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Abstract

Background: Hormonal contraception is commonly used worldwide, but its systemic ef-

fects across lipoprotein subclasses, fatty acids, circulating metabolites and cytokines re-

main poorly understood.

Methods: A comprehensive molecular profile (75 metabolic measures and 37 cytokines)

was measured for up to 5841 women (age range 24–49 years) from three population-based

cohorts. Women using combined oral contraceptive pills (COCPs) or progestin-only contra-

ceptives (POCs) were compared with those who did not use hormonal contraception.

Metabolomics profiles were reassessed for 869 women after 6 years to uncover the meta-

bolic effects of starting, stopping and persistently using hormonal contraception.

Results: The comprehensive molecular profiling allowed multiple new findings on the

metabolic associations with the use of COCPs. They were positively associated with lipo-

protein subclasses, including all high-density lipoprotein (HDL) subclasses. The associ-

ations with fatty acids and amino acids were strong and variable in direction. COCP use

was negatively associated with albumin and positively associated with creatinine and in-

flammatory markers, including glycoprotein acetyls and several growth factors and

interleukins. Our findings also confirmed previous results e.g. for increased circulating

triglycerides and HDL cholesterol. Starting COCPs caused similar metabolic changes to

those observed cross-sectionally: the changes were maintained in consistent users and

normalized in those who stopped using. In contrast, POCs were only weakly associated

with metabolic and inflammatory markers. Results were consistent across all cohorts

and for different COCP preparations and different types of POC delivery.

Conclusions: Use of COCPs causes widespread metabolic and inflammatory effects.

However, persistent use does not appear to accumulate the effects over time and the

metabolic perturbations are reversed upon discontinuation. POCs have little effect on

systemic metabolism and inflammation.

Key words: hormonal contraception, combined oral contraceptive pills, progestin-only contraceptives, metabolo-

mics, cytokines, inflammation, amino acids, fatty acids, lipoproteins, hormones, risk factors

Key Messages

• This work is the first comprehensive molecular characterization of the systemic effects of combined oral contraceptive

pills (COCPs) and progestin-only contraceptives (POCs). Given the infeasibility of randomizing women to hormonal

contraception or placebo, and the difficulty of randomizing to hormonal or non-hormonal contraception, evidence for

causal effects requires well-conducted observational studies.

• The novel findings on the systemic effects of COCPs reported here are multiple. Use of COCPs increased the concen-

trations of circulating lipoprotein subclasses, including all high-density lipoprotein (HDL) subclasses. It resulted in

changes in fatty acids and amino acids that were strong and variable in magnitude and decreased the circulating al-

bumin levels but increased the concentrations of creatinine and multiple inflammatory markers, including glycopro-

tein acetyls and several growth factors and interleukins.

• We confirmed previous findings of increased circulating triglycerides, HDL cholesterol, apolipoprotein B and A-I, insu-

lin, C-reactive protein, sex hormone-binding globulin and decreased testosterone in the COCP users.

• Most of the metabolic aberrations caused by the use of COCPs are associated with higher cardiometabolic risk based

on established risk factors and also on the basis of multiple new metabolomics biomarkers.

• Persistent use of COCPs does not appear to accumulate the effects over time and the metabolic perturbations are re-

versed upon discontinuation. Use of POCs has little effect on systemic metabolism and inflammation.
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Introduction

