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Abstract 
 
A new method is introduced for analysing deuteron spinlattice relaxation in 
molecular systems with a broad distribution of activation energies and correlation 
times. In such samples the magnetization recovery is strongly non-exponential but can 
be fitted quite accurately by three exponentials. The considered system may consist of 
molecular groups with different mobility. For each group a Gaussian distribution of 
the activation energy is introduced. By assuming for every subsystem three 
parameters: the mean activation energy E0, the distribution width σ and the pre-
exponential factor τ0 for the Arrhenius equation defining the correlation time, the 
relaxation rate is calculated for every part of the distribution. Experimentbased 
limiting values allow the grouping of the rates into three classes. For each class the 
relaxation rate and weight is calculated and compared with experiment. The 
parameters E0, σ and τ0 are determined iteratively by repeating the whole cycle many 
times. The temperature dependence of the deuteron relaxation was observed in three 
samples containing CD3OH (200% and 100% loading) and CD3OD (200 %) in NaX 
zeolite and analysed by the described method between 20 K and 170 K. The obtained 
parameters, equal for all the three samples, characterize the methyl and hydroxyl 
mobilities of the methanol molecules at two different locations. 
 
 
 
 
Key words: NMR relaxation; deuteron relaxation; methanol in zeolite; activation 
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1. Introduction 

 
   Industrial use of zeolites as catalysts has inspired an enormous number of studies on 
their properties. Usage of guest molecules and investigation of their adsorption at 
molecular level is one of the ways to characterize zeolites. Guesthost interactions 
have important implications and stimulate investigation in this field [1]. A recent 
review by Buntkovsky et al. [2] provides an excellent introduction to the subject of 
mesoporous silica materials as studied by several methods.  
   One guest molecule of great interest is methanol. Its adsorption in NaX zeolite at 
low temperatures was studied experimentally by inelastic neutron scattering [3]. 
Molecular dynamics methods were applied to study the diffusion of methanol in 
faujasites [4, 5]. Quantum chemistry and DFT methods were used to study conditions 
affecting the adsorption of methanol in faujasites [6, 7]. In addition many different 
experimental methods have been used to study quest molecules including various 
neutron and X-ray diffraction, diffusion, optical, infrared and NMR techniques. The 
most often used NMR methods are the line-shape analysis of 2H and 15N NMR 
spectra, MAS NMR and NMR diffusion experiments [2]. Information has been 
obtained about structural features and mobilities of the framework and of various 
guest atoms and molecules. 
   To some extent the analysis of the experimental data has been complicated by the 
fact that although the position of the molecule in zeolite may be known, its 
surroundings is not known in detail. In a recent work on the mobility of methanold4 
in NaX the high temperature deuteron relaxation and deuteron spectra down to low 
temperatures were studied [8]. It was observed that to explain experimental results on 
spectra and relaxation in detail motional activation energies have to show reasonably 
broad distributions. These distributions originate from random distribution of the 
framework aluminium atoms and from differences in the surroundings of the guest 
molecules and their binding energies. Therefore e.g. the NMR spectral shape may be 
observed to change over a wide temperature range. Consequently, the determination 
of the activation energy requires special approaches. Such methods have been 
presented for spectral analysis [911]. 
   However, there are not many methods for analysing spinlattice relaxation under 
similar conditions. The so-called stretched exponent method using exp[(t/)], with 
and  as parameters, describes most likely the magnetization recovery quite well. 
Unfortunately, it is not known how the dynamic parameters like the activation energy 
and correlation time depend on and . Cereghetti et al. [10] showed that the 
distribution of the activation energies can explain very well the nonexponential 
relaxation and lead to numerical values for the distribution width and correlation 
times. However, even their method has its limitations, in the presented form it is not 
applicable to samples, where for example two CD3 groups are clearly at 
nonequivalent positions. In such a case the description of the activation energies 
requires two distributions centered about two different mean activation energies. 
Since our samples contain, in addition to methyl groups at two clearly nonequivalent 
positions, also hydroxyl groups at two nonequivalent positions, we have to resort to a 
different method.  
   Our approach can be used for analysing deuteron spinlattice relaxation in the 
presence of several clearly nonequivalent molecular groups, each having their own 
activation energy distribution. For that end we must be able to describe the 
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magnetization recovery quite accurately. This can be done by fitting a number of 
exponentials, with adjustable weights and decay rates, to the experimental points. 
Under quite general conditions three exponentials lead to a sufficient accuracy, 
although the use of four or even five exponentials is possible. The obtained weights 
and decay rates serve as characteristic quantities, which can be calculated by 
introducing a Gaussian distribution for the activation energy of each molecular group 
with the mean activation energy E0 and distribution width . When the corresponding 
pre-exponential factor 0 is defined, the Arrhenius equation yields the motional 
correlation time, and then the relaxation rate for a certain part of the distribution can 
be calculated. Such individual rates are classified into three classes by using as 
separating quantities the experimentbased values (RfRm)1/2 and (RmRs)

