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Abstract 

Past research has shown that student problem-solving skills may be used to determine student final 

exam performance. This study reports on the relationship between student problem-solving skills1 and 

academic performance in introductory programming, in formative and summative programming 

assessment tasks. We found that the more effective problem-solvers achieved better final exam scores. 

There was no significant difference in formative assessment performances between effective and poor 

problem-solvers. It is also possible to categorize students based on problem-solving skills, in order to 

exploit opportunities to improve learning around constructivist learning theory. Finally, our study 

identified transferability skills and the study may be extended to identify the impact of problem solving 

transfer skills on student problem solving for programming. 

Keywords: Problem-solving in programming; assessment tasks; learning transfer; problem-based 

learning constructive alignment 

1. INTRODUCTION 

Problem solving is a valuable and desirable skill if one is to be successful in learning and in the 

workplace. (Voskoglou & Buckley, 2012; Argaw et al., 2017). Confidence in one’s problem-solving 

mailto:ashok.veerasamy@utu.fi


Problem-solving skills in learning programming 

ability might influence student performance in assessment tasks (Bandura, 1977; Lishinski, Yadav, 

Enbody, & Good, 2016). Research in computer science education has highlighted that many novice 

students lack problem-solving and computational thinking skills and have difficulties in utilizing key 

programming concepts to express their solutions in code (Lister, et al., 2004; Koulouri, Lauria, & 

Macredie, 2015; Uysal, 2014). Hence, it is important to examine the relationship between student 

problem-solving skills (PSS) and their performance in introductory programming; early awareness of 

students’ problem-solving abilities allows for strategically assisting students to further develop such 

skills and their programming skills. As an aside, research in computer science education has examined 

the prerequisite factors important in predicting student performance (Longi, 2016; Veerasamy, Daryl 

D'Souza, & Laakso, 2018). However, in spite of research on factors that contribute to success in 

programming, a key question that is often asked is: Why is learning to program is easier for some than 

the others? The research reported here aims to determine whether student PSS is relevant to student 

performance in learning programming. Our interest was motivated by the increasingly prevailing 

presence of students entering our first-year programming course with varied PSS or experience, and the 

need to develop inclusive teaching strategies to engage students. Towards this objective, we pose and 

address the following research questions:  

a) Is perceived problem-solving skills related to student performance in ongoing assessment tasks? 

b) Is perceived problem-solving skills related to student performance in the final programming exam? 

c) Is it possible to propose the student problem-solving skills as a predictor to predict student 

performance in final programming exam? 

The paper is organized as follows. Section 2 presents a literature review of studies conducted 

around PSS, its impact on assessment tasks, and its significance in relation to learning programming 

and student final exam scores. Section 3 describes our research methodology. Section 4 presents the 

findings of the study, which we discuss in depth in Section 5. Finally, Sections 6 and 7 present our 
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conclusions, limitations, future work and pedagogic implications; also, we identify some related future 

work directions, to develop a more enhanced and innovative approach to teaching introductory 

programming courses. The scope of the present study is limited in the investigation of relationship and 

effects of cognitive factor PSS, on student academic performance in selected assessment tasks. The 

realtionship and effects of other causal factors on student academic performance is beyond the scope of 

the present study and will be dealt with in the future study. 

 

2. RELATED WORK 

Problem solving is a metacognitive skill, which reveals the way a person learns and experiences 

different aspects of the problem-solving process; it is a learned life skill and every individual has their 

own problem solving abilities, learned at different paces through various situations in daily life (Dostál, 

2015; Ozus et al., 2015). However, an individual’s problem-solving skill is related to their problem 

awareness ability, perceptibility of the problem, willingness to solve the problem, competency to solve 

the problem, and cognitive self-evaluation (Dostál, 2015). Self-efficacy influences how well students 

approach problems (Askar, 2009), implying that self-efficacy in learning is one of the motivational 

components of problem-solving (Eskin, 2013). Several studies have emphasised the importance of PSS 

(Md.Yunus et al., 2006; Voskoglou & Buckley, 2012; Argaw et al., 2017).  Moreover, PSS is listed by 

employers as a desirable, generic soft skill (Md.Yunus et al., 2006; White et al., 2013; Kappelman et 

al., 2016). In addition, problem-solving is listed as one of the key skills to study of computer 

engineering and information technology (Sabin et al., 2017), and as crucial, valuable skill for both 

novice and qualified IT professionals (Kappelman et al., 2016).  

