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DNA methylation and 
Transcriptome Changes Associated 
with Cisplatin Resistance in Ovarian 
Cancer
Riikka J. Lund1, Kaisa Huhtinen2, Jussi Salmi1, Juha Rantala2, Elizabeth V. Nguyen1, Robert 
Moulder1, David R. Goodlett1,3, Riitta Lahesmaa1 & Olli Carpén2

High-grade serous ovarian cancer is the most common ovarian cancer type. Although the combination 
of surgery and platinum-taxane chemotherapy provide an effective treatment, drug resistance 
frequently occurs leading to poor outcome. In order to clarify the molecular mechanisms of drug 
resistance, the DNA methylation and transcriptomic changes, associated with the development of drug 
resistance in high-grade serous ovarian cancer, were examined from patient derived malignant ascites 
cells. In parallel with large-scale transcriptome changes, cisplatin resistance was associated with loss of 
hypermethylation at several CpG sites primarily localized in the intergenic regions of the genome. The 
transcriptome and CpG methylome changes in response to cisplatin treatment of both sensitive and 
resistant cells were minimal, indicating the importance of post-translational mechanisms in regulating 
death or survival of the cells. The response of resistant cells to high concentrations of cisplatin revealed 
transcriptomic changes in potential key drivers of drug resistance, such as KLF4. Among the strongest 
changes was also induction of IL6 in resistant cells and the expression was further increased in response 
to cisplatin. Also, several other components of IL6 signaling were affected, further supporting previous 
observations on its importance in malignant transformation and development of drug resistance in 
ovarian cancer.

High-grade serous ovarian cancer (HGSOC) is the most common ovarian cancer subtype and accounts for 80% 
of the deaths caused by the disease. The prognosis of HGSOC is poor as most diagnosis is at late stages of the 
disease when the 10-year survival rate is only in the order of 15%. The main strategy for treatment involves sur-
gical removal of the tumor tissue and chemotherapy1. Platinium compounds, such as cisplatin, in combination 
with taxane are typically used in chemotherapy. However, recurrence of the cancer is frequent and most of the 
patients will eventually become refractory to the treatment2. In order to improve the prognosis of the patients 
with HGSOC, new biomarkers enabling early diagnosis of the disease as well as new therapeutic strategies over-
coming the drug resistance are needed1, 3. Detailed characterization of the molecular mechanisms leading to drug 
resistance is important for development of improved therapies.

The molecular mechanisms leading to drug resistance can be heterogeneous and complex4. In addition 
to genetic factors, the development may involve epigenetic changes, which enable tumor cells, and possibly 
non-transformed cells in the microenvironment, to adapt and lose sensitivity to drug treatment. DNA methyla-
tion and transcriptional changes associated with drug resistance have been detected in several genomic sites in 
both cell lines and patient samples5–8. For example, methylation and transcriptional silencing of the MLH1 gene 
have been repeatedly associated with cisplatin resistance8, 9. Although several candidate driver genes for cisplatin 
resistance have been identified, further studies are required to clarify the heterogeneity of the drug resistance 
mechanisms and clinical significance of the findings.
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In this study, we have further investigated the potential mechanisms associated with drug resistance by com-
paring cisplatin responses in sensitive and resistant patient derived HGSOC cell lines with next-generation 
sequencing based applications. We have used Reduced Representation Bisulfite Sequencing (RRBS) together with 
messenger RNA sequencing (mRNA-seq) for unbiased identification of the DNA methylation changes at single 
nucleotide resolution in the CpG rich regions of the genome in correlation with genome-wide transcriptome 
changes.

Results
Differences between cisplatin sensitive and resistant cells before drug treatment.  Comparison 
of cisplatin sensitive and resistant M019i cells before the drug treatment revealed large scale differences in both 
transcriptomes and DNA methylomes. Comparison of DNA methylomes revealed a total of 1,488 differen-
tially methylated sites that exceeded a minimum methylation difference of 20% in each comparison (Fig. 1a, 
Supplementary Table S1). Interestingly, most of the differentially methylated sites (1,251 sites, 84%) were found 
to be less methylated in the resistant cell line. Only 237 (16%) sites were methylated at higher levels in the resist-
ant cell line and had lower methylation levels in the sensitive line. Most of the differentially methylated sites 
were in the non-coding regions of the genome (Fig. 1b). Of the sites 90 (6.0%) were in exons and 26 (1.7%) in 
the TSS. The majority of differentially methylated sites (76%) were located within 100 Kbp distance from a TSS 
(Fig. 1c) and nearly all sites (1,479) were within 1 Mbp distance from a TSS of a gene. The genes close to the 
differentially methylated sites were associated with canonical pathways such as cAMP-mediated signaling (32 
molecules, p = 7.14E-04), G-protein coupled receptor (GPCR) signaling (37 molecules, p = 8.33E-04), WNT/
beta-catenin signaling (25 molecules, p = 1.92E-03) and human embryonic stem cell pluripotency (22 molecules, 
p = 2.11E-03), see Supplementary Table S2 for the complete list of functional enrichment results. Consistently, 
the top putative upstream regulators included such as POU5F1 (57 targets, p = 2.21E-10), CTNNB1 (95 targets, 
p = 1.42E-09), SOX2 (54 targets, 3.05E-09), KLF4 (41 targets, 6.03E-07) and TP53 (151 targets, p = 6.42E-07). 
However, no transcription counts were detected for well-known pluripotency factors POU5F1 and SOX2. The top 
molecular functions of the genes included differentiation of cells (422 molecules, 4.08E-27), proliferation of cells 
(604 molecules, p = 4.45E-23) and the strongest disease association was cancer (1,585 molecules, p = 2.98E-51).