Use of hormonal contraception is widespread: around

80% of women from high-income countries have used oral

contraceptive pills.1,2 United Nations estimates the world-

wide prevalence of hormonal contraception use among re-

productive women in a union to be over 13%. Hormonal

contraception offers convenient, effective and reversible

fertility regulation, but the combined (oestrogen and pro-

gestin) oral contraceptive pills (COCPs) are associated

with three to seven times higher risk of venous thrombosis

and around a 2-fold risk of myocardial infraction and is-

chemic stroke.3–7 A large number of cross-sectional studies

have shown that COCPs are associated with cardiometa-

bolic risk markers, such as increased circulating levels of

triglycerides and various cholesterol measures, and also

greater insulin resistance and inflammatory marker C-re-

active protein (CRP).8–12 This is in contrast to progestin-

only contraceptives (POCs) that do not appear to be

associated with higher venous thrombosis or other cardio-

metabolic risk.3,4,6,7,10

Randomized controlled trials have compared effects be-

tween different hormonal contraceptive preparations on

metabolic risk markers.13–16 However, it is not feasible to

compare the use of a hormonal contraceptive with non-use

in a randomized trial, since few women would be prepared

to be randomized to placebo or non-hormonal contracep-

tion. Longitudinal studies are therefore essential for deter-

mining the metabolic consequences of starting, stopping

and continued use of hormonal contraception, and also for

providing the best estimates of causal effects. However,

most previous studies have been cross-sectional and only

assessed a limited range of traditional metabolic risk fac-

tors.8 The few existing small longitudinal studies have sug-

gested that the effects of COCPs on lipids and insulin

resistance tend to appear shortly after starting the use, and

that the effects do not worsen with continued use and that

they reverse upon stopping.8,14,17,18 Our work here pro-

vides a plethora of new molecular information on the influ-

ences of hormonal contraception on a wide range of

circulating markers of high relevance in cardiovascular risk

assessment and in individual considerations on the decision

of contraception.

Methods

Study populations

Data from three independent population-based Finnish co-

horts were analysed: the 1997 survey of the Northern

Finland Birth Cohort 1966 (NFBC1966, n¼2962 women

aged 31 years),19 the 2001 survey of the Cardiovascular

Risk in Young Finns Study (YFS, n¼ 1239 women aged

24–39 years)20 and the FINRISK 1997 study (n¼ 2105

women aged 24–49 years).21 Pregnant women (n¼ 337)

and those whose information on contraceptive use was

missing (n¼ 128) were excluded. In total, 5841 women

who had the metabolomics profiles and information on

contraceptive use were included in the study (Table 1). A

subset of 869 women out of 1154 women at baseline in the

YFS attended a 6-year follow-up at which contraceptive

use was assessed and the metabolomics measurements re-

peated. The loss of 285 women at the follow-up is due to

no attendance at the clinical examination (n¼ 201), no

data on metabolic profiles (n¼36), no information on

contraception use (n¼ 18) or pregnancy at the follow-up

(n¼ 30). The study protocols were approved by the local

ethics committees and all participants gave written in-

formed consents. Further details of the study popula-

tions19–21 are given in Supplementary Methods (suppleme

ntary data are available at IJE online).

Information on hormonal contraception use and

covariates

Use of contraception, smoking status and alcohol con-

sumption were assessed by questionnaires. Body mass

index (BMI) and blood pressure were assessed in clinics

using established protocols.

Information on the oestrogen dose and the type of pro-

gestin for COCP preparations was available for

NFBC1966 and YFS2001. None of the cohorts had infor-

mation on how long women had used hormonal

contraception.

We undertook two primary analyses: (i) comparing

women using COCPs with those using no hormonal

contraception and (ii) comparing women using any form

of POC—including pills, implants and intrauterine systems

(IUSs)—with those using no hormonal contraception.

Thus, women were categorized into three mutually exclu-

sive groups: (i) non-users of any hormonal contraception

(n¼ 4149; including women using no contraception and

those using non-hormonal means, such as barrier methods

and non-hormonal intrauterine devices), (ii) users of

COCPs (n¼1157) and (iii) users of POCs (n¼ 535). In sec-

ondary analyses, we compared (i) different generations of

COCPs with non-users of hormonal contraception and (ii)

different forms of POC delivery with non-users. Thus,

COCPs were categorized into second-generation (oestro-

gen and levonorgestrel/norgestimate) and third-generation

(oestrogen and desogestrel/gestodene) pills and those con-

taining oestrogen and cyproterone acetate. No participants

reported the use of other preparations of COCPs e.g. dro-

spirenone. The POCs were further categorized into

progestin-only pills and levonorgestrel-IUS.
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The vast majority of women who were using a COCP

used a preparation with either 20 mcg or 30–40 mcg of

ethinylestradiol. The hormonal contraception methods

analysed here represent the common preparations with re-

spect to progestin type and ethinylestradiol dosage in wide-

spread use.3,22 Characteristics of the study participants in

different contraceptive groups are given in Supplementary

Table 1 (available as Supplementary data at IJE online).

