data Acquisition and Preprocessing

The images used in this study were acquired by the all-sky camera located near Kiruna, Sweden, at 425 m
above mean sea level with geographic (latitude and longitude) location: 67.84◦N, 20.42◦E and CGM loca-
tion: 64.69◦, 102.64◦, and operated by the Swedish Institute for Space Physics. The camera is a Nikon D700
equipped with a Nikon Nikkor 8 mm 1:2.8 lens giving almost 180◦ field of view. The color sensitivity of the
detector, from Mauer (2009), is depicted in Figure 1 along with the characteristic 427.8, 557.7, and 630.0 nm
auroral lines. The camera was installed in 2009 with the available data set used in this project extending from
2010 to 2019. The exposure time is 6 s, with images taken automatically on each minute. To ease data transfer
rates and processing, JPEG images (720 × 479 pixels) were used, rather than the full-resolution images.

Images containing clouds and moon where excluded, since earlier studies by Rao et al. (2014) and Clausen
and Nickisch (2018) showed high accuracy for labeling clouds and moon while being less successful in
labeling auroral subclasses. A preprocessing stage was carried out where keograms were manually inspected
and areas of potential auroral emission were selected, thus rejecting the bulk of overcast sky conditions.
Celestial positions were calculated using the Skyfield software (Rhodes, 2019) and images where the Sun was
at an apparent elevation greater than −15◦, or where the moon was above the horizon, were automatically
rejected.
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Figure 1. The figure shows the color sensitivity of the blue, green, and red channels of the detector. It is clear that the
camera sensitivity is not uniform with respect to the wavelength. The relative response is approximately 0.65 for the
blue auroral line at 427.8 nm, 0.90 for the green line at 557.7 nm, and 0.45 for the red line at 630.0 nm.

To prepare the images for labeling and network training, a four-step image processing procedure (see
Figure 2) was performed on each image:

1. Rotate the images clockwise 90◦ to direct the geomagnetic pole toward the top of the image and flip the
image along the east-west axis.

2. Filter each image with a 3 × 3 median filter to avoid bias effects from the location of stars, remove bad
pixels, and reduce noise.

3. Bin the pixels by using a 2 × 2 averaging window to reduce the size of the images and thus speed up the
training process.

4. Crop the images to the central 128 × 128 pixels of the binned image, corresponding to the size of the red
frame in the left panel of Figure 2. Apart from further speeding-up the training process, there are three
reasons for cropping the images. First, pixels that contain considerably distorted features from the fish-eye
lens projection and atmospheric conditions are removed. Second, aurorae look similar toward the horizon
and classification of aurorae at small elevation angles is not useful. Lastly, selecting a smaller field of view
reduced the number of frames which included several aurora classes; this increased the accuracy of the
network and made it easier to both label the images and to choose representative aurora labels.

Figure 2. The image to the left depicts a raw (720 × 479 pixels) auroral image. The image to the right shows the same
image after the four-step processing procedure. The processed image is rotated, filtered, binned, and cropped. The
resolution of the processed image is 128 × 128 pixels. The red frame (left panel) indicates the size of the cropped area.
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2.2. Aurora Classification

The processed images were labeled manually. The set of labels used in this study is described below and
illustrated in Figure 3. The visual class definition, used for labeling the auroral images, is written in italic,
followed by a short physical description and/or explanation. The proposed set of auroral labels was easy to
identify under different geomagnetic conditions and applicable to most of the auroral images. In addition,
most labels represent an exclusive production mechanisms or characterize a physical property of the aurora.
Finally, the labels represent auroral forms which are recognizable at different viewing/elevation angles.
Thus, the distribution of the classes is not dependent on the location of the auroral form in the image. This
makes statistical interpretations of the results easier. The edge aurora class is an exception to the location
independence by its definition.