Considerable differences in the transcriptome were also observed between cisplatin sensitive and resistant 
cells. Altogether 587 differentially expressed genes were detected. Out of these 346 showed increased expression 
and 241 decreased expression in the resistant cells (Fig. 1d, Supplementary Table S3). As patient characteristics 
may influence the results10, the expression changes of selected genes were further validated using qRT-PCR in two 
platinum sensitive cell lines M019i and OC002 and their resistant variants (Fig. 1e). Pathway analysis revealed 
functional enrichment of the molecules to several canonical pathways, the most prominent ones were involved in 
oxidative metabolism and stress, such as “production of nitric oxide and reactive oxygen species in macrophages” 
(19 molecules, p = 9.77E-07), and inflammatory signaling, such interferon signaling (8 molecules, p = 3.61E-06). 
See Supplementary Table S2 for the complete list of enrichment results. Among the most significant putative 
upstream regulators were TNF (132 targets, 1.19E-34), beta-estradiol (118 targets, 1.19E-34) and IFNL1 (26 tar-
gets, 4.14E-24). The genes differentially expressed by the cisplatin sensitive and resistant cells were enriched in 
the top functional categories including cell death (222 molecules, p = 1.72E-18) and cellular movement (160 
molecules, p = 4.59E-18). Cancer was again among the most significant disease enrichments (516 molecules, 
p = 9.74E-15).

Responses of sensitive and resistant cells to low cisplatin treatment.  We next examined the epi-
genetic and transcriptional perturbations in sensitive and resistant cell lines in response to 0.6 μM cisplatin treat-
ment. Interestingly, although cisplatin treatment led to CpG methylation changes in both sensitive and resistant 
cells, these alterations did not trigger changes in the gene expression. In the sensitive line, changes in the meth-
ylation of 59 sites (FDR 5%), 28 with increased and 31 with decreased methylation, were detected in response 
to cisplatin treatment (Supplementary Table S1). The genes closest to the altered sites were functionally linked 
to neuronal signaling pathways, such as development of neurons (18 molecules, p = 6.27E-06) and canonical 
pathways, such as synaptic long term depression (6 molecules, p = 4.11E-02). Consistently, the putative upstream 
regulators included APP (13 targets, p = 1.15E-04) and APOE (5 targets, p = 3.54E-03). However, no changes in 
gene expression were observed with the chosen filtering criteria (minimum absolute FC = 1.5, FDR ≤ 0.05 or 
unadjusted pval ≤ 0.05) indicating that the detected DNA methylation changes did not cause changes in tran-
scriptional activity in sensitive cells.

In the resistant cell line changes were observed in 74 sites (FDR 5%): 34 with increased and 40 decreased 
methylation in response to 0.6 μM cisplatin treatment. The genes closest to the altered sites were linked to the 
WNT/beta-catenin canonical pathway (5 molecules, p = 2.96E-02) and, similarly to sensitive cells, in molecu-
lar functions associated with neuronal development and functions, such as development of neurons (21 mole-
cules, p = 4.9E-06). The putative upstream regulators included REST (5 targets, p = 6.38E-04), FGFR2 (5 targets, 
p = 7.39E-04), CTNNB1 (11 targets, p = 1.77E-03) and KLF4 (6 targets, p = 2.72E-03). Interestingly, none of the 
sites differentially methylated in response to cisplatin in resistant cells overlapped with those detected in sensitive 
cell line. Also, as was the case for the sensitive cells, no changes in gene expression were observed in response to 
0.6 μM cisplatin treatment of resistant cells (minimum absolute FC = 1.5, FDR ≤ 0.05 or unadjusted pval ≤ 0.05).

Response of resistant cells to high cisplatin treatment.  We also examined the response of the resist-
ant cell line to a higher concentration of cisplatin (7 μM, IC50), which was not tolerated by the sensitive cells. In 
contrast to the lower concentration, changes were now detected in both CpG methylomes and transcriptomes. 
Decreased methylation of 28 sites was observed, whereas 49 sites become more methylated (Supplementary 
Table S1). The genes closest to the altered sites were associated with molecular functions, such as development 
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of embryo, tissues and cells. The most prominent disease function was cancer (p ≤ 0.05), and notably, among the 
most significant subclasses was epithelial cancer (106 molecules, p = 3.38E-06). The canonical pathway enrich-
ments included WNT/beta-catenin signaling (6 molecules, p = 3.54E-04).

