
1 Henceforth, for brevity, we drop the word “perceived” in “student perceived problem-solving skills” and use

either “student perceived problem-solving” or simply “student PSS”

Relationship between perceived problem-solving skills and academic performance of

novice learners in introductory programming courses

Ashok Kumar Veerasamy1, Daryl D’Souza2, Rolf Lindén1 and Mikko-Jussi Laakso1

1 Department of Future Technologies, University of Turku, Turku, Finland

2 School of Computer Science and Information Technology, RMIT University, Melbourne, Australia

Corresponding author: Ashok Kumar Veerasamy, Department of Future Technologies, University of

Turku, Turku, Finland, e-mail: ashok.veerasamy@utu.fi.

Abstract

Past research has shown that student problem-solving skills may be used to determine student final

exam performance. This study reports on the relationship between student problem-solving skills1 and

academic performance in introductory programming, in formative and summative programming

assessment tasks. We found that the more effective problem-solvers achieved better final exam scores.

There was no significant difference in formative assessment performances between effective and poor

problem-solvers. It is also possible to categorize students based on problem-solving skills, in order to

exploit opportunities to improve learning around constructivist learning theory. Finally, our study

identified transferability skills and the study may be extended to identify the impact of problem solving

transfer skills on student problem solving for programming.

Keywords: Problem-solving in programming; assessment tasks; learning transfer; problem-based

learning constructive alignment

1. INTRODUCTION

Problem solving is a valuable and desirable skill if one is to be successful in learning and in the

workplace. (Voskoglou & Buckley, 2012; Argaw et al., 2017). Confidence in one’s problem-solving

mailto:ashok.veerasamy@utu.fi

Problem-solving skills in learning programming

ability might influence student performance in assessment tasks (Bandura, 1977; Lishinski, Yadav,

Enbody, & Good, 2016). Research in computer science education has highlighted that many novice

students lack problem-solving and computational thinking skills and have difficulties in utilizing key

programming concepts to express their solutions in code (Lister, et al., 2004; Koulouri, Lauria, &

Macredie, 2015; Uysal, 2014). Hence, it is important to examine the relationship between student

problem-solving skills (PSS) and their performance in introductory programming; early awareness of

students’ problem-solving abilities allows for strategically assisting students to further develop such

skills and their programming skills. As an aside, research in computer science education has examined

the prerequisite factors important in predicting student performance (Longi, 2016; Veerasamy, Daryl

D'Souza, & Laakso, 2018). However, in spite of research on factors that contribute to success in

programming, a key question that is often asked is: Why is learning to program is easier for some than

the others? The research reported here aims to determine whether student PSS is relevant to student

performance in learning programming. Our interest was motivated by the increasingly prevailing

presence of students entering our first-year programming course with varied PSS or experience, and the

need to develop inclusive teaching strategies to engage students. Towards this objective, we pose and

address the following research questions:

a) Is perceived problem-solving skills related to student performance in ongoing assessment tasks?

b) Is perceived problem-solving skills related to student performance in the final programming exam?

c) Is it possible to propose the student problem-solving skills as a predictor to predict student

performance in final programming exam?

The paper is organized as follows. Section 2 presents a literature review of studies conducted

around PSS, its impact on assessment tasks, and its significance in relation to learning programming

and student final exam scores. Section 3 describes our research methodology. Section 4 presents the

findings of the study, which we discuss in depth in Section 5. Finally, Sections 6 and 7 present our

Problem-solving skills in learning programming

conclusions, limitations, future work and pedagogic implications; also, we identify some related future

work directions, to develop a more enhanced and innovative approach to teaching introductory

programming courses. The scope of the present study is limited in the investigation of relationship and

effects of cognitive factor PSS, on student academic performance in selected assessment tasks. The

realtionship and effects of other causal factors on student academic performance is beyond the scope of

the present study and will be dealt with in the future study.