Auroral breakup. Auroral breakup is characterized by bright and large auroral forms which cover most of the
frame. Sample images labeled as auroral breakup are shown in Row 1 in Figure 3. Auroral breakup is an
expansion of bright aurora that includes a variety of different large-scale features (e.g., Nishimura et al.,
2010). It is characteristic to the substorm expansion phase, which is caused by dynamic processes in the
magnetotail (e.g., Xing et al., 2010), leading to enhanced particle precipitation to the ionosphere.

Colored aurora. An image is classified as colored aurora if the aurora, of any shape and form, is clearly not
monochromatic green but has a prominent red, blue or purple emission. Images classified as colored aurora
are presented in Row 2 in Figure 3. The typical precipitation energy and the atmospheric composition in
the altitude range of 90–130 km result in green (557.7 nm) being the dominant color in most aurorae. Dis-
tinct colored aurora occurs when the electron energy distribution has a pronounced low- or high-energy
tail, changing the electron penetration depth into the Earth's ionosphere. Blue and purple auroral displays
are usually seen when electrons penetrate deeper into the Earth's ionosphere, as compared to electrons
causing the green aurora. Red aurora, however, is produced at higher altitudes and characterizes lower
energy electron precipitation.

Auroral arcs. Aurorae with the emission distributed in a single or multiple east-west aligned structure/structures
spanning across the image are labeled as auroral arcs. Row 3 in Figure 3 illustrates samples of arcs. Auroral
arcs run parallel to the auroral oval and the magnetic latitudes (Karlsson et al., 2020). They result from
quasi-static particle acceleration in a region close to the ionosphere (Lysak et al., 2020), and they magnet-
ically map to the plasma sheet. Arcs are typically considered as quiet time auroral forms but exist at all
magnetic activity levels as a basic element of the auroral displays.

Discrete-irregular. Auroral emission appears in broken arcs, north-south aligned arcs, vortical structures, or a
combination of several discrete shapes. Discrete-irregular auroral forms are not as bright and not as large as
auroral breakup forms. Sample images labeled as Discrete-irregular are presented in Row 4 in Figure 3.
The Discrete-irregular class contains a mixture of different physical generation processes which are not
easy to untangle.

Patchy aurora. Patchy aurora is characterized by diffuse aurora consisting of irregular shapes which cover
large portions of the image. The intensity of the auroral emission in this class is weak. Patchy aurora images
are shown in Row 5 in Figure 3. Patchy aurora mainly consists of different pulsating aurora structures
(Nishimura et al., 2020). Diffuse patches are caused by pitch angle scattering of energetic electrons to the
ionosphere. Different plasma waves play a key role in the scattering processes.

Edge aurora. Images with auroral emission occurring only at the edge of the image are labeled as edge aurora.
Sample images are seen in Row 6 in Figure 3. Edge aurora can be any of the auroral classes above but
information about the class is limited by an insufficient number of bright pixels and uncertainty of the
form of the aurora outside the image frame. Thus, not attempting to classify these images as, for instance,
breakup, arcs, or discrete, makes the classifier more robust. The edge aurora label was included as an
additional subclass since the location of the aurora in a set of images is often valuable information for
determining if aurora is drifting northward, southward, eastward, or westward.

Faint clear. Images which are dark without clearly visible aurora are labeled as faint clear. Images labeled as
faint clear are presented in the bottom row of Figure 3. Faint-clear images indicate very weak electron
precipitation and a quiet ionosphere-magnetosphere environment along the field lines overhead.

Images where a mixture of classes existed were labeled by the most dominant feature with priority given
from top (highest priority) to bottom (lowest priority), in the auroral class description. Furthermore, two
additional labels were used for classifying the entire data set: unknown-complicated and rejected. Images
classified as unknown-complicated or rejected were not used for training the networks and are therefore not
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Figure 3. The figure depicts four sample images from each aurora class used for training and testing of the classifiers.
The images are processed according to the four-step processing procedure described in section 2.1. The direction with
respect to the magnetic pole is indicated by the arrows in the bottom right.

presented in Figure 3. The unknown-complicated class was used to exclude images with ambiguous auroral
forms which fitted none or several of the auroral labels without a clearly dominant feature. The rejected
class was used to exclude images with unwanted features, such as clouds and light pollution, which were
not detected in the initial preprocessing stage; see section 2.1.