With the harsher cisplatin treatment (7 μM) changes in transcription of 387 genes were detected (327 upreg-
ulated and 60 downregulated genes). The strongest functional and disease enrichment categories for the altered 
genes included cell cycle progression (61 molecules, p = 1.66E-10) and cancer (351 molecules, p ≤ 2.91E-03). The 
top canonical pathway enrichments indicated changes in DNA damage and cell cycle control and included such 
as “Role of BRCA1 in DNA damage Response” (10 molecules, p = 9.81E-07) and “Role of CHK Proteins in Cell 
Cycle Checkpoint Control” (7 molecules, p = 4.48E-05). The putative upstream regulators included such as let-7 
(21 targets, p = 1.76E-14), TP53 (61 targets, p = 8.76E-13) and many other factors (Supplementary Table S2).

Figure 1.  CpG methylome and transcriptome differences between cisplatin sensitive and resistant ovarian 
cancer lines. DNA methylomes of the cells sensitive or resistant to cisplatin were profiled with Reduced 
Representation Bisulfite Sequencing and transcriptomes with mRNA-sequencing. In (a) are the CpG sites 
with coverage ≥ 10 and minimum methylation difference of 20% (qval ≤ 0.05) in M019i cells, (see also 
Supplementary Table S1), (b) the distribution of differentially methylated cites in genomic regions, (c) distance 
of the differentially methylated sited from the closest transcription start sites, (d) the transcriptome differences 
(minimum absolute FC = 1.5, FDR ≤ 0.05) between cisplatin sensitive and resistant ovarian cancer cells 
(M019i), (e–h) qRT-PCR validation of AKR1C1, CYP4F11, CYP24A1, MIR205HG, and SLC6A14 differences in 
M019i and OC001 cells (y-axis: relative expression level).
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Identification of putative drug resistance genes through integrative analysis.  In order to obtain 
deeper insights in to the molecular mechanisms of drug resistance we carried out an integrative analysis of the 
RRBS and RNA-seq data as well as functional enrichment data throughout the conditions (Fig. 2a). Comparison 
of the data sets from the cisplatin sensitive and resistant cells before drug treatment revealed overlap in 50 dif-
ferentially expressed genes with a total of 90 differentially methylated CpG sites in the close genomic proximity 
(Supplementary Table S4). Of these CpG sites 71 (79%) were localized in functional genomic elements including 
exons, introns or regulatory elements, such as enhancers (annotated in ovary by Roadmap Epigenomics Project, 
http://egg2.wustl.edu/). Pathway analysis revealed that 22 of these differentially expressed genes associated with 
DNA methylation changes were involved in cell death (p = 1.00E-03) and 46 were associated with abdominal can-
cer (p = 7.19E-04). Comparison of the functional enrichment results, determined separately for DNA methylome 
and transcriptome data, revealed overlaps in the canonical pathway enrichments including WNT/beta-catenin, 
protein kinase A (PKA), relaxin, epithelial adherence junction, ERK/MAPK, prolactin and glucocorticoid 
receptor (GRC) signaling. Putative upstream regulators common for both transcriptome and DNA methylation 
changes, and showing changes also in gene expression between cisplatin sensitive and resistant cells, included IL6, 
IL6ST, SMAD3, KLF4, TGFBR1, EGF, JUN, PPARG, PPARGC1A and AR (p < 0.05) (Fig. 2a).

Integrative analysis of the DNA methylation and transcriptome changes in response to 7 μM cisplatin treat-
ment of the resistant cells revealed only three common genes, DUSP10, NGFR, NXPH3. No overlaps in canonical 
pathway enrichments were observed for the transcriptome and DNA methylome data. The only common puta-
tive upstream regulator of the DNA methylation and gene expression changes was KLF4 (Fig. 2a). Interestingly, 
this gene was expressed more by the cisplatin resistant cells in comparison to sensitive cells already before drug 
treatment (5.21-fold, p = 1.59E-06) and was further induced in the resistant line in response to 7 μM cisplatin 
(2.28-fold, p = 3.61E-09) which was also validated using qRT-PCR (Supplemetary Figure S1). Importantly, KLF4 
was also identified as a common putative upstream regulator of the genes a) differentially methylated by untreated 
cisplatin sensitive and resistant cells (41 targets, p = 6.03E-07) b) differentially expressed by cisplatin sensitive 
and resistant cells (9 targets, 1.84E-02), c) differentially methylated in response to 0.6 μM cisplatin (6 targets, 
p = 2.72E-03), d) differentially methylated in response to 7 μM cisplatin treatment of resistant cells (10 targets, 
p = 4.77E-07) and e) differentially expressed by cisplatin treated and non-treated cells (9 targets, p = 1.84E-02) 
(Fig. 2b). The putative target genes of KLF4 were associated with functions, such as invasion of cells (42 of 79 
molecules, p = 3.73E-33), migration (49 of 79 molecules, p = 1.23E-25) and development (60 of 79 molecules, 
p ≤ 1.55E-11).