2. RELATED WORK

Problem solving is a metacognitive skill, which reveals the way a person learns and experiences

different aspects of the problem-solving process; it is a learned life skill and every individual has their

own problem solving abilities, learned at different paces through various situations in daily life (Dostál,

2015; Ozus et al., 2015). However, an individual’s problem-solving skill is related to their problem

awareness ability, perceptibility of the problem, willingness to solve the problem, competency to solve

the problem, and cognitive self-evaluation (Dostál, 2015). Self-efficacy influences how well students

approach problems (Askar, 2009), implying that self-efficacy in learning is one of the motivational

components of problem-solving (Eskin, 2013). Several studies have emphasised the importance of PSS

(Md.Yunus et al., 2006; Voskoglou & Buckley, 2012; Argaw et al., 2017). Moreover, PSS is listed by

employers as a desirable, generic soft skill (Md.Yunus et al., 2006; White et al., 2013; Kappelman et

al., 2016). In addition, problem-solving is listed as one of the key skills to study of computer

engineering and information technology (Sabin et al., 2017), and as crucial, valuable skill for both

novice and qualified IT professionals (Kappelman et al., 2016).

Programming is a complex activity, especially for novices; it requires certain cognitive skills as a

prerequisite (Pea & Kurland, 1984). Learning to program requires the learner to think, understand the

general concepts of the program, and general problem-solving abilities to analyse, organize, implement

Problem-solving skills in learning programming

and evaluate the code outcomes (Pea & Kurland, 1984; Falloon, 2016). Several studies have examined

the importance of PSS in learning programming, and explored the integrated techniques, and factors

that promote PSS in introductory programming courses (O'Grady & J, 2012; Uysal, 2014; Koulouri,

Lauria, & Macredie, 2015; Chao, 2016). For example, while problem-based learning fosters students’

critical thinking, the presence of problem-based learning in computing curricula is not deep (O'Grady

& J, 2012). Despite the mixed results studies suggest that students who have problem-solving

competencies learn and perform better in programming and that learning programming improves

student higher-order thinking, self-efficacy and PSS (Tu & Johnson, 1990; Psycharis & Kallia, 2017;

Yukselturk & Altiok, 2017). In addition, teaching problem solving before programming improves

programming performance (Koulouri, Lauria, & Macredie, 2015). However, most novice programming

students have difficulties in formulating a problem and expressing its solution in code. Furthermore,

students who lack PSS have difficulty in utilizing key concepts, such as loops and conditionals in

programming (Koulouri, Lauria, & Macredie, 2015). These studies suggest students’ PSS may

influence their learning in programming courses and that there is a link between student PSS and

learning programming.

Educators use formative assessments to measure student learning progress in order to ascertain

learning difficulties and recommend remedial methods to improve student learning (Trumbull & Lash,

2013). However, students choose assessment tasks that they believe they are capable of completing

otherwise they tend to avoid those tasks. Moreover, confidence in one’s problem-solving ability

influences how long they will persist in difficult tasks and there is a correlation between student

problem-solving ability and performance in programming assignments (Bandura, 1977; Lishinski et al.,

2016) suggesting that problem-solving ability may influence student performance in assessments.

Prerequisite factors are important in predicting student performance (Longi, 2016; Veerasamy,

Daryl D'Souza, & Laakso, 2018). Consequently, the search continues for valuable predictor(s) of

Problem-solving skills in learning programming

student performance. However, to our knowledge no previous study has used a concrete inventory for

use as a possible predictor and predictor variables used in the studies has varied from one context to

another in several ways, including student cohort, cultural setting, etc. (Erdogdu & Erdogdu, 2015;

Sharma & Shen, 2018) Several studies have been conducted on the impact of PSS on student

performance in various courses including programming (Shrout & Witty, 1990; Adachi & Willoughby,