Two of the authors classified the entire data set, one of the authors labeled the images in consecutive order
and the other in random order. Only the images with agreeing labels were used for training the network.
This was done in order to reduce labeling bias and noise. Thus, a clean training and testing data set was
produced by only using the images with agreeing auroral labels and excluding the images with ambiguous
auroral forms (labeled as unknown-complicated), unwanted features (labeled as rejected), and disagreeing
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Table 1
The Table Summarizes the Image Data Sets Used in This Study

Year Number of images Label Training Test Number of images
2010 479 Breakup 113 33 146 (1.04%)
2011 1,506 Colored 97 36 133 (0.95%)
2012 2,498 Arcs 636 195 831 (5.92%)
2013 0 Discrete 150 44 194 (1.38%)
2014 1,684 Patchy 1,691 459 2,150 (15.32%)
2015 2,835 Edge 167 50 217 (1.55%)
2016 2,037 Faint 146 29 175 (1.25%)
2017 1,733 Unknown-complicated — — 2,630 (18.75%)
2018 996 Rejected — — 1,078 (7.68%)
2019 262 Disagreement — — 6,476 (46.16%)
Total 14,030 Total 3,000 846 14,030 (100.00%)

Note. To the left, the number of auroral images each year that satisfies the initial conditions described in section 2.1
(no clouds, moon below the horizon, and the Sun below −15◦). To the right, the number of training, testing, and
total images per class. Note that images labeled as Unknown-complicated, Rejected, or with disagreeing labels were
not used for training and testing the classifiers.

labels. The clean data set contained 3,846 (27%) of the 14,030 images in the initial data set, spanning over
the Years 2010 to 2019. Finally, the clean data were split into a training and test data set. The training set
contains 3,000 images and was used for training the classifiers, while the testing set contains 846 images
and was used as an independent test set to evaluate the performance of the classifier. The number of images
each year and in each label is presented in Table 1 along with number of images in the training and test sets.
Note that although 46% of the images had disagreeing labels, the most disagreement was whether or not an
image was suitable for training/testing. The experts agreed on 95% of the labels on images that both experts
considered suitable for training/testing (i.e., both experts labeled as breakup, colored, arcs, discrete, patchy,
edge, or faint), as illustrated in Figure 3.

The motivation for constructing a clean data set is to avoid “confusing” the network by using ambiguous
images during training and testing. Note that labels defined in auroral observers classification guides, such
as the labels proposed in the International Auroral Atlas (IAA, C.D.W., 1964), were not applicable for train-
ing and testing of our data set. The studied data set is not large enough to reliably train and test networks
with numerous (>10) and very specific auroral subclasses while still maintaining an acceptable number
(∼100) of training images. In addition, labels defined by the temporal characteristics of the aurora cannot
be implemented in our study since all considered classifiers are time invariant.

The labels containing less than ∼100 training images is at the lower limit for network training. Note that
an insufficient number of training images might cause nonconvergence during training of the classifier. In
the early stages of the study, some readjustment of the classes was necessary to ensure there were enough
representative samples for the anticipated classes. There were also some false starts, where preselection (i.e.,
removal of images based on other criteria, such as the presence of the moon) caused some classes to be too
few in number.

2.3. DNNs

In machine learning, an object is commonly described by a set of values referred to as features. For images,
these features are the raw pixel values of the image. Machine learning algorithms seek to find patterns in
the given set of features such that some task can be solved in an optimal way. Determining what features to
present the algorithm is crucial in designing a good algorithm. Historically, the main approach has been to
design methods that extract features from raw data that are assumed to provide good discriminative power
(Guyon & Elisseeff, 2003). However, the design of such features can be challenging and might require a sig-
nificant amount of domain knowledge. In contrast, DNNs automatically learn which features in the training
data are important to solve the desired task (LeCun et al., 2015). The DNNs achieve this automatic extraction
by transforming the data through a cascade of nonlinear transformations, which results in a representation
that is suited for the problem at hand. Each transformation is commonly referred to as a hidden layer, which
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contains parameters that must be optimized. These parameters are optimized using gradient descent, where
the gradients are obtained through the back propagation algorithm (Theodoridis & Koutroumbas, 2009b).