Next we examined the regulation patterns of genes that were differentially expressed in sensitive and resistant 
lines and that also responded to the 7 μM cisplatin treatment in the resistant cell line. Altogether 26 such genes 
were identified (Fig. 2c). Of these, eight were differentially expressed by sensitive and resistant cell lines, however, 
the levels reverted to or towards the levels in sensitive cells in response to 7 μM cisplatin treatment (Fig. 3a, clus-
ters I and III). Notably, among these was CYP24A1 with barely detectable levels of expression in sensitive cells and 

Figure 2.  Integrative analysis of DNA methylome, transcriptome and functional enrichment data. (a) In the 
figure are the numbers of differentially expressed genes (GE), differentially methylated CpG sites (meCpG) and 
their overlap (both) between cisplatin sensitive and resistant cells (M019i) before cisplatin treatment (0 μM), 
and changes detected in response to drug treatment. The putative upstream regulators with gene expression 
changes and canonical pathway enrichments common for both DNA methylome and transcriptome data 
are shown in the (b) Gene expression changes, DNA methylation changes or both are shown for the known 
direct target genes of KLF4, in different comparisons as indicated by the color codes in (a). (c) Comparison of 
differences observed before cisplatin treatment and in response to 7 μM cisplatin treatment of resistant cells as 
indicated in the figure. *indicates the number of differentially methylated sites: in integrative comparisons, the 
number of overlapping genes closest to differentially methylated sites is shown. The functional analyses and 
networks in the figure were generated by using Ingenuity Pathway Analysis (IPA®, Qiagen).
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high expression levels in resistant cells (average difference 259.33-fold). The 7 μM cisplatin treatment decreased 
the levels of CYP24A1, however, only on average by 2.18-fold (Fig. 3b) and therefore not sufficient to reach the 
levels observed in the sensitive cells. We further validated CYP24A1 expression at both the mRNA (Fig. 3d) and 
protein level (Fig. 3e). Most interestingly a panel of 18 genes was differentially expressed by normal and resistant 
lines and this difference was further increased by the drug treatment of resistant line (Fig. 3a, clusters II and IV). 
The gene with the strongest difference was IL6 (Fig. 3c) with expression pattern similar to KLF4 (correlation 0.96), 
a known upstream regulator of IL6. Consistently with the mRNA data, the IL6 protein levels produced by the 
platinum resistant cells were significantly higher than by the sensitive cells (Fig. 3f). Further, several other compo-
nents of the IL6 signaling or network were differentially expressed by the sensitive and resistant lines and affected 
by 7 μM cisplatin treatment (Supplementary Table S2). In cluster II, among the genes with opposite pattern of 
expression, PBX1 had the strongest negative correlation (−0.86) with IL6. The regulation of IL6 and CYP24A1 
in resistant cells was reciprocal. Interestingly, functional enrichment analysis revealed strong association of these 
genes with abdominal cancer (24 of 26 molecules, p = 1.78E-5). Furthermore, most of these genes have previously 
been associated with ovarian cancer, and several with malignancy or drug resistance (Table 1), supporting the 
potential importance of these genes as key drivers of drug resistance in ovarian cancer11–30.

Correlation to the CpG methylation changes revealed that nine genes including CTSB, CYP24A1, PBX1, 
PTGDS, ST3GAL5, FOSL1, ARRDC4, ODC1 and OASL had differentially methylated sites within 1,000 Kbp dis-
tance from the gene when comparing the untreated resistant to the sensitive cells (Table 1). Treatment with cis-
platin did not induce consistent DNA methylation changes in these sites, except at the site close to the CTSB gene.

In summary, the drug resistance of the ovarian cancer cells was associated with large-scale changes in the reg-
ulation of KLF4 target genes and with gene expression changes in a subset of genes, including IL6, for which the 
differences between sensitive and resistant cells were further potentiated in response to 7 μM cisplatin treatment.