Programming is a complex activity, especially for novices; it requires certain cognitive skills as a 

prerequisite (Pea & Kurland, 1984). Learning to program requires the learner to think, understand the 

general concepts of the program, and general problem-solving abilities to analyse, organize, implement 
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and evaluate the code outcomes (Pea & Kurland, 1984; Falloon, 2016). Several studies have examined 

the importance of PSS in learning programming, and explored the integrated techniques, and factors 

that promote PSS in introductory programming courses (O'Grady & J, 2012; Uysal, 2014; Koulouri, 

Lauria, & Macredie, 2015; Chao, 2016). For example, while problem-based learning fosters students’ 

critical thinking, the presence of problem-based learning in computing curricula is not deep (O'Grady 

& J, 2012). Despite the mixed results studies suggest that students who have problem-solving 

competencies learn and perform better in programming and that learning programming improves 

student higher-order thinking, self-efficacy and PSS (Tu & Johnson, 1990; Psycharis & Kallia, 2017; 

Yukselturk & Altiok, 2017). In addition, teaching problem solving before programming improves 

programming performance (Koulouri, Lauria, & Macredie, 2015). However, most novice programming 

students have difficulties in formulating a problem and expressing its solution in code. Furthermore, 

students who lack PSS have difficulty in utilizing key concepts, such as loops and conditionals in 

programming (Koulouri, Lauria, & Macredie, 2015). These studies suggest students’ PSS may 

influence their learning in programming courses and that there is a link between student PSS and 

learning programming. 

Educators use formative assessments to measure student learning progress in order to ascertain 

learning difficulties and recommend remedial methods to improve student learning (Trumbull & Lash, 

2013). However, students choose assessment tasks that they believe they are capable of completing 

otherwise they tend to avoid those tasks. Moreover, confidence in one’s problem-solving ability 

influences how long they will persist in difficult tasks and there is a correlation between student 

problem-solving ability and performance in programming assignments (Bandura, 1977; Lishinski et al., 

2016) suggesting that problem-solving ability may influence student performance in assessments. 

Prerequisite factors are important in predicting student performance (Longi, 2016; Veerasamy, 

Daryl D'Souza, & Laakso, 2018). Consequently, the search continues for valuable predictor(s) of 
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student performance. However, to our knowledge no previous study has used a concrete inventory for 

use as a possible predictor and predictor variables used in the studies has varied from one context to 

another in several ways, including student cohort, cultural setting, etc. (Erdogdu & Erdogdu, 2015; 

Sharma & Shen, 2018) Several studies have been conducted on the impact of PSS on student 

performance in various courses including programming (Shrout & Witty, 1990; Adachi & Willoughby, 

2013; Bester, 2014; Lishinski et al., 2018). Heppner et al. reported appraising student PSS may help 

instructors to identify student study habits and attitudes that are important to academic performance, 

though it is theoretically unrelated to academic achievement (Heppner & Petersen, 1982). Omiwale 

conducted a study to identify the relationship between problem-solving ability and achievement in 

physics among senior secondary school students, and concluded that students with better PSS get 

higher grades in physics (Omiwale, 2011). Shrout et al. study reported that student problem-solving 

appraisal and academic achievement can be a significant predictor for course grade (Shrout & Witty, 

1990). Similarly, Bester examined the relationship between problem-solving proficiency of sophomore 

mathematics students and a quantitative techniques course and reported that there is a strong 

relationship between students’ problem-solving proficiency and their achievement in quantitative 

techniques course (Bester, 2014). Lee et al. study has revealed that lack of cognitive strategies in 

problem-solving impacts student performance in programming (Lee & Thompson, 1997). In addition, 

Nowaczyk et al. concluded that testing a student’s prior PSS in the beginning of the programming 

course would help to predict student programming performance (H.Nowaczyk, 1984).  

In addition, several studies reported that gender and initial self-efficacy differences did not impact 

novice programming learning outcomes (Bubica & Boljat, 2014; Akar & Altun, 2017; Lishinski et al., 

2018). Specifically, our Independent Samples t-Test results confirmed that the PSS and final 

programming exam mean scores between male and female students is not significantly different. These 
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aforementioned studies and preliminary statistical results suggest that gender differences do not have 

significant effect in programming learning.  

Overall, our contribution is novel in that it focuses on finding the relationships between PSS and 

assessments and to determine if PSS could be a useful predictor of performance.  