Molecular profiling

Seventy-five metabolic measures were assessed, with 68 of

these quantified by a high-throughput serum nuclear mag-

netic resonance (NMR) metabolomics platform.23,24 These

measures represent a broad molecular signature of sys-

temic metabolism and cover multiple metabolic pathways,

including lipoprotein lipids and subclasses, fatty acids,

amino acids and glycolysis-related metabolites. The NMR-

based metabolomics profiling has previously been used in

large-scale epidemiological studies25–31 and the experimen-

tation described elsewhere.23,24,32 Six hormone-related

measures (insulin, leptin, adiponectin, vitamin D, sex

hormone-binding globulin and testosterone), high-

sensitivity CRP and 37 cytokines were also analysed.

Details of these measurements are given in Supplementary

Methods and Supplementary Appendix 1 (available as

Supplementary data at IJE online).

Statistical analyses

The metabolic and cytokine measures were log-

transformed and scaled to standard deviations (SD) in each

cohort. A multiple testing corrected threshold P<0.0004

(0.05/112 measures) was used to indicate statistical

significance.

For cross-sectional analyses, a linear regression model

was fitted for each outcome measure (concentration of

each molecular measure) with the contraception group as

the explanatory variable. Non-users of hormonal contra-

ception were used as the reference group, so that associ-

ation magnitudes denote the difference in each outcome

measure between hormonal contraceptive users and non-

users. Association magnitudes are reported in SD units

throughout in order to ease the comparison across multiple

measures. The three cohorts were analysed separately and

the results then combined via an inverse variance weighted

meta-analysis using fixed effects model, after confirming

the consistency of the metabolic associations across the

three cohorts (Supplementary Figure 1, available as

Supplementary data at IJE online). In the main analyses,

we adjusted for potential confounding by age, which is

related to the type of contraception used33 and affects lipidT
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and metabolite levels.34 In a second set of models, we add-

itionally adjusted for BMI, mean arterial pressure [MAP,

calculated as 1/3 � (systolic blood pressure) þ 2/3 � (dia-

stolic blood pressure)], current smoking and alcohol con-

sumption, which could potentially also confound the

associations.8–10

Those 869 women from the YFS cohort who had both

baseline and 6-year follow-up data were classified as start-

ers, stoppers and persistent users of COCP (n¼ 235); start-

ers, stoppers and persistent users of IUS (n¼ 176);

switchers of IUS and COCP (n¼ 34); and persistent non-

users (n¼ 392). The other contraception users (in total 32

women) were excluded in the longitudinal analyses due to

their small number. The contingency table of the contra-

ceptive users at baseline and follow-up is given in

Supplementary Table 4 (available as Supplementary data

at IJE online). For each metabolic measure, the 6-year

change in concentration for starters, stoppers and persist-

ent users of COCPs or IUSs and for the switchers were

compared with those for persistent non-users. The longitu-

dinal models were adjusted for baseline age and further for

the 6-year change of BMI, MAP, smoking and alcohol use.

Results

The characteristics of the study participants are shown in

Table 1. On average, 19% and 9% of women were using

COCPs and POCs, respectively. Characteristics of POC

users were broadly similar to those of non-users, whereas

COCP users tended to be younger, leaner and consumed

more alcohol than the other two groups. Blood pressure

and smoking levels were similar in all three groups.

Metabolic profiles of COCP and POC use

The cross-sectional associations of COCP and POC use with

75 metabolic measures are shown in Figure 1 (results in abso-

lute physiological units are given in Supplementary Table 2,

available as Supplementary data at IJE online). Use of

COCPs was strongly associated with almost the entire mo-

lecular profile (65 out of 75 measures at P< 0.0004 in the

meta-analysis). The concentrations of total lipids in all lipo-

protein subclasses were increased; the strongest associations

were for the high-density lipoprotein (HDL) subclasses and

for the smallest very-low-density lipoprotein (VLDL) sub-

classes. Only slight increases were observed for low-density

lipoprotein (LDL) subclasses. Concomitantly, apolipoprotein

A-I, apolipoprotein B, triglyceride and various cholesterol

concentrations, except LDL cholesterol, increased. Likewise,

the concentrations of all circulating fatty acids were markedly

elevated. However, the proportion of individual fatty acids

(relative to the total fatty acid concentration) displayed a

heterogeneous association pattern. The proportions of

omega-6 fatty acids, including linoleic acid, were markedly

decreased whereas the proportion of docosahexaenoic acid as

well as monounsaturated and saturated fatty acids were

increased.