1/2, where for 
example Rf is the experimentally observed relaxation rate of the fast decaying 
exponential. For each class we can calculate the initial relaxation rate and the 
corresponding weight. These are compared with corresponding experimental data 
leading, after several steps of adjusting the parameters E0,  and 0, to an optimal fit 
and the estimate of these motional parameters.  
   It is important to realise that although the described method is meant for analysing 
relaxation data, the obtained motional parameters can also be used to describe the 
temperature dependence of spectra.   
   We start the theoretical part by describing the distribution, the calculation of the 
relaxation rate for a certain part of the distribution, the choice of the limiting values 
used in separating the rates into three classes, and the calculation of the initial 
relaxation rate and relative weight for each class. The method is then extended to 
samples which contain many different molecular groups. After a short description of 
the samples and experimental methods, the experimental results are shown for our 
three samples of NaX(1.3) zeolite containing different amounts of CD3OD and 
CD3OH molecules. Calculated results are compared with the experimental data and 
the relation of the obtained motional parameters to various molecular groups is 
discussed. Finally in Conclusion some features are discussed, which were not 
included in the simulations but which can be taken into account in future studies. 
     
 
2. Calculation of the relaxation rate  
 

2.1. One molecular group, for example CD3 
 
   All the methyl groups are assumed to be bonded similarly but small differences in 
the surroundings cause changes for example in the activation energy leading to a 
distribution.  Let us assume the mean activation energy E0 around which the possible 
activation energies Ek = E0 + Ek are distributed. Each Ek has the probability (or 
weight) wk, which is obtained from the Gaussian distribution 
 

wk = C exp(Ek
2/22)       (1) 

 
where  is the distribution width. In the calculations we used the values Ek = k/20, 
k = 0, ±1, ±2, …, ±60. When all the 121 different wk values are summed up, the result 

must be 1. Thus C = 1/ k exp(Ek
2/22). Then we calculate the correlation times 

          
k = 0 exp[(E0 + Ek)/RT]       (2) 



5 
 

 
and the corresponding relaxation rates (for a polycrystalline sample) 
 

Rk = A[J(k, ) + 4J(k, 20)      (3) 
 
where the spectral density functions are defined by J(k, ) = k/[1+2k

2]. The 
multiplier A depends on the relaxation model. For CD3, reorienting about its threefold 
axis, it equals Q

2/15 [12, 13], where Q = e2qQ/£ = 2Q. This efficiency factor is 
consistent with the fact that rotation about the methyl axis leaves a part of the 
quadrupole interaction time independent. In the 120o rotations of this motion the CD 
bonds jump between tetrahedral directions, which make the angle 109.5o with each 
other and also with the methyl axis. In our calculations we used the value A = Q

2/15. 
This is slightly smaller than A = 3Q

2/40 representing isotropic motion, which makes 
the quadrupole interaction completely time dependent.  
   Finally the total relaxation rate, in the rather rare case of fast spin diffusion, is 
obtained by adding all the Rk values 
 

R = kwk Rk = k wk A[J(k, ) + 4J(k, 20)/ k wk   (4) 
 

Spin diffusion between deuterons in solids at low temperatures is often slower than 
the individual rates Rk, therefore the relaxation appears nonexponential and the 
weighted result (4) fails to describe the magnetization recovery for longer times. In 
any case Eq. (4) represents the initial relaxation rate Ri. This can be compared with 
the experimentally observed initial relaxation rate.  
   The part of the quadrupole interaction, which remains timeindependent under the 
rotation about the methyl axis, becomes at least partially timedependent due to a 
motion of the methyl axis. Let the correlation times describing the axis jumping and 
reorientation about the axis bek’ and k, respectively. If k’ >> k and the axis jumps 
between two tetrahedral orientations, then the additional relaxation rate is obtained 
from Eqs. (34) when A = Q

2/180 and k replaced by k’. If the additional motion 
makes the remaining quadrupole interaction totally timedependent, then A = 
Q

2/120.  
    When the mobility of the hydroxyl deuteron is considered, it might happen that the 
OD vector does not jump between tetrahedral orientations but by smaller angles. If 
the possible orientations (at least three of them) lie on a cone making the angle with 
the cone axis, the relaxation rate for randomly oriented OD groups is again obtained 
from Eqs. (34) when the corresponding correlation time ljis used and A replaced by 
[13, 14] 
 

A = (Q
2/160)(36 sin2 cos2 + 9 sin4)     (5) 

 
    
2.2. Use of many exponentials 
 
   In practice nonexponential relaxation is often described by a sum of two or three 
exponentials with different time constants and relative weights. In the present study 
the magnetization recovery will be approximated by three exponentials. This 
procedure can be supported by the following reasoning. When the nonexponentiality 
is very pronounced, then even two exponentials do not lead to a satisfactory 
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description. Actually there is in principle no upper limit for the number of 
exponentials. Especially, if the span of the relaxation rates (3) of individual 
magnetizations representing different k values of the distribution extends over many 
orders of magnitude, the need for more than three exponentials may grow. On the 
other hand in practice four exponentials may be too many because then small errors of 
experimental points lead easily to large scatter in the values of individual rates and 
weights, which makes subsequent consideration of the obtained results difficult and 
prevents strict conclusions. Therefore we chose to use three exponentials to simulate 
the observed data.  
   To our knowledge there exists no model yet which could compare the experimental 
time constants (or the corresponding relaxation rates, which are inverses of the time 
constants) with a detailed theory in such a complicated case. To make use of the 
described model we have to select by some method from the individual rates (3) those 
which contribute to each one of the three experimentally observed components. For 
this purpose we have not found any theoretical principle but consider the use of the 
geometric mean of the experimentally observed relaxation rates as a good choice. 
When the rates of the fast, medium and slow components are called Rf, Rm and Rs, 
respectively, the limiting values are Lfm  = (Rf Rm)1/2 and Lms  = (Rm Rs)