3. RESEARCH METHODLOGY 

The aim of this study was to examine the relationship between PSS and the results of formative and 

summative assessment in programming. We measured the correlation between PSS and student 

performance in an introductory programming course (see below). Data was collected in one semester 

(2016), from nearly 200 enrolled students. Of these 166 students completed the problem-solving 

inventory (PSI), used to ascertain students’ PSS. They also completed homework and demo exercises, 

as well as an electronic final examination.  

 We used Spearman’s Rank correlation coefficient technique to describe the relationship between 

non independent variables such as PSS scores and selected assessment tasks, including the final 

programming exam. Being mindful that correlation does not imply causality we nevertheless proceeded 

with causation experiments for a better understanding of relationships between the variables. We used 

the Kruskal-Wallis and the Bonferroni ad hoc tests to test for if any statistical significant differences in 

academic performance between students with high and low PSS scores. There were other formative 

assessment components such as project work, which was included to calculate final scores for this 

course. However, project work was done in groups of two or three students, so project work was not 

considered in our analysis. 

 3.1 Description of the course and data collection 

Algorithms and Programming has approximately 150-200 students enrolled in the autumn semester of 

each year. The course comprises contact hours (28 hours of lectures, 8 hours of tutorial sessions) and 
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non-contact hours, approximately 100 hours for independent work, including demo, homework, 

practice exam and discussion of project or assignment work, over the 8 weeks of semester. The 

following subsections present assessment details, which include homework exercises, demo exercises, 

and the final exam.  

 3.1.1 ViLLE: e-learning tool 

Part of the course assessment used the ViLLE software tool (Rajala & Erkki Kaila). ViLLE was used 

by students for homework and class demonstration sessions, and the final exam. ViLLE is a custom 

learning environment that facilitates development of share learning materials and assessment tasks. It 

supports automatic grading, file submission and allows instructors to manually assess submitted work. 

ViLLE has been used as a collaborative education tool and shown to be effective to improve student 

motivation and performance (Laakso, Kaila, & Rajala, 2018). In addition, online exams and surveys 

may be presented via ViLLE, to measure student performance and skills. We used ViLLE to survey 

students to determine prior programming knowledge in an earlier study (Veerasamy, Daryl D'Souza, & 

Laakso, 2018). At the time of writing, ViLLE has been used by 6735 instructors of various courses 

including mathematics (8189), Finnish language (3236) and programming (920), at school and 

university levels. Over 132738 students have registered with ViLLE to date, for online learning 

support.  

3.1.2 Formative assessment: ViLLE Homework (HE) and Demo exercise (DE)  

Homework for Algorithms and Programming is set weekly for 8 weeks. Each set of exercises has 5-10 

questions, comprising exercise types: objective, code tracing, visualization, filling missing parts of 

code. A demo exercises are set bi-weekly, after the first three weeks of the semester. Each set has 4-7 

coding questions. The maximum possible total score for HEs is 217 and for DEs, 400.  The due date for 

homework is usually one week after the HE notification date. Students are allowed to submit their 
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answers as many times as they like (via ViLLE), each new submission replacing previous submissions. 

Submitted answers for HE are automatically graded. Students receive instant feedback/scores for every 

submission. While instructors may view submission history, students can no longer see previous 

submissions. The purpose of “multiple submission attempts” and feedback is to support student 

learning and their study behaviours, and to improve their scores. A few code completion exercises are 

manually graded by instructors and marks with feedback entered via ViLLE. Figure 1 presents a 

screenshot illustrating student interaction with ViLLE.  

---------------Figure 1 here--------------- 

DE exercises are also delivered to students via ViLLE a week before the day when DE sessions are 

to be conducted. Figure 2 shows a sample screenshot of coding exercises for a DE session.  

---------------Figure 2 here--------------- 

Students are expected to prepare DE solutions at home and present their solutions to designated 

DE sessions. In a DE session, all students’ solutions are discussed, and a few students are selected 

randomly via ViLLE, to demonstrate their answers to the entire class. No marks are awarded for class 

demonstrations (DEs). However, students who complete the DE exercises are instructed to enter their 

solutions into ViLLE, via the instructor’s computer for subsequent marking. The marks for DEs are 

calculated by ViLLE based on their registered responses in the lecturer’s computer (Veerasamy, et al., 

2016). Both HE and DE are hurdles and students should secure at least 50% in each category to be 

eligible to sit final exam. 