Currently, there exists a vast amount of different DNN architectures. This study focuses on some widely
used and well-known architectures, as the goal was to demonstrate that DNNs can be effective in auroral
classification. The following DNNs were used for classifying the aurora images:

• VGG: A widely used family of convolutional neural networks (CNNs) that have demonstrated a high
performance on a number of tasks (Simonyan & Zisserman, 2014). Dropout (Srivastava et al., 2014) was
included to regularize the model. Later versions also included batch normalization (Ioffe & Szegedy,
2015). Different versions of the VGG can be created by adding more layers to the network. In this work,
we evaluated two versions of the VGG. First, the 16-layer version titled the VGG-16, then the 19-layer
version named VGG-19.

• AlexNet: Often considered the breakthrough of deep learning, AlexNet is a CNN consisting of five con-
volutional layers and three fully connected layers (Krizhevsky et al., 2012). Each layers is followed by a
Rectified Linear Unit (ReLU) activation function. Similarly with VGG, Dropout was included to regularize
the model.

• ResNet: Residual networks (ResNets) (He et al., 2016) include skip connections between the hidden lay-
ers of the networks. Such skip connections ease the flow of gradients in the network (Balduzzi et al., 2017)
such that more hidden layers can be included in the network, a process that has shown to increase per-
formance. As with the VGG, adding more layers results in different version of the ResNet. In this study,
we evaluated two versions of the ResNet. First, the 18-layer version titled ResNet-18, then the 50-layer
version named ResNet-50.

• Clausen and Nickisch (2018) approach: Additionally, we evaluated the performance of the approach used
by Clausen and Nickisch (2018). Clausen and Nickisch (2018) used a pretrained deep learning model, an
inception model (Szegedy et al., 2017), as a feature extractor that was combined with a linear classifier.

All models were trained using a cross-entropy loss and the Adam optimizer (Kingma & Ba, 2015). The
models were developed using the deep learning framework Pytorch (Paszke et al., 2017) on a Tesla K80 GPU.

3. Results
This section presents the classification scores for the KNN method, the SVM method, and six different deep
learning-based models on the aurora data set. Further, the confusion matrix and the presoftmax represen-
tation obtained by the highest performing model is visualized. Examples of images that were incorrectly
classified by the highest performing model are shown and discussed. Lastly, a comparison between the class
wise accuracy of a deep learning-based approach to a traditional machine learning approach is presented.

This study evaluates all classifiers by calculating the precision, recall, and F1 score. Precision is defined as
follows:

Precision =
true positive

true positive + false positive
, (1)

and measures the classifiers ability for not labeling positive samples as negative. A true positive is when
the model correctly predicts the positive class. A false positive is when the model incorrectly predicts the
positive class. Recall is defined as follows:

Recall =
true positive

true positive + false negative
, (2)

and measures the classifiers ability to find positive samples. A false negative is when the model incorrectly
predicts the negative class. F1 score is defined as follows:

F1 = 2 ·
precision · recall
precision + recall

(3)

and acts as a weighted average of precision and recall.
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Table 2
The Table Summarizes the Precision, Recall, and F1 Score for Different Classifiers on the Aurora Data Set