1/2. These 
values are first calculated from experimental rates for each temperature and then 
continuous curves are worked out, which fit them as closely as possible.  
   When we simulate for example the experimentally observed medium component by 
this method, we select from the individual relaxation rates only those, which obey the 
relation Lfm > Rk’ > Lms (for these selected k values we use k’), sum then up the 

weighted rates wk’Rk’, and finally divide this sum by k’ wk’ to calculate the 
corresponding initial relaxation rate Rim (the weights wk of the excluded rates are 
taken equal to zero).  
  
  
         
2.3. Several nonequivalent groups 
 
   The sample may contain methyl and OD groups, which are differently bonded (for 
example CD3OD in NaX). Then we have to assume for each nonequivalent group its 
own mean activation energy E0, the distribution width  and the pre-exponential 
factor 0. Furthermore, we have to introduce an additional weight wa, which depends 
on deuteron abundance. If  CD3OD molecules appear, with equal abundance, in two 
essentially nonequivalent sites in the sample, then the abundancedependent weights 
wa are 3/8, 3/8, 1/8 and 1/8 for the nonequivalent methyl and OD groups, respectively. 
The weight wk in Eq. (4) has then to be replaced by the product wk wa. In addition, a 
similar summation as that over k in Eq. (4) has to be worked out for all the four 
nonequivalent groups in order to obtain the initial relaxation rates. The selection of 
the individual relaxation rates into three categories is done by comparing them to the 
limiting values Lfm and Lms.  
    There are essentially two different methanol positions; those called I or horizontal 
are near the Na atoms and those in the positions II (called also vertical), which are 
hydrogen bonded via the hydroxyl deuteron to the oxygens of the zeolite framework 
[15]. It is reasonable to assume that both the positions I and II are equally occupied in 
CD3OHNaX (200%), which makes wa values equal to ½. Although in CD3OHNaX 
(100%) the positions II can be shown to be preferred, the experiments show that they 
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are not exclusively occupied. We therefore take the abundancedependent occupancy 
wa of the positions I as another parameter, which means that the corresponding 
occupancy for the positions II is 1  wa. 
   In Fig. 1 we show the deuteron magnetization recovery in CD3OHNaX (100%) 
after saturation at 30 K by using three different linear time scales. The solid curve is a 
threeexponential leastsquares fit to the experimental data, corresponding to the 
relaxation rates Rf = 174 s1, Rm = 17.5 s1 and Rs = 1.18 s1 and the respective 
weights 0.470, 0.335 and 0.195. The standard deviation for the rates is 9 s1, 1.5 s1 
and 0.10 s1, respectively, while that for the weights is 0.022. The curve is seen to 
follow the experimental data very closely. The relaxation rates define the three 
different time scales. The dashed curve is the threeexponential curve with the initial 
relaxation rates Rfi = 191 s1, Rmi = 23.5 s1 and Rsi = 2.00 s1 and practically the same 
weights. These rates and weights are based on the parameters of Table I, which were 
obtained by simulating the temperature dependence of the experimental relaxation 
rates and relative weights by the method described briefly above (to be described later 
on in more detail). It goes slightly higher than the experimental points showing that 
the calculated relaxation rates in Fig. 7 are slightly above the observed values at 30 K. 
The dotted curve is a really multiexponential curve, which was obtained from the data 
of Table I by calculating separately each partially recovered magnetization, 
corresponding to all the different values k of the activation energy distribution, as the 
function of the recovery time t and adding together these magnetizations (without any 
selection into three components). In principle this curve should give the best 
description of the experimental points and it really fits the experiment very well. 
When this curve is fitted with three exponentials, the following relaxation rates are 
obtained Rfn = 171 s1, Rmn = 15.6 s1 and Rsn = 0.913 s1 where the second subindex 
is used to distinguish these rates from the experimental ones. These rates should be 
nearer to the experimental rates than the calculated initial rates. Unfortunately the 
rates Rfn, Rmn and Rsn are much more difficult to calculate than the corresponding 
initial rates. 
   In principle the initial rates are expected to be somewhat larger than the 
experimental rates because in the case of nonexponential relaxation the initial rate is 
always larger than the rate at any later time. This argument is consistent for example 
with the ratio Rfi/Rf = 1.10. More reliable values for the ratio can be obtained by 
comparing the initial rates with those calculated from the multiexponential behaviour 
(dotted curve), since they are all based on the parameters of Table I. The results are 
Rfi/Rfn = 1.12, Rmi/Rmn = 1.50 and Rsi/Rsn = 2.19. The fact that the ratios are larger than 
1 probably causes some error, but it is not expected to cause significant error in the 
activation energies, which depend more on the temperature dependence than on the 
exact numerical values of the observed and calculated rates. It seems possible that this 
error can be corrected in future by dividing the calculated initial rate by the relevant 
ratio (for example Rfi/Rfn) before comparing with the experimental relaxation rate.  
 