 3.1.3 Summative assessment: Final Exam (FE) 

There is one summative assessment task, the final examination (FE), which is conducted at the end of 

the course of study, electronically via ViLLE. The exam duration is 180 minutes. The FE is a hurdle 

and students must secure at least 50% to pass the course. The exam is divided into three sections: 
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multiple choice questions, short answer questions, and coding questions. The maximum possible score 

for the FE is 90. 

3.1.4 Problem-solving Inventory (PSI) 

The PSI is a questionnaire to measure an individual’s self-appraisal in problem-solving skills (Heppner 

& Petersen, 1982). The PSI questionnaire contains 35 closed-format Likert type questions including 

three filler questions with 6-point in the Likert scale. The PSI consists of three subscales denoted: PSC 

(11 items), AAS (16 items) and PC (5 items) (Table 1).  

---------------Table 1 here--------------- 

The PSI questions (in English), were translated into Finnish for students whose native language is 

Finnish and validated by colleagues (fluent in English and Finnish) for linguistic quality checking and 

equivalence. The PSI questions were presented via ViLLE at the beginning of the semester, to be 

completed optionally. The reliability and validity of PSC is .85; AAS is .84, PC is.72 and the total 

inventory (N =150) is .90, which suggests that the constructs were internally consistent. Similarly, the 

estimates of validity for PSI suggest that the scores of three factors (PSC, AAS and PC) are 

significantly correlated (ps < .0001) with students’ ratings of their levels of PSI, and 

satisfaction/dissatisfaction with their PSI (Heppner & Petersen, 1982). In addition, the Cronbach Alfa 

internal consistency reliability coefficient of the PSI scale is .88 and the credibility coefficient obtained 

with dividing in half was found as r = .85 (Akben, 2018). It shows that PSI has very good internal 

consistency and stability in predicting an individual’s self-perception of PSS. This PSI has also been 

used to measure student PSS in programming courses (Yurdugül & Aşkar, 2013; Uysal, 2014; Özen, 

2016). We ran the Cronbach alfa, a psychometric test to measure PSI reliability yielding 0.855, which 

indicates a high level of internal consistency for our scale, with the collected data. The validity of the 

survey responses based on student honesty; students tend to respond selectively to overweight their 
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own capabilities in order to present a good impression (Rosenfeld, Booth-Kewley, & Edwards, 1996). 

However, studies have vouched for PSI’s significant internal consistency in predicting student PSS.  

 

4. DATA ANALYSIS AND RESULTS 

Table 2 provides the PSS score bands and the number of students by PSS levels calculated via the PSI 

survey, and as defined by Heppner et al. for further analysis (Heppner & Petersen, 1982).   

---------------Table 2 here--------------- 

A Shapiro-Wilk test was conducted to check if data were normally distributed (Ghasemi & 

Zahediasl, 2012). The p-value was smaller than the alpha level. That is, the mean scores for PSS, HE, 

DE and FE were not normally distributed. Accordingly, we used Spearman’s Rank correlation 

coefficient (SpR) to measure the statistical dependence between the selected variables PSI and HE, DE, 

and FE (Jauke & Kossowski, 2011). Table 3 presents the summary of SpR results between the 

assessment task variables, for the year 2016. 

---------------Table 3 here--------------- 

There is a negative linear relationship between PSS and HE, DE and FE. The Sig values (2-tailed) 

of HE (0.034), DE (0.016), and FE (0.001) point to a correlation between the selected variables and 

hence evidence to reject the null hypothesis of no relationship between the two variables. In addition, 

the negative correlation values indicate that students who have low PSS may struggle to perform better 

in FE. However, the SpR correlation values of PSS and HE (-0.165) and PSS and DE (-0.199) are weak 

although the SpR correlation value of PSS and FE (-0.254) is nearly moderate. As mentioned, students 

who have poor PSS will also perform poorly in formative assessment tasks. We verified this via the 

average HE and DE scores for each PSS level to ascertain if there was a significant difference in 

assessment tasks performance between PSS levels. Table 4 presents the results. 

---------------Table 4 here--------------- 
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On average, students with Level1 PSS performed better in assessment tasks than students with 

lower PSS (Levels 2 and 3). The average formative assessment (HE and DE together) score for PSS 

Levels 1, 2 and 3 is, respectively, 82%, 79% and 75%. 