Algorithm Precision Recall F1 score # of parameters (M)
3NN 0.84 ± 0.0 0.56 ± 0.0 0.58 ± 0.0 0
5NN 0.66 ± 0.0 0.54 ± 0.0 0.53 ± 0.0 0
Linear SVM 0.78 ± 0.0 0.70 ± 0.0 0.72 ± 0.0 ≈0
Clausen and Nickisch (2018) 0.88 ± 0.01 0.87 ± 0.01 0.88 ± 0.01 43
VGG-16 0.84 ± 0.02 0.80 ± 0.03 0.81 ± 0.02 138
VGG-19 0.82 ± 0.04 0.78 ± 0.03 0.79 ± 0.03 143
AlexNet 0.88 ± 0.03 0.88 ± 0.03 0.87 ± 0.03 60
ResNet-18 0.92 ± 0.02 0.87 ± 0.05 0.89 ± 0.04 11
ResNet-50 0.92 ± 0.03 0.89 ± 0.04 0.90 ± 0.03 25

Note. The reported scores are the average over 10 runs with different random initialization. The last col-
umn lists the number of parameters, in millions, for each classifier, rounded to the nearest whole million.
The bold entries mark the highest performance.

3.1. Comparison of the Classification Performances

The performance results of the six deep learning-based models described in section 2.3 are displayed in
Table 2. Additionally, a baseline using two well-known machine learning classifiers is provided, namely, a
KNN classifier (Theodoridis & Koutroumbas, 2009a) and a SVM classifier (Cortes & Vapnik, 1995). For both
classifiers, the histogram of oriented gradients method (Dalal & Triggs, 2005) is used for extracting features
from the images. For the KNN classifier, the results when considering the three and five nearest neighbors
are reported. For the SVM, the results are for where a linear kernel is utilized. All deep learning-based models
outperform the KNN and SVM baseline. The ResNet-50 achieved the highest score across all metrics.

Figure 4. The figure shows the confusion matrix for the ResNet-50 network on the test data. The diagonal displays the
percentage of correctly classified images for each class, that is, images where the network automatically classified an
auroral image similarly to the manually labeled test data. The off-diagonal elements show the percentage of images
from a given class erroneously classified as another class. The results show that the model achieves a high accuracy on
most classes, but has some difficulties with separating colored aurora and discrete-irregular aurora.
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Figure 5. The figure presents the presoftmax representation of the aurora test data produced by the ResNet-50 network
and projected down to two dimensions using T-SNE. Images from some of the classes are also displayed in the plot.
The figure shows that the model has found a suitable representation where the classes are clustered together and are
easily separable.

Figure 4 shows the confusion matrix for the ResNet-50 on the test set of the aurora data. From this figure,
it is evident that some classes are well understood by the network. Specifically, almost all samples from the
auroral arcs, patchy aurora, edge aurora, and faint-clear classes in the test set are classified correctly. On the

Figure 6. This figure depicts test images that were incorrectly classified by
the ResNet-50 network. (top left) Auroral breakup classified as arcs. (top
right) Colored aurora classified as discrete-irregular. (bottom left) Edge
aurora classified as arcs. (bottom right) Patchy aurora classified as
discrete-irregular. All images are processed according to the four-step
processing procedure described in section 2.1.

other hand, the colored aurora is more challenging and is partly
classified as discrete-irregular aurora. Also, both auroral breakup and
discrete-irregular are partly classified as auroral arcs.

3.2. Details of the Highest Performing Model (ResNet-50)

Figure 5 displays a two-dimensional presoftmax representation of the test
data of the aurora data set, produced by the ResNet-50. The representation
was projected down to two dimensions using the t-distributed stochastic
neighbor embedding (T-SNE) dimensionality reduction technique
(van der Maaten & Hinton, 2008). The figure also contains some examples
of the actual images that are represented by the two-dimensional points.
It is from this representation that the network determines what class to
assign a sample image to. From this figure, it is clear that some classes
are well separated from the other classes. For instance, the cluster of
edge aurora and the cluster of faint-clear samples toward the rightmost
part of the figure are compactly represented and well separated from the
other classes. However, some classes are more mixed together, which
corroborates the findings in Figure 4.