The use of COCPs was also associated with large differ-

ences in amino acid concentrations, with histidine and

phenylalanine increasing the most, whereas glutamine, gly-

cine and tyrosine decreased substantially. Glycolysis-

related metabolites were moderately associated with the

use of COCPs whereas the ketone bodies were not. COCP

use was also associated with increased serum concentra-

tions of creatinine, insulin, adiponectin, vitamin D and sex

hormone-binding globulin (SHBG) and decreased concen-

trations of albumin and testosterone. In addition, COCP

use was strongly linked with increased levels of inflamma-

tory markers, CRP and glycoprotein acetyls. In contrast

to the use of COCPs, the use of POCs were only weakly,

or not at all, associated with the metabolic measures

(Figure 1).

The cross-sectional results were highly consistent across

the three independent cohorts (Supplementary Figures 1 and

2, available as Supplementary data at IJE online). Results

were also very similar when further adjusted for BMI, MAP,

current smoking and alcohol use (Supplementary Figure 3,

available as Supplementary data at IJE online). All COCP

subtypes/generations consistently showed strong associations

with the molecular profile (Supplementary Figure 4, available

as Supplementary data at IJE online) but POC subtypes,

progestin-only pills and IUSs were only weakly associated

(Supplementary Figure 5, available as Supplementary data at

IJE online). Details are given in Supplementary Table 1 and

Supplementary Appendix 2 (available as Supplementary data

at IJE online).

The cross-sectional associations with 37 cytokines

revealed that COCP use was associated with multiple in-

flammatory pathways, including angiogenesis- and hemo

topoiesis-related growth factors as well as interleukins.

POCs were only weakly associated with cytokines. The re-

sults are shown in Supplementary Figure 6, given in abso-

lute concentration units in Supplementary Table 3 and

detailed information provided in Supplementary Appendix

1 (all available as Supplementary data at IJE online).

Metabolic responses of starting, stopping and

persistently using COCPs

Figure 2 illustrates metabolic changes in response to start-

ing, stopping and persistently using COCPs. During the 6-

year follow-up, there were only very small metabolic

changes for the persistent users of COCPs in comparison

with those women who were persistent non-users. For
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those women who started to use COCPs, there were pro-

nounced metabolic changes across the entire molecular

profile; the association magnitudes were highly similar to

those observed in the cross-sectional setting. The metabolic

changes were also pronounced for the women who stopped

using COCPs; the association magnitudes again matched

the cross-sectional findings, but they were in the opposite

direction. The overall consistency between the longitudinal

metabolic associations of starting the use of COCPs and

the corresponding cross-sectional associations of using

COCPs followed a straight line with a slope of 0.99 6 0.08

(R2¼ 0.69; Figure 3, left panel). Analogously, the associ-

ation magnitudes for those who stopped using COCPs also

followed a straight line with downwards slope of –

0.92 6 0.04 (R2¼0.88; Figure 3, right panel). The meta-

bolic associations for starting, stopping and persistently

using COCPs were essentially unaltered when further ad-

justed for 6-year change of BMI, MAP, smoking and alco-

hol use (Supplementary Figure 7, available as

Supplementary data at IJE online).
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Figure 1. Cross-sectional associations of the use of combined oral contraceptive pills (COCPs) and progestin-only contraceptives (POCs) with 75 mo-

lecular measures. Non-users of any hormonal contraception were used as the reference group, so the association magnitudes denote the difference

in each measure between hormonal contraceptive users and non-users. Association magnitudes are reported in standard deviation-units to ease the

comparison across multiple measures. Associations were adjusted for age and meta-analysed for three independent population-based cohorts. In

total, 1157 women using COCPs and 535 using POCs were compared with 4149 non-users of hormonal contraception. VLDL, very-low-density lipo-

protein; IDL, intermediate-density lipoprotein; LDL, low-density lipoprotein; HDL, high-density lipoprotein; C, cholesterol; FA, fatty acids; PUFA, poly-

unsaturated fatty acids; MUFA, monounsaturated fatty acids; SHBG, sex hormone-binding globulin. Open and closed symbols indicate P� 0.0004

and P< 0.0004, respectively.
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In contrast to the large metabolic perturbations related

to starting and stopping the use of COCPs, there were es-

sentially no metabolic changes associated with starting,

stopping or persistently using IUSs (Supplementary Figure

8, available as Supplementary data at IJE online). The

metabolic changes for those women who started or

stopped using IUSs matched poorly with the cross-

sectional associations with IUS use (R2< 0.3)