---------------Figure 3 here--------------- 

We used the Kruskal-Wallis test to show that there was no statistically significant difference in HE 

scores between the different PSS groups (χ2(2) = 1.350, p = 0.509>0.05), with a mean rank HE score of 

92.42 for PSS Level1, 83.26 for PSS Level2 and 79.04 for PSS Level3. Similarly, a corresponding 

Kruskal-Wallis test for DE yielded a p-value 0.173 > 0.05. Hence, there was no statistically significant 

difference in DE scores between the different PSS levels (χ2(2) = 3.507), with a mean rank DE scores 

of 94.44, 85.38 and 73.73, respectively for PSS Level1, Level2 and Level3. As the test results were 

insignificant, we did not do a Bonferroni’s post-hoc correction on HE and DE for students with 

different PSS. 

 

Similarly, students who are good problem solvers performed significantly better in the final 

examination. To answer the second research question (b), we calculated the average FE scores for each 

PSS level, to ascertain if there was any significant difference between the three PSS groups, based on 

their overall mean FE scores. Table 5 and Figure 4 reveal a significant difference between PSS levels 

for average FE scores (83%, 79% and 69%). Overall, students with effective and moderate PSS (Levels 

1 and 2) secured higher scores than students with poor PSS (Level3) in the final programming 

examination.  

---------------Table 5 here--------------- 

---------------Figure 4 here--------------- 

We also identified the impact of PSS on FE scores (out of 90 marks) to answer the research 

question (b). Figure 5 presents the number (%) of students versus score range for various PSS levels.  
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---------------Figure 5 here--------------- 

23% of students at PSS Level3 attained low scores (<45); however, only 11% of students at PSS 

Level1 and 12% of students at PSS Level2 got low scores in the FE. Nearly 11% at Level3, 20% at 

Level2, and 8% at Level1, got 67-77 marks in the FE. Also, 50% Level1 got above 88-90 marks in the 

FE. However, only 8% at Level3 got above 88-90 marks in the FE. These differences answer research 

question (b) (that student PSS may influence student final programming exam performance). 

Furthermore this was confirmed by a Kruskal-Wallis test followed by Bonferroni post-hoc correction. 

There was a statistically significant difference in FE scores between the different PSS groups (χ2(2) = 

11.700, p = 0.003< 0.05), with a mean rank FE scores of 101.46 (Level1), 87.98 (Level2) and 64.69 

(PSS Level3). In addition, Figure 6 presents the overall grades obtained by all students despite their 

PSS levels.  

---------------Figure 6 here--------------- 

In addition, the post hoc test using the Bonferroni correction also revealed that the distribution of 

FE scores for PSS Level3 was statistically significantly different to the FE scores for PSS Levels 1 (p = 

0.026) and 2 (p = 0.029). However, the distribution of FE scores for PSS Level2 is not statistically 

significantly different to FE scores for PSS Level1 (p = 1.000). Therefore, we conclude that there is a 

statistically significant difference in FE scores between the students with high-level PSSs compared 

with those with low-level PSS. Our Bonferroni multiple comparison post-hoc correction results 

prompted us to ascertain whether PSS can serve as a significant predictor for student achievement in 

final exams for programming (research question (c)). We used multiple linear regression analysis to 

identify whether or not FE would be impacted by PSS.  

---------------Table 6 here--------------- 

The multiple regression results (Table 6) clearly demonstrate that PSS may be used as a good 

regression model variable to predict FE (p-value (0.004 < 0.050, coefficient 0.222) is significantly 
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different from 0. Hence, student PSS scores can be included as predictor variables for the purposes of 

developing a predictive model to predict students’ final exam performances in introductory 

programming courses. 

 

5. DISCUSSION 

This study investigated the relationship between student problem-solving abilities and their 

performance in formative and summative assessment tasks in an introductory programming course. The 

foregoing analysis revealed a monotonic relationship between student PSS scores and formative and 

summative performances. However, the strength of the relationship between these variables (HE, DE, 

and FE) on PSS is weak (Table 3), implying that PSS may impact academic performance in 

programming courses. Furthermore, there is no significant difference in performance in formative 

assessments between students with effective PSS and students with poor PSS (Figure 3). Hence, these 

results do not answer our research question (a) although there is a small mean (HE and DE mean 

scores) difference in formative task scores among the various PSS groups (Table 4). 