 
3. Experimental 
 
   Zeolite NaX(1.3) (supplied by SigmaAldrich) was activated in situ in an NMR 
sample tube. The sample was first evacuated at room temperature for 30 minutes, and 
then the temperature was raised, at the rate of 5 K/min, to 700 K and kept there in 
vacuum for 1 h. The doses of CD3OD and CD3OH were sorbed into the zeolite up to 
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100% and 200% of the total coverage of Na+ ions. The doses were determined by 
controlling the methanol pressure to the accuracy of 100 Pa. The use of the standard 
preparation method, as described for example in [16], removes effectively any 
possible water. All the samples were sealed in 24 mm long glass tubes with the 
outside diameter 5 mm. We use for our NaX samples the following labels: Sample 1 
contains 200% of CD3OH, Sample 2 200% of CD3OD, and Sample 3 contains 100% 
of CD3OH. 
   The experiments were carried out at the deuteron resonance frequency 46 MHz with  
TECMAG Apollo spectrometer. The technical details are explained elsewhere [8].  
   Spinlattice relaxation below 170 K was studied by first saturating the deuteron 
magnetization by a sequence of /2 resonant pulses and observing then, after a 
variable time t, the partially recovered magnetization by the quadrupole echo [8]. The 
echo amplitude at maximum was taken proportional to the total deuteron 
magnetization. Above 170 K most measurements were done by observing the free 
induction signal and taking the total magnetization proportional to the integrated 
signal area over a certain time range after the dead time. The magnetization recovery 

was described by fitting, by the leastsquares method, the function MZ(t) = i 13 Mi 
[1 – exp(Ri t)] + c0 to the experimental points. The small parameter c0 takes into 
account that the saturation may not be perfect. The fitting procedure gives the three 
relaxation rates and magnetization amplitudes Mi, from which the relative weights are 
obtained as for example w1 = M1/(M1 + M2 + M3). 
 
 

4. Comparison with experiment and discussion 
 

4.1. CD3OHNaX (200 %) 
 
   We start with this sample since it contains no hydroxyl deuterons and its methanol 
groups can be assumed to occupy only two positions I and II. The experimentally 
observed recovery of the deuteron magnetization was fitted with a sum of three 
exponentials at each temperature for T < 140 K. The corresponding relaxation rates 
and weights are shown in Figs. 2 and 3, respectively. They were obtained by 
quadrupole echo measurements, only two points for T > 220 K were determined from 
FID. All the three rates vary smoothly with temperature; below 140 K they at first 
grow when T is lowered, then show a broad maximum and finally start to decrease 
slowly below 40 K. The relative weights show stronger variation with temperature. It 
is worth noticing that the extracted components are not in a one-to-one 
correspondence with either CD3(I)’s or CD3(II)’s, otherwise only two components 
could be extracted. This means that the distributions of the activation energies and 
correlation times are rather wide. Above 140 K the nonexponentiality of relaxation 
decreases and for T >150 K the magnetization recovery is exponential. The transition 
to exponential relaxation occurs about 25 K below the temperature TS = 169.5 K, 
above which the deuteron spectrum of Sample 2 was observed to show an intense 
narrow line [8]. At TS the methanols at positions I become free to move. Above TS the 
relaxation is clearly exponential.     
   To simulate these results with our model we assume that the surroundings of both 
the positions I and II have a statistical nature and, therefore, the activation energies of 
the CD3 groups are distributed around the two mean activation energies E0 within the 
range described by the corresponding distribution widths . For the calculation of the 
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correlation times we need to define the pre-exponential factors 0. Thus there are 
altogether six parameters. The abundancedependent weight for both positions is ½. 
The deuteron quadrupole frequency of all the CD3 groups was taken equal Q =160 
kHz. In order to make the individual rates (3) (corresponding to the 121 different k 
values) contribute to the relaxation rate of the selected component, we calculated the 
limiting values Lfm and Lms and fitted them with suitable mathematical functions (cf. 
Fig. 2). Then we gave starting values for the mentioned six parameters and calculated 
the initial relaxation rates Rfi, Rmi and Rsi and the relative weights wf, wm and ws as a 
function of temperature for 20 K < T < 140 K. The parameter values were changed 
and new rates and weights were calculated. In the later stages of the refinement we 
simulated, at each change of the parameters, also the relaxation results for Samples 2 
and 3 and the temperaturedependent amplitude of the rigid doublet in the spectrum 
of Sample 2.  Finally we ended up with the initial relaxation rates and weights shown 
in Figs. 2 and 3 for Sample 1. The corresponding parameter values are given in Table 
I. (If we were considering only this sample, the bestfit parameters would be 
somewhat different. Especially the activation energy of the methyls I would be 
somewhat reduced. However, we use the same parameters for all three samples and 
therefore had to make compromises.) Nevertheless, the agreement between the 
experimental and simulated rates and weights is quite satisfactory.  
   As mentioned above, the relaxation becomes exponential above 150 K. The 
exponentiality requires always some kind of spin diffusion, which is faster than the 
relaxation rate. In our samples the normal spin diffusion via the magnetic dipolar 
interaction between the deuterons of neighbouring methyl groups is nearly 
nonexistent. However, a mechanism equivalent to spin diffusion can be found in the 
motion of methanols. Above TS the methanols near the positions I are no more strictly 
localized but start to move. Above 140 K the corresponding frequency is probably 
larger than 1/T1 and in such a case methyl groups can experience many different 
activation energies and correspondingly different relaxation rates during the recovery 
towards equilibrium, leading to an averaging of the observed relaxation rate. Thus no 
selection of the individual relaxation rates is needed, instead we can compare the 
initial relaxation rate (4) with experiment. A short piece of a curve, representing the 
initial relaxation rate as calculated from the parameters of Table I, is shown in Fig. 2. 
It agrees rather well with the few experimental points between 150 K and 170 K but 
deviates clearly from experiment above TS, showing that a different process starts to 
dominate the relaxation [8].  
     In our previous study the faster reorienting methyl groups were concluded to 
belong to the methanols in the positions II by considering the bonding of methanols in 
the two positions [8]. These methanols are hydrogenbonded via the hydroxyl 
hydrogen to a framework oxygen of the zeolite. Experimental results on the 
temperature dependence of the translationtoreorientation transition, observable for 
example in the deuteron relaxation of methanols in zeolites at higher temperatures, 
show that the positions II are also preferably occupied by methanols. This preferential 
occupation is also supported by the experimental deuteron spectra of NaX with the 
100 % content of CD3OH or CD3OD, which show a more intense motionally 
narrowed component than the corresponding 200 % samples. 
   The mean activation energy 2.7 kJ/mol for the methyl groups of methanols in the 
positions II (later on called methyl groups II) means that these methyls are undergoing 
120o rotational jumps at a rate which exceeds the deuteron quadrupole coupling near 
and above 20 K. The corresponding tunnelling frequency is of the magnitude 
200300 MHz below 20 K and in such a case one might expect tunnelling sidebands 
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in the deuteron spectrum [17, 18]. The sidebands were not observed, which provides 
another proof for fast motion, because the sidebands can be observed only in the 
presence of methyl rotation slower than the doublet splitting. 
    In simulations we used always Eq. (4) with A = Q