Figure 2. Longitudinal changes in molecular concentrations in response to starting, stopping and persistent use of combined oral contraceptive pills

(COCPs). The 6-year metabolic changes for starting (n¼ 52), stopping (n¼ 94) and persistently using (n¼ 89) COCPs were compared with those of per-

sistent non-users (n¼ 392) in the Young Finns Study (YFS) cohort. A null result for persistent users indicates metabolic changes consistent with those

for the persistent non-users (i.e. changes that would occur with age or any secular event over the 6-years of follow-up) that is no further worsening ef-

fects were detected due to persistent use of COCPs. The marked changes for starters and stoppers, and their opposite directions, suggest that the

metabolic effects were produced by starting to use COCPs and normalized by stopping the use. The longitudinal associations were adjusted for base-

line age. Open and closed diamonds indicate P� 0.0004 and P<0.0004, respectively. Abbreviations are as for Figure 1.
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(Supplementary Figure 9, available as Supplementary data

at IJE online). Metabolic changes in response to the switch

between COCPs and IUSs during the follow-up

(Supplementary Table 4) are shown in Supplementary

Figure 10 and discussed in Supplementary Appendix 3 (all

available as Supplementary data at IJE online).

Discussion

This study elucidates the widespread changes in systemic

metabolism arising from the use of COCPs in unprece-

dented molecular detail. The metabolic effects of starting

COCPs extend markedly beyond the small set of estab-

lished cardiovascular risk factors assessed in previous

studies.8,14,17,18 The comprehensive molecular profiling

allowed multiple new findings of the wide systemic

perturbations associated with the use of COCPs. In cross-

sectional analyses, the use of COCPs was primarily associ-

ated with metabolic differences towards higher cardiome-

tabolic risk, including substantial effects on numerous

novel and emerging biomarkers for the risk of cardiovascu-

lar disease (CVD) and type 2 diabetes.25,28,30,35,36 The

metabolic effects were pronounced, with magnitudes often

around and even larger than 0.5 SD different from the

non-users. Longitudinal analyses of starting and stopping

the use of COCPs, together with the very large association

magnitudes, strongly suggest that the metabolic aberra-

tions arise as the cause of COCPs. Importantly, long-term

use of COCPs does, however, not appear to have any

accumulative metabolic effects. In contrast to the wide-

spread effects of COCPs, any delivery method of POCs

was only weakly, or not at all, associated with the molecu-

lar profile. The null associations of the IUS use in the longi-

tudinal settings reinforce that IUSs, and potentially other

POCs, are unlikely to cause marked systemic metabolic

deviations.

The molecular underpinnings of COCP use have been

widely studied with respect to glucose metabolism and

routine lipids. Numerous observational studies and

randomized trials have found increased triglycerides, apoli-

poprotein B, apolipoprotein A-I and insulin to be associ-

ated with COCP use.11,14,17,18,37–40 These measures,

together with the inflammatory marker CRP, circulating

testosterone and SHBG, serve here as positive controls,

providing evidence of validity for results with our much

more detailed profiling in the same cohorts. The lipopro-

tein subclass data revealed that the use of COCPs increased

circulating lipids in all VLDL subclasses, particularly the

smaller ones. This, together with increased intermediate-

density lipoprotein (IDL) as well as higher levels of trigly-

cerides and remnant cholesterol, indicate higher CVD

risk for the COCP users. Recent evidence from Mendel-

ian randomization analyses suggest that higher levels of tri-

glyceride-rich lipoproteins and remnant cholesterol

cause CVD.41–43 Over recent decades, changes to

COCP formulas have aimed at maximizing their

HDL-cholesterol-elevating properties whilst minimizing

other risks. Previous studies have reported that users of

Figure 3. Correlation between cross-sectional and longitudinal metabolic associations with the use of combined oral contraceptive pills (COCPs). The

correspondence of cross-sectional associations with starting and stopping the use of COCPs is shown on the left and right panels, respectively. Each

point represents a single metabolic measure. Horizontal and vertical grey lines denote 95% confidence intervals for the cross-sectional and longitu-