The SpR results for PSS and FE (Spr = -254) and mean FE results suggest that effective problem 

solvers may perform better in the FE than poor problem solvers (Table 5). Specifically, the results of 

multiple comparison tests (Kruskal-Wallis and Bonferroni correction) answer our research question (b), 

revealing that there is a statistically significant difference in final exam scores between the students 

with effective PSS and those with poor PSS, although both groups of students performed similarly on 

formative assessment tasks. In addition, Figure 5 results suggest that students with poor PSS may 

struggle to achieve high scores in FE compared to students with effective and moderate PSS. 

Furthermore, we found no significant differences between effective problem solvers and moderate 

problem solvers in their FE scores. However, Table 6 results answer our research question (c) and 

suggest that student PSS could be a possible predictor for student achievement in final exams of 
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programming. In addition, the findings on relationship between student PSS and FE performance is 

consistent with literature review of other studies (Omiwale, 2011; Bester, 2014). However, our study 

results did not congruence with research studies examined the relationship between student prior PSS 

and final grades (Özyurt, 2015; Lishinski et al., 2018). Therefore, we conclude that the students with 

poor PSS scored on average lower than those with good and effective PSS.  

The multiple linear regression results for PSS on FE scores, and the differences between mean FE 

scores within each PSS group answered research question (c), and suggested that student PSS may 

impact FE performance. Therefore, we conclude that student PSS can be considered as a significant 

factor to predict student final programming exam performance. However, our research findings on 

relationship between PSS and formative assessment tasks led us to surmise that in general PSS may not 

be considered as a significant factor to predict student performance in formative assessment tasks, 

although this should be analysed further to support our conclusion. In addition, the results on 

connection of PSS on formative assessment tasks raised a few other controversial points. First, 

increasing use of the Internet and other support systems as resources for solution ideas which, in turn, 

may have caused a diminution of originality in analysing problems and in problem solving; students 

often use ICT applications to obtain results for given assessment tasks (Veerasamy & Souza-Daw, 

2012). Second, formative assessments are designed to assess students for learning, and to improve 

learning outcomes and PSS. However, if the student is not genuinely involved or does not invest the 

required amount of effort in completing and submitting formative assessment tasks, then it is difficult 

for those students to perform better in the FE. This is because, typically, final exams assess overall 

student knowledge of the subject, requiring students to think critically, to find solutions. For example, 

students are often are presented problems in final exams, previously not encountered. However, 

students are expected to solve these new problems through problem-solving techniques that they learnt 

via formative assessments and other learning sources (Martin, 1971). This implies that if the students 
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have not developed a deep learning, via their formative assessments, to prepare solutions, they may 

struggle to perform well in summative tasks. Moreover, if the instructional methodologies and 

formative assessments are not aligned with summative assessments, then students may struggle to cope 

with final exam stress or may be unable to transfer their problem-solving skills (Mayer, 1998). That is, 

students’ lack of “learning transferability” requires application of what is previously learned to 

intended assessments. For example, if students are presented with problems in summative assessment 

tasks that are not previously encountered in formative assessment tasks, during or prior to their study, 

they are likely perform poorly or even fail. In addition, if the students fail to solve formative 

assessment problems, they too may have issues related to PSS transferability, when attempting to solve 

non-routine problems. As noted, solving a programming problem requires computational thinking, 

which is a subset of PSS, and is considered to involve abstraction, automation, solution execution and 

evaluation, including the act of transferring existing knowledge for new situations (Voskoglou & 

Buckley, 2012). It is possible that formative assessment tasks used in this course were not as well 

aligned, if at all, with the FE questions or students were not introduced to techniques to solve non-

routine problems. Furthermore, we also infer from our Kruskal-Wallis test results on PSS and 

formative assessment tasks that it is possible that students might have correctly completed the given 

formative assessment, without understanding the objective of the formative assessment question 

(Jolliffe, 1990). However, for formative exercises not discussed in the class, students may well have 

felt justified in using other resources to complete homework. In addition, it is also possible that 

students might have not done formative assessments on their own, even though they were encouraged 

to use multiple submission attempts and, in turn, to develop their PSS. This needs further analysis. 