2/15, which includes only the 
effect of the of 120o rotations about the methyl axis. Some earlier results on deuteron 
spectrum suggest that a part of the faster reorienting methyl groups are moving more 
freely so that also the methyl axis is changing direction. Such a motion would open a 
new relaxation channel with the maximum efficiency A = Q

2/120. But because of 
this rather small efficiency and the necessity to introduce three additional motional 
parameters into simulations, this relaxation channel was ignored.  
   The faster reorienting methyl groups dominate the relaxation rate of the fast 
component below 50 K and contribute also to other components with variable weight, 
for example they dominate the medium component practically in the entire 
temperature range of the experiments. 
    The mean activation energy of the more slowly reorienting CD3’s, 6.4 kJ/mole, is 
so large that these methyls give rise to a rigid doublet in the spectrum at low 
temperatures. Their contribution to the relaxation rate of the fast component reaches 
maximum near 70 K. Thus with rising temperature they can be expected to exhibit the 
rotationnarrowed doublet with an increasing weight (with the doublet separation 
reduced to 1/3 of the rigidspectrum value) at temperatures roughly above 40 K, in a 
good agreement with the experimental spectra for Sample 2 (Fig. 6). 
 
 

4.2. CD3ODNaX (200 %) 
 
   This sample is discussed next because it is very similar to the previous one, only the 
hydroxyl protons are replaced by deuterons. The experimental data were obtained by 
the quadrupole echo below 170 K and by FID above it. The recovery of its deuteron 
magnetization was analysed by a sum of three exponentials with adjustable relaxation 
rates and relative weights. The results are shown in Figs.4 and 5. In principle the 
relaxation rates below 140 K behave in the same way as those of Sample 1, but the 
temperature dependence of the rates of the medium and slow components is stronger 
now. Another difference is the much smaller values for the rates of the medium and 
slow components. Also the temperature dependence of the weights departs from those 
in Figs.3. Still another difference is the fact that three exponentials are required to 
describe the nonexponential magnetization recovery between 140 K and 170 K. Even 
at temperatures few degrees above TS some methanols remain localized so that 
threeexponential relaxation is still observed, most likely due to a distribution of the 
binding strength. Nevertheless, at still higher temperatures the relaxation, as measured 
from the amplitude of the free induction signal, becomes biexponential as reported 
already in [8] and also shown in Fig.4. The lower rates are believed to describe 
methyl deuterons and the higher rates the hydroxyl deuterons. The lower curve agrees 
reasonably with the rates of Sample 1 just above TS but starts to deviate from them at 
higher temperatures.  
   To make the individual magnetizations contribute to the right component, the 
limiting values Lfm and Lms were calculated and fitted with mathematical functions  
(Fig. 4). For the motional parameters of the methyl groups I and II we use the same 
values of Table I, which were already used to describe the CD3OHNaX (200 %) 
data.  