dinal associations, respectively. The grey shaded areas serve to guide the eye for the slope. A linear fit of the overall correspondence summarize the

match between cross-sectional and longitudinal associations, with R2 denoting the goodness of fit. A slope of 61 and R2¼ 1 would strongly support

the causal effects of COCP use on the metabolic measures. Abbreviations are as for Figure 1.
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second-generation pills had no change or decreased HDL

cholesterol, whereas users of third- or newer-generation

pills displayed increased HDL cholesterol.11,14,17,18,37–39

Here, the HDL subclass data revealed that both second-

and third/newer-generation pills increased medium and

small HDL subclasses in a similar manner, but only the

third/newer-generation products resulted in robust in-

creases in larger HDL subclasses. The concomitant in-

creases in the smaller HDL subclasses for the second- and

third-generation pills are in line with previous studies.11,37

Although third- and newer-generation COCPs result in

higher levels of HDL cholesterol than the second gener-

ation, mostly due to increases in the larger HDL subclasses,

these newer preparations displayed 50–80% higher risk of

venous thrombosis than the second generation, and have

previously been shown to convey similar risk of myocar-

dial infraction and ischemic stroke to older prepar-

ations.5,6,22 The lack of difference in ischemic heart disease

when comparing newer- to older-generation COCPs, des-

pite higher HDL cholesterol levels, is consistent with recent

randomized controlled trials and Mendelian randomiza-

tion studies that suggest that HDL cholesterol is not caus-

ally protective of CVD.42,44,45 In fact, recent findings

suggest that high circulating HDL cholesterol may also be

related to an increased risk for CVD.46

The metabolomics profiling allowed an overall charac-

terization of the circulating fatty acids. The use of COCPs

increased circulating lipoprotein lipids, which is also re-

flected in the increased fatty acid concentrations.

However, the relation between COCP use and the fatty

acid balance revealed a mixed set of associations, with

mostly adverse aberrations in terms of CVD risk.30 The use

of COCPs was adversely associated with decreased propor-

tion of omega-6 fatty acids and increased proportions of

monounsaturated and saturated fatty acids.30,36

Nevertheless, increased proportion of docosahexaenoic

acid, an omega-3 fatty acid, suggests a favourable link be-

tween the use of COCPs and the risk for CVD.30 The po-

tential causal role of these circulating fatty acids in the

CVD pathogenesis remains elusive.30,47

Recent metabolic profiling studies have linked multiple

circulating amino acids and other small molecules with the

risk of CVD, type 2 diabetes and all-cause mortal-

ity.25,28,30,48 Use of COCPs appears to perturb multiple

amino acid pathways. The association pattern of COCP

use with branched-chain and aromatic amino acids seems

unique, as it appears not to follow the consistent elevations

previously seen with obesity and insulin resistance.25,29

There have been small studies (fewer than 30 COCP users)

assessing the metabolic associations of COCP use with

amino acids.49–53 Consistently with our findings, these

much smaller studies have generally found COCP use

associated with lower levels of glycine and tyrosine.

However, the previous results for other amino acids appear

to be inconsistent. Our cross-sectional and longitudinal

analyses both suggest that the use of COCPs results in

increased phenylalanine and decreased tyrosine levels. The

opposite direction of effect is surprising given their intrin-

sically positively linked metabolism. However, these find-

ings appear robust, since the association magnitudes are

notable and consistent across three independent cohorts.