Figure 3.  Identification of genes potentially associated with the drug resistance in ovarian cancer cells through 
integrative analysis. (a) Normalized relative gene expression counts and clustering of the genes differentially 
expressed by the cisplatin sensitive and resistant cells and regulated in response to 7 μM cisplatin treatment in 
resistant cells (M019i). (b,c) Normalized gene expression counts (RPKM) and statistics for CYP24A1 and IL6 
genes in M019i cells. (d–f) Expression of KLF4, CYP24A1 and IL6 was validated with qRT-PCR in two platinum 
sensitive cell lines M019i and OC002 and their resistant variants (y-axis: relative expression level). (g) CYP24A1 
protein expression and (h) IL6 protein concentrations in cell culture supernatants of the same cell lines as in (e 
and f), respectively).
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Comparison to previous studies.  Finally, we examined expression of the genes potentially associated 
with the drug resistance (Fig. 3, clusters III and IV) in data available from previous studies on cisplatin sensitive 
and resistant ovarian cancer cells. Consistently with our results, we found that nine of the 18 genes, ARRDC4, 
ST3GAL5, SYNE1, CXCL8, KLF4, HERC5, FOSL1, OASL and PBX1 (fc ≥ 1.5, fdr ≤ 0.05), were differentially 
expressed by cisplatin sensitive A2780 cells when compared to resistant CP70 line (NCBI GEO ID: GSE28648). 
Another data set on cisplatin sensitive vs resistant A2780 line (NCBI GEO ID: GSE15709) revealed similar pattern 
for the genes ARRDC4 (fc ≥ 1.5, fdr ≤ 0.05) and ST3GAL5, SYNE1, IL8/CXCL8 (fc ≥ 1.5, unadjusted p ≤ 0.05). 
Interestingly, although KLF4, HERC5 (fc ≥ 2.0, fdr ≤ 0.05) and FOSL1 (fc ≥ 2.0, unadjusted p ≤ 0.05) were dif-
ferentially expressed, they had an opposite pattern of expression in comparison to our data (Supplementary 
Table S5). The detected CpG methylation changes had only modest overlap with the results from previous studies. 
Comparison to data by Yu et al.31 and Li et al.7 revealed eight common genes with DNA methylation changes in 
the near proximity. Of these only COL18A1, SECTM1 and ALDH1A3 were transcribed in our cells, however, in 
our study these genes were not differentially expressed between the sensitive and resistant cells7, 31. Overlap with 
the genes reported by Zeller et al.8 included only FLNC, which had a CpG site with decreased methylation within 
700 bp from the TSS. However, again no changes in the gene expression of this gene were observed in our data.

Discussion
To investigate the molecular mechanisms associated with development of cisplatin resistant in HGSOC, we 
exploited an in vitro model from patient derived primary tumor cells, cultured as spheroids, and exposed repeat-
edly to cisplatin to induce resistance. Comparison of the cisplatin sensitive parental line to the established resist-
ant line revealed large amount of changes in CpG methylation. The differentially methylated sites were primarily 
localized in intergenic and intronic regions of the genome. Decreased CpG methylation levels were observed in 
the cisplatin resistant line in comparison to sensitive line. Our results from the global analysis are in agreement 
with previous findings7, 8, 31. However, we were not able to identify such common DNA methylation changes 
between the studies, which would explain the drug resistance. This lack of overlap may derive from the heter-
ogeneous mechanism(s) of drug resistance. Alternatively, the differences in the experimental design may have 
limited the detection of common methylation changes. Previous studies have utilized either array-based methods, 

Gene

RNA-seq (FC, 
FDR ≤ 0.05)

Closest DMS and 
distance (Kbp)

RRBS 
(meDiff%, 
qval ≤ 0.05)

Previous Links to Ovarian 
Cancer

Sens 
0 μM 
vs Res 
0 μM

Res 
0 μM 
vs Res 
7 μM

Sens 0 μM vs 
Res 0 μM

AQP3 5.9 −1.86 chr9:36166020–2,725 −70 Regulates cell migration in 
EGF dependent manner18

CTSB 5.09 −1.84 chr8:10897405–803 −50 Unfavorable marker for 
survival19

CYP24A1 259.33 −2.18 chr20:52556813–213 −67 Increased expression20, 21

PRSS56 −2.94 −2.38 chr2:232290776–1,094 −57 —

ECEL1 −3.46 −2.06 chr2:232290776 1,054 −57 Chemotherapy-resistance22

SPOCK1 −3.29 −2.65 chr5:133477187 2,834 −54 Growth and metastasis23

SYNE1 −2.17 −2.22 chr6:156200288–3,242 −71 Mutations predictive for 
malignant transformation24, 25

PBX1 −2.09 −1.97 chr1:164500920–28 −46 Mediated survival in response 
to Notch326

PTGDS −3.79 −2.08 chr9:136310987 168 68 Chemoresistance33

ST3GAL5 −2.41 −2.02 chr2:85892782 173 −37.61 Decreased expression27

FOSL1 1.98 1.98 chr11:65682138–14 −43
ER-dependent induction 
impaired in response to 
saracatinib+/− fulvestrant28

IL8/CXCL8 1.74 2.14 chr4:68449172–6,157 −44 Chemoresistance33

ARRDC4 1.95 2.1 chr15:98937633 421 47 —

TNFAIP3 3.33 2.46 chr:136929632–1,259 −63 Induced by ARID3B29

ODC1 2.05 1.94 chr2:10445016 136 −65 Downregulated in response 
to platinium drugs30

RNF43 3.63 1.66 chr17:55185542 1,245 −34 Tumor supressor and 
mutation hotspot51, 52

HERC5 2.41 1.74 chr4:68449172–20,929 −44 —

OASL 4.99 1.93 chr12:121177842 280 −56 Chemoresistance33

KLF4 5.21 2.28 chr9:115618930–5,367 −48
Downregulated and regulates 
BCL2/Bax ratio53, mediates 
EMT54