11 
 

   For the OD deuterons we have not yet defined any motional parameters. The 
deuteron spectra of Sample 2 were first interpreted to be consistent with the 
quadrupole frequency Q = 205 kHz at 20 K. Above 50 K the OD(I) deuterons start to 
contribute to the motionally narrowed doublet, with the doublet splitting roughly one 
third of that of the rigid doublet, the quadrupole frequency being 150 kHz [8]. In the 
simulations we used Q = Q/2 = 205 kHz, although newer experiments for example 
on CD3ODNaX (100 %) suggest that Q could be somewhat smaller. Simulated 
curves for smaller Q would probably be somewhat modified, still recalculations were 
not considered necessary.  
   The described behaviour needs two different motions, limited jumps to reduce Q 
from 205 kHz to 150 kHz below 50 K and a reorientation of the OD vector similar to 
that of a CD vector in methyl reorientations about the methyl axis above 50 K. The 
former motion is qualitatively equivalent to a motion of the OD vector on a cone as 
described above. The corresponding relaxation rate for the fraction k of the activation 
energy distribution is obtained from Eqs. (3) and (5) 
 
   Rk(lj) = E wk (Q

2/15)[J(lj, ) + 4J(lj, 20)/ k wk   (6) 
 
where the efficiency factor E equals E = (3/32)(36sin2cos2 + 9sin4). The 
correlation times lim and r, the former describing the motion on the cone and the 
latter methyllike reorientations, define the combined correlation time lj = limr/(lim 

+ r), which was adjusted so that the maximum of (6) appears near 56 K. We used the 
value E = 0.66 in the simulations, which leads to the value 29o for the angle .  
   The motion of the OD vector on the described cone reduces also the spectral 
splitting. When the effective quadrupole frequency is assumed to follow the 
expression Qeff = (1/2)(3cos2 – 1)Q and Q is taken equal to 205 kHz, the effective 
frequency becomes 133 kHz. This is of the same magnitude as the observed frequency 
150 kHz.  
   The other motion is the 120o rotations of the OD vectors about the rotation axis, 
analogously to the deuteron motion in methyl groups. The resulting relaxation rate 
can thus be described by  
     

Rk(rot) = (1E) wk (Q
2/15)[J(r, ) + 4J(r, 20)/ k wk  (7) 

 
The factor 1E = 0.34 takes into account that a major part of the total relaxation 
efficiency was already consumed by limited jumps and only the remaining part is 
available for the 120o rotations above 60 K. The correlation time r was chosen so that 
the maximum contribution of (7) appears near 100 K, contributing there mainly to the 
relaxation of the fast component. Thus the total contribution of the OD(I) deuterons to 
the relaxation rate equals the sum of (6) and (7) Rk(ODI) = Rk(lj) + Rk(rot).  
   The spectral area of Pake doublets in Sample 2 equals 0.625 below 20 K 
corresponding to the combined contributions of  OD(I), OD(II) and  CD3(I). 
Experimental spectra show that this combined weight starts to decrease above 30 K 
[8]. When the parameters of Table I are used for the deuterons of OD(I) and CD3(I), 
the combined weight of the Pake doublets can be calculated as a function of 
temperature. In Fig. 6 the continuous curve represents the spectral area of the OD(I), 
OD(II) and CD3(I) contributions, integrated over the correlation time distributions for 
the correlation times longer than 106 s, which was taken as the condition for the line 
narrowing in this case. The continuous curve was calculated from the results of Table 
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I without any additional parameters. The combined contribution of OD(I) and OD(II) 
is shown by the dashed line. Above 70 K only the spectrum of OD(II) remains rigid 
corresponding to the Pake spectral area 0.125. The simulated results agree very well 
with experiment.  
   The deuterons OD(II) are believed to be highly hindered in the entire temperature 
range of our experiments. We tried two models: a) a temperatureindependent 
relaxation rate with a distribution and b) Eq. (6) with the assumption that the jump 
angle of the OD vector about its equilibrium position increases with temperature 
from a small value towards  = 70.5 o (corresponding to the methyl geometry). Both 
the approaches a) and b) lead roughly to equally good fits with experiment. Finally 
the choice a) was adopted and the relaxation rates were calculated from the equation 
Rk(ODII ) = R0 exp(Ek) with R0 = 49.8 s1. The corresponding weights were 
calculated from the Gaussian distribution with the mean value E0 = 9.62 and the width 
1.80, both dimensionless quantities. The simulated curves for the relaxation rates and 
weights, as functions of temperature for 20 K < T < 140 K, are shown in Figs. 4 and 5, 
and the corresponding parameters in Table I. The overall agreement with 
experimental values is rather good, largest deviations appearing in the relaxation rate 
of the medium component and in the lowtemperature weights.  
   In Sample 1 an exponential relaxation was observed above 150 K. Because in 
Sample 2 the relaxation is biexponential above 170 K, one would analogously expect 
a biexponential relaxation soon above 150 K in Sample 2. It is difficult to imagine 
that the methyl motions in CD3OD and CD3OH would differ essentially from each 
other. Therefore the appearance of three exponentials between 150 K and 170 K is 
probably related to the presence of hydroxyl deuterons in Sample 2, especially to 
those of the more strongly bonded methanols in the positions II. Actually we 
extrapolated the simulated curves in Figs. 4 and 5 to temperatures 140 K < T <170 K 
and obtained rather good fits with experiment. This shows that the same motions as 
below 140 K are still dominant. The fact that the experimental results for the rates of 
the medium and slow component and the weight of the slow component are slightly 
larger than the extrapolated curves just below 170 K might be an indication of another 
relaxation process, but it might also be caused by a small error in the extrapolated part 
of the limiting curves Lfm and Lms.  
   In simulations we excluded such individual relaxation rates Rk (cf. Eq. (3)), which 
were smaller than a certain lower limit. This exclusion can be justified by the fact that 
experimentally such magnetizations, which relax much more slowly than the 
repetition rate of the experiment, are not observed at all. The limit was set to about 
one tenth of the relaxation rate of the slow component, which means 0.1 s1 for the 
samples 1 and 3 and 104 s for the sample 2. Therefore, the weights had to be 
renormalized at low temperatures, which leads to somewhat different temperature 
dependence below 25 K in Figs. 4 and 5.     
   It is somewhat surprising that although we used the same motional parameters for 
the CD3(I)’s and CD3(II)’s as for the sample 1, the calculated rates for CD3ODNaX 
(200 %) are so much shifted towards lower values. Physically the slower relaxation 
relates to the hydroxyl deuterons, which extend the span of individual relaxation rates 
towards lower values and thus also the relaxation rates of the medium and slow 
component become smaller than in CD3OHNaX (200 %). Therefore the limiting 
values Lfm and Lms are lowered, which causes a different selection of the individual 
magnetizations to the three components and consequently to the reduced calculated 
values of Rm and Rs. 
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4.3. CD3OHNaX (100 %) 
  