This divergent pattern of increased phenylalanine and

decreased tyrosine has been seen previously in patients

with chronic kidney diseases.54,55 As the kidneys are the

chief source of circulating tyrosine in a fasting state,56 a

possible impairment of phenylalanine conversion to tyro-

sine in the kidneys has been suggested.54,55 The current ob-

servation that COCP use is associated with increased

creatinine concentrations is supported by a trial in which

all subtypes of COCPs were associated with higher levels

of creatinine.57 In Finnish women of similar age, higher

serum creatinine in the COCP users was thus associated

with lower estimated glomerular filtration rate58—a

marker of decreased kidney function and higher risk of

CVD mortality.59 We also found that the use of COCPs

was adversely associated with circulating albumin—a

marker that has previously been linked to the risk of dia-

betic renal diseases, CVD and all-cause mortality.28,48

Overall, some of the metabolic changes in response to the

use of COCPs, including increased phenylalanine and

decreased tyrosine, higher creatinine and lower albumin,

resemble metabolic characteristics of impaired kidney

function. In addition, the increased concentrations of mul-

tiple inflammatory markers, including CRP and glycopro-

tein acetyls, point towards a possibility of elevated

inflammation in the COCP users (more detailed discussion

given in Supplementary Appendix 1, available as

Supplementary data at IJE online). Mendelian randomiza-

tion analyses have argued against the adverse causal role of

higher CRP for CVD60,61 and challenged the cardio-

protective role of vitamin D.62,63 However, the potential

causal role of other biomarkers remains currently unclear.

Studies that have reported increased CVD risk in COCP

users have mostly studied women at reproductive age, dur-

ing which the absolute risk for CVD events is generally low

e.g. approximately two incidences of arterial thrombosis

and seven incidences of venous thrombosis per 10 000

person-years in current users of third-generation

COCPs.3,6 Given the already evident causal role of mul-

tiple metabolic measures shown here to be adversely af-

fected by COCP, a life-time accumulation of CVD risk is

anticipated.64 Although it is reassuring to see that the

metabolic effects of long-term COCP use are normalized

upon stopping, it is currently unclear how much temporary
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disruptions in circulating CVD risk factors can affect the

lifelong risk for CVD. Due to the widespread use of

COCPs, often for decades, further studies are needed to

evaluate the potential effects of accumulative exposure of

COCP use at reproductive age on the subsequent CVD risk

at older age.

None of the POC methods (pills or IUSs) was robustly

associated with metabolic perturbations. These findings

suggest that ethinylestradiol (the most common oestrogen

used in COCPs),9 alone or in interaction with progestin, is

largely responsible for the broad metabolic effects of

COCP use. This is supported by the recent findings that

COCPs with higher dose of ethinylestradiol are associated

with higher risk of venous thrombosis, thrombotic stroke

and myocardial infarction.5,6 Furthermore, administration

of ethinylestradiol has been shown to affect various circu-

lating lipid levels, hepatic proteins and clotting

factors.15,65

The strengths of this study include extensive molecular

profiling of systemic metabolism with replication across

three large population-based cohorts. This is thereby the

first comprehensive molecular characterization of the ef-

fects of COCP use. Longitudinal metabolomics data in re-

lation to starting and stopping the use of COCPs provided

strong evidence that the use of COCPs is the direct cause

of the systemic metabolic changes. We were able to adjust

for a wide range of relevant confounders, but we acknow-

ledge that we were not able to adjust for confounding by

indications for why a woman uses contraception or a par-

ticular type of contraception. However, we anticipate the

metabolic effects of such indications to be very small in

comparison to the strong perturbations observed.

Given the infeasibility of randomizing women to use

hormonal contraception or placebo, and the difficulty of

randomizing to hormonal or non-hormonal contraception,

evidence for causal effects in this field requires well-

conducted observational studies. Also, using Mendelian

randomization analysis to assess the causal effects of oes-

trogen and progestin is hampered, since identification of

genetic variants for oestrogen and progesterone has to date

proved elusive.66,67 Furthermore, if such variants were

identified, they might not mimic the effects of taking ex-

ogenous hormones. The presented longitudinal study set-

ting is therefore the best realistically available way to infer

causality.

In conclusion, our comprehensive profiling of molecular

markers of systemic metabolism showed that starting the

use of COCPs perturbs multiple metabolic pathways with

pronounced changes predominantly associated with higher

cardiometabolic risk. Persistent use of COCPs did not ap-

pear to accumulate metabolic risk over a 6-year period and

the discontinuation normalized the metabolic profile. The

use of POCs had only minor effects on the circulating

metabolic profile, suggesting that the effects of the COCP

use are largely due to ethinylestradiol. Whilst we recognize

that a wide range of considerations are important when

contemplating whether and what type of contraception to

use, and that pregnancy itself has adverse health conse-

quences,68 we feel that understanding the extensive meta-

bolic effects of hormonal contraception is one of the key

aspects that women and their health-care providers should

be aware when making these decisions. Our findings also

provide extra means to optimize the type of contraception

on the basis of the individual risk profile.

Supplementary Data

Supplementary data are available at IJE online.
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