Figure 6 shows four examples of incorrectly classified images from the
auroral test data. The incorrect classifications are generally sensible, and
it can be seen how the algorithm may have opted for the incorrect classi-
fication. Possible interpretations are as follows: Figure 6 (top left) shows
auroral breakup classified as arcs; although the breakup is imminent, the
image is still dominated by the bright arc. Figure 6 (top right) shows col-
ored aurora classified as discrete-irregular aurora; the distinction of color
is subtle compared to other colored aurorae in the training set. Addi-
tionally, the strong non-east-west feature in the top right is found in
discrete-irregular aurora cases. Figure 6 (bottom left) shows edge aurora
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Figure 7. The figure shows the class wise accuracy comparison between a 3NN-classifier and the ResNet-50 network.
The figure illustrates how the deep learning-based model outperform the traditional machine learning method in
locating all classes. The ResNet-50 classifier handles particularly the breakup, colored, and discrete aurora classes
much better than the KNN-classifiers.

classified as arcs; in fact, this is an arc, but it is on the edge of the field of view. The intensity of the arc is not
high, so the brightness in the corners is not sufficient for the algorithm to opt for that class. Figure 6 (bottom
right) shows patchy aurora classified as discrete-irregular; there is a sharp edge feature in the center-top of
the image, which is generally not present in patchy aurora cases.

To examine what type of images the deep learning-based models are capable of recognizing compared to the
traditional machine learning approach, we compare the class wise accuracy of the 3NN-classifier and the
ResNet-50. Figure 7 displays the class-wise accuracy on the test images of the aurora data set. The accuracy
of some classes is comparable between the two methods, but particularly for the auroral breakup, colored
aurora, and discrete-irregular auroral classes it is clear that the deep learning approach is superior. These
classes are typically more challenging to recognize, which seems to suggest that the deep learning-based
approach is capable of identifying more complicated structures in auroral images.

4. Discussion
In this study, the DNNs generally outperformed the KNN and SVM techniques. Overall, from the presented
results in Table 2 where several architectures, namely, the Clausen and Nickisch (2018) method, AlexNet,
ResNet-18, and ResNet-50, achieved close to 90% average precision, infer that aurora classification is a suit-
able task for DNNs. It has been demonstrated that it is possible to classify specific auroral forms such as
auroral arcs, edge aurora, patchy aurora, and faint clear with a high precision (>90%), as seen in Figure 4. The
networks were in general less successful in classifying auroral breakup, colored aurora, and discrete-irregular
aurora, likely reasons are too few and/or too ambiguous training images. In addition, from Figure 5 it is
clear that colored aurora has an overlap with discrete-irregular aurora. This overlap occurs when the aurora
does not have a clearly pronounced colored emission. Note that it might be possible to achieve a higher
label separability using unsupervised clustering methods. However, an additional goal of this study was to
define auroral labels that represents exclusive production mechanisms or characterize physical properties
of the aurora when possible. The resulting clusters attained by an unsupervised clustering method will most
likely not satisfy this goal. An unsupervised classifier might therefore not be applicable for most scientific
purposes where the aim is to study the physics of the aurora and its production mechanisms.

The DNN architectures VGG-16 and VGG-19 had the worst performance. These models have a significantly
higher amount of parameters, as presented in Table 2, and it might be that the data set is not large enough
for training models of such a size. Also, the ResNet models are generally known to outperform AlexNet and
the VGG-based models (He et al., 2016), often attributed to their ability to propagate gradients effectively
even for very deep networks (Balduzzi et al., 2017).

Clausen and Nickisch (2018) used a pretrained DNN to extract features and then trained a linear classifier
using these features. This means that the parameters of the pretrained DNN are not optimized for handling
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auroral images but for other types of images. In contrast, the models used in this study, VGG, AlexNet,
and ResNet, are only trained using auroral images. From Table 2 it is evident that the pretrained approach
gives better performance than the traditional machine learning algorithms but does slightly worse than the
best DNNs trained on only auroral images. This suggests that training the models specifically for classifying
images of aurora might improve their capability to detect different types of aurora. However, a larger data
set is needed to validate this proposition.