      All the experiments were carried out by observing the quadrupole echo, with the 
exception of the four highesttemperature points for T > 200 K, which were 
determined from the FID signal. The experimentally observed relaxation rates and 
corresponding weights are shown for Sample 3 in Figs. 7 and 8. They are quite similar 
to those of Sample 1, also above TS. The calculated limiting values Lfm and Lms are 
shown as dashed curves. The simulation of these data by our method is based on the 
parameters given in Table I. The only new parameter is the relative weight of the 
methanol molecules in positions I, wa, and in positions II, 1 wa. The calculated 
results are shown in Figs. 7 and 8 for 20 K < T < 140 K. It turned out that the best fit 
was obtained with wa = 0.25. This parameter influences strongly the temperature 
dependence of the weight of the fast relaxing component, shown as the topmost figure 
of Figs. 8. Because the obtained value is smaller than 0.5, the methanol groups should 
occupy preferably the positions II. This agrees reasonably well with the spectral 
amplitudes for CD3ODNaX (100 %) at low temperatures, which lead to wa = 0.15. 
   In spite of the careful preparation of the samples as described in Experimental, there 
may be some uncertainty in the methanol concentration. If for example the CD3OH 
content of Sample 1 were 15 % smaller than the claimed value 200 % (=  twice the 
number of the Na+ ions) and if the reduction would happen only in the occupation of 
the positions I, then wa of Sample 1 would equal 0.41. This is not so far from the 
relaxationbased value wa = 0.25 for Sample 3 and may account at least partly for the 
similarity of the experimental data for Samples 1 and 3. 
   To explain the exponential relaxation of Sample 3 between 150 K and 170 K, we 
calculated the initial relaxation rate according to Eq. (4) by using the parameters of 
Table I and wa = 0.25. The results are presented in Fig. 7 by a short piece of a curve, 
which fits well the few experimental points for this temperature range. 
   In addition to bonding to the positions I and II, methanol molecules may be also 
bonded to other methanols by hydrogen bonds, forming for example clusters [15]. 
However, such bonding and clusters, especially trimers, are expected in the present 
samples only above TS = 170 K, where the methanols near positions I are no more 
localized [8]. 
 
 
5. Conclusion 
 
   The presented method includes two approximations, (a) the totally nonexponential 
relaxation was described with three exponentials and (b) the calculated relaxation 
rates for the fast, medium and slow components are initial relaxation rates and not 
normal ones obtained by fitting the nonexponential relaxation of each component by 
one exponential. The first approximation, though not valid in principle, is practically 
correct because three exponentials described all our results very well. Even the second 
approximation should not be of major importance since the simulated curves agree 
quite reasonably with most experimental results for relaxation and spectra. 
Furthermore, we are mainly interested in the activation energies, which depend more 
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strongly on the temperature dependence of the observed and calculated rates than on 
the exact numerical values of the rates. In future it may be possible to correct the 
initial rates before comparison with the experimental ones.  
   The relaxation processes described above depend on many parameters; each of the 
four basically nonequivalent motions has their own central activation energy E0, 
distribution width  and the pre-exponential factor 0. Furthermore, we have 
introduced the efficiency factors 0.66 for OD(I)’s of Sample 2 and the 
abundancedependent parameter wa for Sample 3. Therefore we cannot claim that the 
presented curves provide the final, exact explanation. Actually comparable fits were 
obtained also with some other values of the parameters, but those in Table I are based 
on practically the smallest possible number of parameters and agree with the main 
features of the spectra. In addition, instead of one curve presenting the observed 
relaxation rates as a function of temperature (the usual case), we now have three such 
curves and two additional curves representing the relative weights for each of our 
three samples (the third weight is redundant because the sum of weights equals 1), 
which altogether means 15 curves. Thus, there is only about one parameter per a 
curve, and therefore the reached results can be considered as quite successful. 
   There are also some other factors which were ignored in simulations but may still be 
important under some conditions. In general, these features could be taken into 
account, but they would unavoidably add to the number of required parameters, and 
therefore they were ignored. For example we did not take into account the motion of 
the methyl group axis, which seems to be present already at 25 K in the motion of the 
faster reorienting methyl groups. Another simplification is the use of constant values 
for the activation energies. Quite often the apparent activation energies are observed 
to become smaller at lower temperatures and incoherent tunnelling may make the 
correlation time even practically temperature independent [1921]. This is especially 
true for spinlattice relaxation in carboxylic acid dimers at low temperatures [21 and 
references therein]. Unfortunately, the same relaxation model is not applicable in our 
samples. If these effects could be properly included in the model, the theoretical 
curves would no doubt follow experimental curves more closely, but at the expense of 
some additional parameters. 
   Still another factor is the effect of a tunnel frequency t much larger than the 
resonance frequency 0. The activation energy 2.7 kJ/mol means that the tunnelling 
frequency of the methyl groups II is expected to become larger than 0 somewhere 
near 40 K and it increases towards 200300 MHz when temperature is lowered. 
Although such a large tunnelling splitting does not affect the deuteron spectrum when 
the frequency of the methyl reorientation 1/c is much larger than the quadrupole 
coupling frequency Q, it can alter the relaxation, at least of those CD3’s which tunnel 
and rotate only about the methyl axis at low temperatures. Deuteron relaxation in such 
a case was thoroughly discussed in [22]. The methyl groups at the E species levels 
relax still roughly at the rate (4), because their relaxation is dominated by such 
transitions, which do not change the tunnelling energy. However, the methyl groups at 
the A levels relax only via transitions to the E levels, which change also the tunnelling 
energy. Therefore, at least a part of the A level magnetization of the methyl groups II 
should relax at a reduced rate below 30 K, which is approximately obtained from that 
of the E level magnetization via multiplication by the (0/t)