IL6 16.27 1.8 chr7:30737735–7,971 −47 Chemoresistance33, potential 
prognostic marker32, 34

Table 1.  The potential drug resistance driver genes.
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detecting less than 30 K CpG sites or capture based assay, which does not have single nucleotide resolution. In this 
study we used the RRBS method, which enabled genome-wide analysis the CpG rich regions with single nucleo-
tide resolution. In addition, we focused only on consistent CpG methylation changes of over 20%, found in three 
biological replicates with FDR cut off 0.05, as biological significance of the small changes in DNA methylation is 
unclear. Further studies, with additional cell lines and comparable or increased genomic coverage and sensitivity 
are needed to validate our findings.

Similar to the DNA methylomes, the transcriptomes of the sensitive and resistant lines were different. 
Integrative analysis revealed CpG methylation changes in functional genomic elements correlating with gene 
expression changes in overlapping or nearby genes. However, the overlap of transcriptome and DNA methylation 
changes in general was low, as also previously observed8. The CpG methylome changes of both the sensitive and 
resistant lines in response to 0.6 μM cisplatin (IC50 for the sensitive line) were modest and transcriptome changes 
were not detected. A potential explanation for this could be that the cisplatin response may be mediated through 
post-translational or other cytoplasmic mechanisms, or alternatively the responding cells were lost from the cul-
tures before sampling for downstream analysis. However, this is unlikely as the exposure of the resistant cells to 
a higher concentration of cisplatin (7 μM), not tolerated by sensitive cells, revealed large-scale transcriptome 
changes.

Examination of the transcriptome data revealed a specific subset of genes that were differentially expressed by 
sensitive and resistant cells for which the difference was either partially reversed or further increased by exposure 
of resistant cells to 7 μM of cisplatin. Some of the changes were also associated with differentially methylated sites 
in the promoter regions of the affected genes. Most of these genes have been previously associated with ovarian 
cancer and several with drug resistance or malignancy, supporting potential importance of these genes as key 
drivers of drug resistance14–30, 32–34. In our model the strongest changes associated with drug resistance were 
induction of CYP24A1 and IL6 in the resistant cells and their reciprocal regulation in response to 7 μM cisplatin. 
The changes in IL6 gene expression were accompanied with alterations in several other components of IL6 sig-
naling. Increased expression of IL6 has been linked to ovarian cancer and poor outcome in several studies and 
has been examined as a potential prognostic marker32–35. CYP24A1 again regulates processing of vitamin D with 
potential importance as an anticancer agent36. However, further functional studies are needed to elucidate how 
the IL6 cytokine, vitamin D signaling, and other products encoded by the genes with opposite or similar pattern, 
such as KLF4, affect the cisplatin sensitivity or resistance.

Interestingly, KLF4 was identified as a putative upstream regulator of the genes with both DNA methylation 
changes and gene expression changes in resistant cells before and after drug treatment. KLF4 is a well-known 
transcription factor utilized in reprogramming of differentiated cells back to pluripotent stem cell stage37, and 
has a context dependent function in the modulation of cancer properties and mediates adaptive responses and 
cellular survival in response to therapies38. KLF4 together with a panel of genes (ST3GAL5, SYNE1, CXCL8/IL8, 
HERC5, FOSL1, ARRDC4) was also detected to be differentially expressed by cisplatin sensitive and resistant cells 
in data from other studies supporting their potential importance in the regulation of drug resistance.

As indicated in Table 1, most of the putative drug resistance driver genes identified in our study have previ-
ously been associated with ovarian cancer. However, several new candidates, such as ubiquitin ligases HERC5 and 
ARRDC4, were also identified. Furthermore, for many of these genes the functional and clinical significance is 
still poorly understood. ST3GAL5 and FOSL1 regulate for example cell proliferation and differentiation. FOSL1 
is also known to regulate both IL6 and IL8/CXCL8 cytokines. SYNE1 is a structural protein linking the plasma 
membrane to the cytoskeleton. Further studies are needed to define the function of these genes in ovarian can-
cer. Additional studies are also required to validate our findings in a larger panel of cell lines and clinical tumor 
samples. Many of the genes found to be differentially regulated in sensitive and resistant lines, such as IL6 and 
IL8/CXCL8, are implicated in immune cell functions and signaling. Therefore, it will be interesting to further 
elucidate, how these signaling molecules may affect the tumor microenvironment and anti-tumor responses.