Despite these results, it raises the question: What can be done to help students who do not have 

problem solving transferability skills despite understanding how to solve routine problems presented in 

assessment tasks? Our results (Table 4 and Figure 3) revealed that poor problem solvers performed 
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similarly to moderate and effective problem solvers in formative assessment tasks. However, they 

failed to achieve high scores in the final exam, due to lack of problem-solving transferability skills or 

lack of familiarity with summative assessment tasks (Table 5). Therefore, further analysis is required to 

identify the similarities and differences between students with different PSS levels based on problems 

presented in formative assessment tasks and summative assessment tasks. However, in keeping with 

several previous studies, our results (Table 6) revealed that PSS has a marked effect on student learning 

outcomes, and is one of the strongest determinants of summative performance indicators for 

programming courses. Hence, PSS may be used to determine student learning and performance. 

6. CONCLUSION, LIMITATIONS AND FUTURE WORK 

We have identified that performance in formative assessment and PSS are weakly correlated. However, 

student PSS and FE scores have a moderately negative correlation. Specifically, there is a difference in 

FE scores between students with good versus those with poor PSS. Additionally, students with poor 

PSS may have issues with problem-solving transferability skills, which need further study. Therefore, 

our results provide evidence that existing assessment tasks in introductory programming may need 

changes in order to bridge the gap between PSS and performance in assessments. It may be concluded 

that measuring student PSS in the beginning of novice programming course can be useful in predicting 

the student final programming exam performance in the course. In addition, our results represent a 

motivation to ascertain factors that prevent students with poor PSS from securing high scores in FE. 

Our study has several limitations. First, the sample size was not sufficiently large and the data were 

obtained from one course within one university. Second, we used self-reported survey data to examine 

student PSS levels, which may contain potential sources of bias; it is unknown whether or not students 

responded to the questionnaires, honestly. Despite these limitations, our findings provide some further 

ideas for both teaching practice and future research. Both PSS and assessment tasks are important 
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variables with PSS being strongly connected with student final exam performance. Hence, establishing 

student PSS at the outset may aid instructors to obtain pedagogically meaningful information to allow 

for strategies to alleviate problem-solving.  

Our study may be extended to identify the impact of problem-solving transferability skills on 

student programming problem-solving, by examining the following questions: How to improve student 

programming problem-solving skills via assessment tasks? What may be done to help students to be 

creative when they are faced with non-routine programming problems? How student non-routine 

problem-solving skills may be promoted by providing programming assessment tasks? What is the 

impact of student problem-solving transferability skills on student performance in programming 

courses? How do student general problem-solving skills differ from specific problem-solving skills for 

learning programming? 

 

7. EDUCATIONAL IMPLICATIONS 

The aforementioned limitations aside, our findings provide ideas for pedagogy in introductory 

programming. Primarily, it is possible to categorize students based on PSS, to explore student 

constructivist learning improvements (Vygotsky, 1980; Ben-Ari, 2001). PSS levels may assist 

instructors to design constructivist-relevant assessments, to improve abstract reasoning skills for 

programming. Moreover, problem-solving skills are identified as one of the required “employability 

skills in the 21st century” (Suarta et al., 2017). That is, students should be able to succeed in studies and 

in the workplace. This requires assessment should to be (also) aligned with employment skills 

requirements. This means that while students’ academic achievements may be highly valued, they may 

not suffice to secure employment, as employers expect students to have well developed problem-

solving skills (Yorke, 2014). Therefore, assessing student PSS levels may help instructors to develop 
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instructional interventions and assessment tasks, to improve student academic self-efficacy, problem-

solving and in learning programming.  

Second, identifying effective approaches to teaching programing via application of valid 

methodological frameworks is important (Koulouri, Lauria, & Macredie, 2015). Specifically, PSS is a 

required skill to be able to understand the fundamentals of computing and should be learned while 

studying programming (Deek & McHugh, 2003). Therefore, we surmise that teaching problem-solving 

strategies before the course commences may improve novice students’ conceptual knowledge. 

However, the difference between initial measures of student PSS at the beginning and at the end of the 

course should be measured to tune the adapted curriculum, pedagogy, and tools for supporting learning.  