2.  
   Consequently, the relaxation rates and weights of the fast and medium components 
can be expected to change somewhat for tc > 1 (roughly T < 30 K). Furthermore, 
there could appear a maximum in the relaxation rate of the medium component at tc 
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= 1, as predicted by Haupt [19] and observed for example in the proton relaxation in 
methylpyridines [20]. Such a maximum should be most clearly observable in the 
relaxation rate of the medium component of Samples 1 and 3, which do not have 
hydroxyl deuterons. However, the experimental points for all the components in Figs. 
2 and 7 vary smoothly even through the temperature range 3040 K. The absence of 
any traces of the maximum is probably a consequence of the smearing effect of the 
activation energy distribution. In principle the effects of a large t could be included 
in our model, but it would require the evaluation of the tunnel splitting and its 
temperature dependence for each value of the activation energy. Furthermore, there is 
uncertainty about the correlation times c as described above. Because a proper 
inclusion of these facts would remarkably complicate the simulations, we did not take 
them into account. 
   In spite of the mentioned deficiencies, the described method leads to a quite 
reasonable agreement with experimental results on relaxation and spectra. It is able to 
give information about motions in the presence of highly nonexponential spinlattice 
relaxation, caused by wide distributions of activation energies. Together with the 
spectral information, it leads to estimates of the central activation energies, correlation 
times and distribution widths, about which there is rather little knowledge so far. Even 
in the present form, which uses only a minimum number of adjustable parameters, the 
obtained results are encouraging. Very likely some of the ignored features mentioned 
above will be included in simulations of the future studies.  
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Table I 
Motional parameters for methyl and hydroxyl groups of methanol in NaX(1.3) 
 
 

 CD3(I) CD3(II) OD(I) (lim. 
jumps) 

OD(I) 
(rot) 

E0 (kJ/mol) 6.4 2.7 6.0 7.3 

 (kJ/mol) 1.2 0.6 0.25 0.6 

0 (1014 s) 1.5 60 0.7 30 
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Figure captions 
 
Fig.1.  Recovery of the deuteron magnetization in Sample 3 after saturation vs time in three 

different linear time scales: (o) experimental results, (solid curve) threeexponential 
fit to experiment, (dashed curve) threeexponential behaviour with the initial rates 
and weights calculated from the values of Table I, (dotted curve) multiexponential 
recovery based on Table I without selection of the calculated rates (see text).  

 
Fig. 2.  Experimental relaxation rates for the fast (filled circles), medium (squares) and slow 

(diamonds) components of Sample 1. The calculated initial rates are represented by 
solid curves. The limiting values Lfm and Lms are shown by dashed curves. Rates for 
the exponential relaxation are shown by open circles and fitted by Eq. (4) for 170 K > 
T >150 K. 

 
Fig. 3.  Experimental weights for the fast (filled circles), medium (squares) and slow 

(diamonds) components of Sample 1. The calculated weights are represented by solid 
curves. 

 
Fig. 4.  Experimental relaxation rates for the fast (filled circles), medium (squares) and slow 

(diamonds) components of Sample 2. The calculated initial rates are represented by 
solid curves. The limiting values Lfm and Lms are shown by broken curves. The 
biexponential relaxation above 170 K is described by open circles. 

 
Fig. 5.  Experimental and calculated weights for Sample 2. For details see the caption of Fig. 

3. 
 
Fig. 6. The spectral area of the rigid doublet of Sample 2. The dashed curve represents 

the contribution of the deuterons of both the hydroxyls, while the solid curve 
contains also the contribution of CD3(I). For details see text. 

 
Fig. 7.  Experimental relaxation rates and calculated initial rates for the fast, medium 

and slow components of Sample 3. For details see the caption of Fig. 2. 
 
Fig. 8.  Experimental and calculated weights for Sample 3. For details see the caption 

of Fig. 3. 
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