In summary, our results reveal that, in parallel with large-scale transcriptome changes, cisplatin resistance of 
ovarian cancer cells is associated with loss of hypermethylation in a high number of CpG sites primarily localized 
in the intergenic regions of the genome. The transcriptome perturbations in response to 0.6 μM cisplatin treat-
ment of both sensitive and resistant cells were minimal suggesting the importance of post-translational mech-
anisms in mediation of death or survival of the cells. The response of resistant cells to 7 μM concentration of 
cisplatin, not tolerated by sensitive cells, revealed transcriptomic changes in potential key drivers of drug resist-
ance. The strongest changes were associated with the reciprocal regulation of CYP24A1 and IL6. The expression of 
several other components of IL6 signaling were also altered further supporting the previous observations on the 
importance of this factor in malignant transformation and development of drug resistance in ovarian cancer. In 
addition, KLF4 was identified as a putative upstream regulator of drug resistance in ovarian cancer and together 
with ST3GAL5, SYNE1, CXCL8, HERC5, FOSL1, ARRDC4 merits further studies.

Methods
The aim, design and setting of the study.  The aim of this study was to identify DNA methylome and 
transcriptomic changes associated with cisplatin resistance by using the latest genome-wide methods. For this 
purpose, a patient derived spheroid tumor cell line was generated, which was repeatedly exposed to cisplatin to 
induce drug resistance in vitro. DNA methylome and transcriptome perturbations were examined in the parental 
line and in the drug resistant line before cisplatin challenge and in response to concentrations of 0.6 μM (IC50 for 
the sensitive line) or 7 μM (IC50 of the resistant line) of cisplatin. The IC50 of the resistant cells was not tolerated 
by the sensitive cell line.

Cell lines.  Primary cell lines M019i and OC002 originated from patient ascites. M019i cells were collected at 
interval surgery after primary platinum-taxane chemotherapy, while the OC002 cells originated from primary 
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surgery before chemotherapy. Both the patients received the same treatment: After the primary operation, the 
patients were treated with three cycles of platinum based neoadjuvant chemotherapy, after which an interval 
operation was performed for debulking. After this operation, the patients received three more cycles of the same 
chemotherapy. The patients had rapid progression of HGSOC with a progression free survival (PFS) of 2.4 and 
10.1 months, respectively. However, M019i responded well with the therapy after relapse (overall survival 34.3 
months) while OC002 had a short overall survival of 12.0 months. The patients were diagnosed with HGSOC at 
the ages of 63 and 65 years, with stage IVB and IIIC, respectively. They were both Caucasian.

To generate a cisplatin resistant cell lines (M019iCis and OC002Cis) the M019i and OC002 cells were grown 
with increasing cisplatin concentration up to 2.0 μg/ml (6.6 μM) according to the method described by Tsai et al.39, 
which lead to a selection of surviving resistant cells. All the cell lines grew as spheroids in serum-free Dulbecco’s 
Modified Eagle Medium: Nutrient Mixture F-12 (Lonza) culture medium supplemented with B-27® supplement 
(Life Technologies), 20 ng/ml EGF (Sigma), and 10 ng/ml bFGF (Invitrogen). M019iCis and OC002Cis cells were 
treated with cisplatin in every third subculture and left to recover for at least three days before being plated for 
sample preparation. The response of cell lines to cisplatin was followed with regular assays: cells were plated on 
96-well plates 2500 cells/well; cisplatin was added on the following day in final concentrations of 0.01, 0.1, 1.0, 
10 and 100 μM; cell viability was measured 72 h after the first treatment using the ATP assay (CellTiter-Glo® 
Luminescent Cell Viability Assay, Promega) in regular experiments with triplicate wells each. The half maximal 
inhibitory concentration (IC50) value for cisplatin increased from 0.6 μM for M019i and 0.8 μM for OC002 to 
7.0 μM for M019iCis (11.7-fold) and 5.0 μM for OC002Cis (6.3-fold). All cell lines have been characterized using 
exome and RNA sequencing and verified to represent HGSOC (unpublished data).

Nucleic acid isolation.  The spheroid samples were homogenized using a Tissuelyzer disrupter (Qiagen) 
and RNA was extracted simultaneously with DNA and miRNA from all the samples using the Qiagen AllPrep kit 
according to the manufacturer’s instructions. The samples were quantified with a Nanodrop 2000 spectrophotom-
eter (Thermo Scientific) and the high quality of RNA or DNA was confirmed with an Agilent 2100 Bioanalyzer.

Next-Generation Sequencing library preparation.  Extracted RNA samples from 200 ng of total RNA 
were processed for mRNA-seq using the TruSeq mRNA kit (Illumina) according to the kit manual. The librar-
ies were prepared for RRBS as previously described40, 41. The starting amount of genomic DNA was 200 ng per 
sample. The libraries were quantified with Qubit (Life Technologies) and the high sample quality was confirmed 
with Agilent 2100 Bioanalyzer. The RRBS libraries were sequenced with 1 × 50 bp chemistry and the mRNA-seq 
libraries with 2 × 100 bp chemistry with Illumina HiSeq2500 Next-Generation Sequencer.