An analysis of the network performance on data from other cameras still remains to be done. Note that the
color sensitivity of the detector, presented in Figure 1, is a camera-specific feature. Thus, the RGB images
acquired by other cameras should be adjusted to account for the differences in the wavelength-dependent
light response before being used by the classifier. In addition, the training and testing was done using images
without clearly ambiguous images, as described in section 2. Hence, a proper analysis of how ambiguous
images is classified also needs to be investigated. The network will ideally classify the most dominant auroral
feature. However, an evaluation of the performance on ambiguous images will itself be subject to biases and
subjective interpretations, as described by McKay and Kvammen (2020). It is irrational to expect a DNN to
classify ambiguous images correctly if not even auroral experts can agree on what the correct label is. Thus,
a common consensus about the auroral morphology and the criteria for each class needs to be introduced
before progress can be made on classifying ambiguous images. Alternatively, one could interpret ambiguous
auroral images as a mixture of more common classes (e.g., auroral breakup, arcs, and patchy aurora) and
label ambiguous images with multiple classes.

Future endeavors in aurora classification with DNNs should investigate the dimension space using different
cameras and auroral events, for instance, by T-SNE maps. Further improvements to the classifier can likely
be achieved by including the time dimension. The time dimension information can be included by combin-
ing the CNNs with recurrent neural networks (RNNs) or by using the CNNs directly on a data set consisting
of labeled stacks of consecutive images with, for example, ∼10 images in each stack, the appropriate number
of images in each stack depends on the imaging frequency, the exposure time, and the field of view. The
inclusion of the time dimension also allows for classifying labels with a distinctive temporal behavior
(e.g., pulsating aurora). From the data set used in this study, it can be concluded that images labeled as
colored aurora and discrete-irregular are not well separated by the classifiers. Other labeling sets should
therefore be considered. It should be noted that classifying colored aurora is of particular interest for detect-
ing exciting phenomena such as sunlit aurora (Shiokawa et al., 2019; Størmer, 1929), stable auroral red
(SAR) arcs (Mendillo et al., 2016; Rees & Roble, 1975), and Strong Thermal Emission Velocity Enhancement
(STEVE) (Gallardo-Lacourt et al., 2018; MacDonald et al., 2018), which are characterized by pronounced
colored emissions. In addition, both auroral arcs and patchy aurora achieved a high precision and are
common auroral forms. Subdividing these classes, for instance, arcs into single arc and multiple arcs, might
therefore be advantageous. Furthermore, auroral omega bands are quite common and distinctive auroral
forms (Partamies et al., 2017) which might be possible to classify with a high precision.

5. Conclusion
This paper presents the results of an extensive study of automatic aurora classification using different
machine learning techniques. Seven auroral classes were considered: auroral breakup, colored aurora, auro-
ral arcs, discrete-irregular, patchy aurora, edge aurora, and faint-clear. The classifiers were both trained and
tested on clean colored (RGB) auroral images, without clearly ambiguous auroral forms and unwanted fea-
tures, such as clouds and light pollution. Six DNN architectures were tested along with the well-known
machine learning classifiers KNN and SVM. The ResNet-50 DNN architecture achieved the highest perfor-
mance with an average classification precision of 92%.

Overall, the conclusion is that automatic auroral image classification is a suitable task for DNNs. The DNNs
generally outperformed the KNN and SVM techniques. However, progress in this field of study is con-
strained by biases and subjective interpretations (McKay & Kvammen, 2020). It is irrational to expect the
DNNs to classify an auroral image correctly if auroral researchers cannot agree on what the correct aurora
label is. High precision (>90%) classification of clearly ambiguous auroral images can therefore not be read-
ily achieved before a common consensus about the auroral morphology and the criteria for each class is
established. The use of data without clearly ambiguous auroral forms for automatic aurora classification,
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mainly labeled into physically meaningful definitions, might be the first step in sorting auroral structures
in a morphological space.

Data Availability Statement
The image data archive are freely accessible at https://www2.irf.se/allsky/data.html, and the processed
image data set and code used in this paper are available online (at https://dataverse.no/dataset.xhtml?
persistentId=doi:10.18710/SSA38J).
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