Third, integrating problem-based learning (PBL) with assessment tasks in the programming 

curriculum would enhance student self-efficacy and the sense of their own PSS. Notably, integrating 

problem-solving methodology and code development tasks would reduce the PSS gap between weak 

and good students. For example, PBL is a pedagogy that fosters positive development in student critical 

thinking. However, PBL implementation requires educators to come up with innovative and 

challenging tasks to realize its benefits (O'Grady & J, 2012). Therefore, attention should be paid to 

aligning formative and summative assessments improve skills transferability (Cain & Woodward, 

2012; Morgan, et al., 2015). Cain et al. presented the constructive alignment portfolio model for 

teaching introductory programming (Cain & Woodward, 2012). This model was defined based on 

constructive learning theory, which advocates use of assessments that cover both conceptual 

knowledge and programming competencies. Other studies propose lesson plans associated with course 

specific learning outcomes, which would increase student learning and impact their performance in 

assessments aligned with standards and classroom instruction (Näsström & Henriksson, 2008; Lucas, 

Dippenaar, & Toit, 2014). Assessments should be defined in a learner-centred approach or as an active 

engagement to employ student in solving authentic problems, to support constructive alignment. It 
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involves a variety of activities including multiple drafts of written work, oral presentation by students, 

group projects, and service learning assignments; these activities facilitate student engagement. 

Specifically, alignment of learning outcomes, assessment, and instruction, may improve student 

performance. However, these activities require instructors to assign, evaluate and provide frequent and 

prompt feedback in order to help student to amalgamate their learning experiences, and to increase 

student-faculty contact (Webber & Tschepikow, 2013). Therefore, the challenge for educators is to 

develop diverse assessment methods for introductory courses, to reduce the summative assessment 

performance gap between students with good and poor PSS. 
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Table 1. Meanings of the problem-solving skills subscale. 

Scales of PSI Meaning Interpretation of the PSI possible 

scores 

Low score* High score** 

Problem-

solving 

confidence 

(PSC) 

This scale reflects a basic belief and 

trust in one’s PSS to effectively 

cope with problems. 

11 66 

Approach-

avoidance 

style (AAS) 

This scale reflects a general 

tendency to approach or avoid 

problem-solving activities.  

16 96 

Personal 

control (PC) 

This scale reflects peoples’ control 

of their emotions while problem 

solving 

5 30 

Total 32 192 

* Low scores indicates that student perceives himself/herself as effective problems solver 

** High scores indicates that student perceives himself/herself as poor problem solver 
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Table 2. Students by perceived problem-solving skills level declared in the course entry survey 

PSS score band PSS level Meaning Number of 

students  

32-75 1 (High) Effective problem solver 26 

76 -100 2 (Mid) Moderate problem solver 93 

101 - 192 3 (Low) Poor problem solver 47 

Total 166 
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Table 3. Spearman’s rank correlation coefficient results: PSS, HE, DE, and FE 

Variables 

No. of students : 166 

Spearman’s Rank correlation – year 

2016 

Sig (2-

tailed) 

 

(i) PSS and HE -165* .034 

(ii) PSS and DE -199* .010 

(iii) PSS and FE -254** .001 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Table 4. The relationship between PSS (PSS levels) and student HE and DE mean scores 

PSS_Level 

No. of 

students HE_Mean DE_Mean 

HE and FE 

Mean 

Level 1 26 93.74335 70.86538 82.304365 

Level 2 93 89.88653 68.33333 79.10993 

Level 3 47 88.29297 62.39362 75.343295 

Overall  166 90.03942 67.04819  
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Table 5. The relationship between PSS (PSS levels) and student FE mean score 

PSS_Level 

No. of 

students FE-Mean 

95% confidence 

interval for mean 

Lower Upper 

Level 1 26 82.90598 73.1170 92.69496 

Level 2 93 78.88889 74.4801 83.29764 

Level 3 47 68.46336 61.6883 75.23840 

 

  



Problem-solving skills in learning programming 

Table 6. Multiple linear regression results for PSS on FE scores 

Model summary and 

coefficients 

R 

Adjusted  

R2 

Remarks 

H5: Results of  PSS on FE 

scores 

0.222 0.043 

The coefficient for PSS (0.222) is 

significantly different from 0 

because its p-value is 0.004, which 

is smaller than 0.050. So, the 

regression model is a good fit of 

the data. 
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Figure legends:  

Figure 1.  A screenshot of the automatic feedback generated by ViLLE 

Figure 2.  A sample screen shot of coding exercises for a DE session 

Figure 3. The relationship between PSS (PSS levels) and student HE and DE mean scores 

Figure 4. The relationship between PSS and mean FE scores 

Figure 5. The impacts of PSS on student FE scores – Mark ranges / grade points 

Figure 6. Frequency graph for student final exam grade 

 

 

 
 