Analysis of RNA sequencing data.  A total of 648,014,768 reads were obtained for the 15 samples. The 
quality of the sequencing data was analyzed with FastQC42 and trimming was carried out using Trim Galore!43. 
After trimming the reads were mapped to the UCSC hg19 human reference genome with TopHat44 and Bowtie245. 
The features were then assigned to genes and counted by using the R software featureCounts46. A list of genes, 
corresponding number of reads aligned to that gene, and reads per kilobase per million mapped reads (RPKM) 
were calculated to generate normalized count values. Genes with differential expression were found with the 
EdgeR software47, 48 and batch correction for biological replicates was performed. The genes with a minimum fold 
change (FC) cut-off of ± 1.5 in each paired comparison and a false discovery rate (FDR) ≤ 0.05 were considered 
significant in the global analysis.

Analysis of RRBS data.  From the RRBS analysis 10,031,026–18,271,982 total reads per sample were 
obtained. The quality of the raw reads was examined with FastQC42. The adapter trimming and filtering of the 
high quality reads was carried out with Trim Galore! Version 0.3.343. After trimming over 9 × 106 reads per sam-
ple were left. The conversion efficiencies were examined by using a lambda DNA spike in control and were above 
99%. The reads were mapped into the genome with Bismark version 0.14.511. The version of the human genome 
used in the analysis was hg19. The mapping efficiencies were 58.90–62.70% and 5,985,284–11,102,164 uniquely 
mapped reads per sample were obtained. The differentially methylated bases were identified with MethylKit ver-
sion 0.9.512 and R version 3.1.2. Before comparison the raw methylation calls were filtered by discarding all the 
bases that had coverage above 99.9 th percentile coverage in each sample. In addition, only the methylation calls 
having coverage ≥ 10x in each of the biological replicate per condition were included in the analysis. In hierar-
chical clustering or principal component analysis the sensitive and resistant lines were distributed into separate 
clusters. The CpG sites with consistent minimum methylation difference of 20% in each of the biological repli-
cates with q-value (qval) ≤ 0.05 were considered significant. This relatively stringent filtering criteria was chosen 
in order to minimize noise caused by technical and biological variation in the experiment with limited number 
of biological replicates (n = 3). Furthermore, the biological significance of small changes in DNA methylation is 
not clear. Several other bioinformatics tools, including Integrated Genome Viewer13, USCS Genome Browser49, 

50, GENE-E14, GREAT15, ChIPSeek16 and Ingenuity Pathway Analysis Tool (IPA®, Qiagen), were utilized in the 
annotation, integration and in depth analysis of the data.

Quantitative RT-PCR.  To validate the differences observed between the sensitive and resistant cells in 
the transcriptome analysis Taqman qRT-PCR analysis were performed for AKR1C1, CYP4F11, CYP24A1, IL6, 
KLF4, MIR205HG, and SLC6A14 in M019i, M019iCis, OC002 and OC002Cis cells. The primers and probes 
were designed using Universal ProbeLibrary Assay Design Center (Roche Applied Science). Expression was 
determined in triplicate samples using TaqMan qRT-PCR with Applied Biosystems 7900HT instrument. Raw 
qRT-PCR Ct values were normalized against the geometric mean of PPIA and TBP17.
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Western Blot Analysis.  For Western blotting, total protein aliquots (20 μg) from cell lysates were separated 
by 10% polyacrylamide gel and blotted onto nitrocellulose membranes. Rabbit polyclonal anti-human CYP24A1 
(Atlas Antibodies, HPA022261), mouse monoclonal anti-human GAPDH (Abcam, Ab9482), and anti-rabbit 
horseradish peroxidase-conjugated secondary antibody (Dako) were used to evaluate protein expression. The 
signals were visualized by enhanced chemiluminescence (Thermo Scientific) and quantitated using ImageJ (ver-
sion 1.47 v). CYP24A1 expression was normalized to GAPDH expression.

IL6 measurement.  To measure the concentration of IL6 produced by the cell lines, 10 000 cells per well in 
100 μl of growth medium were plated in duplicate on a 96-well plate. The culture media were collected after one 
hour incubation, centrifuged to remove cell debris and frozen at −20 °C. IL6 concentrations were measured using 
ProcartaPlex Human IL6 Simplex with Human Basic Kit (Illumina) according to manufacturer’s instructions. 
Statistical analysis for qRT-PCR, western blot and IL6 measurements were performed using the statistical soft-
ware Sigma Stat 3.11 (Systat Software Inc., Chicago, IL, USA).

Ethics approval and consent to participate.  Ovarian cancer cells were collected from patients on the 
basis of informed consent. The use of all patient-derived material has been approved by (i) the Ethics Committee 
of the Hospital District of Southwest Finland (ETMK): ETMK 53/180/2009 § 238 and (ii) National Supervisory 
Authority for Welfare and Health (Valvira): DNRO 6550/05.01. 00.06/2010 and STH507A. All the experiments in 
this study were performed in accordance with the guidelines and regulations by ETMK and Valvira.

Availability of data and materials.  The datasets are available through the Supplementary Tables S1–S5. 
The raw data for RRBS analysis is available in the Sequence Read Archive (SRA), NCBI, through accession num-
ber: (will be available later).
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