2013; Bester, 2014; Lishinski et al., 2018). Heppner et al. reported appraising student PSS may help

instructors to identify student study habits and attitudes that are important to academic performance,

though it is theoretically unrelated to academic achievement (Heppner & Petersen, 1982). Omiwale

conducted a study to identify the relationship between problem-solving ability and achievement in

physics among senior secondary school students, and concluded that students with better PSS get

higher grades in physics (Omiwale, 2011). Shrout et al. study reported that student problem-solving

appraisal and academic achievement can be a significant predictor for course grade (Shrout & Witty,

1990). Similarly, Bester examined the relationship between problem-solving proficiency of sophomore

mathematics students and a quantitative techniques course and reported that there is a strong

relationship between students’ problem-solving proficiency and their achievement in quantitative

techniques course (Bester, 2014). Lee et al. study has revealed that lack of cognitive strategies in

problem-solving impacts student performance in programming (Lee & Thompson, 1997). In addition,

Nowaczyk et al. concluded that testing a student’s prior PSS in the beginning of the programming

course would help to predict student programming performance (H.Nowaczyk, 1984).

In addition, several studies reported that gender and initial self-efficacy differences did not impact

novice programming learning outcomes (Bubica & Boljat, 2014; Akar & Altun, 2017; Lishinski et al.,

2018). Specifically, our Independent Samples t-Test results confirmed that the PSS and final

programming exam mean scores between male and female students is not significantly different. These

Problem-solving skills in learning programming

aforementioned studies and preliminary statistical results suggest that gender differences do not have

significant effect in programming learning.

Overall, our contribution is novel in that it focuses on finding the relationships between PSS and

assessments and to determine if PSS could be a useful predictor of performance.

3. RESEARCH METHODLOGY

The aim of this study was to examine the relationship between PSS and the results of formative and

summative assessment in programming. We measured the correlation between PSS and student

performance in an introductory programming course (see below). Data was collected in one semester

(2016), from nearly 200 enrolled students. Of these 166 students completed the problem-solving

inventory (PSI), used to ascertain students’ PSS. They also completed homework and demo exercises,

as well as an electronic final examination.

 We used Spearman’s Rank correlation coefficient technique to describe the relationship between

non independent variables such as PSS scores and selected assessment tasks, including the final

programming exam. Being mindful that correlation does not imply causality we nevertheless proceeded

with causation experiments for a better understanding of relationships between the variables. We used

the Kruskal-Wallis and the Bonferroni ad hoc tests to test for if any statistical significant differences in

academic performance between students with high and low PSS scores. There were other formative

assessment components such as project work, which was included to calculate final scores for this

course. However, project work was done in groups of two or three students, so project work was not

considered in our analysis.

 3.1 Description of the course and data collection

Algorithms and Programming has approximately 150-200 students enrolled in the autumn semester of

each year. The course comprises contact hours (28 hours of lectures, 8 hours of tutorial sessions) and

Problem-solving skills in learning programming

non-contact hours, approximately 100 hours for independent work, including demo, homework,

practice exam and discussion of project or assignment work, over the 8 weeks of semester. The

following subsections present assessment details, which include homework exercises, demo exercises,

and the final exam.

 3.1.1 ViLLE: e-learning tool

Part of the course assessment used the ViLLE software tool (Rajala & Erkki Kaila). ViLLE was used

by students for homework and class demonstration sessions, and the final exam. ViLLE is a custom

learning environment that facilitates development of share learning materials and assessment tasks. It

supports automatic grading, file submission and allows instructors to manually assess submitted work.

ViLLE has been used as a collaborative education tool and shown to be effective to improve student

motivation and performance (Laakso, Kaila, & Rajala, 2018). In addition, online exams and surveys

may be presented via ViLLE, to measure student performance and skills. We used ViLLE to survey

students to determine prior programming knowledge in an earlier study (Veerasamy, Daryl D'Souza, &

Laakso, 2018). At the time of writing, ViLLE has been used by 6735 instructors of various courses

including mathematics (8189), Finnish language (3236) and programming (920), at school and

university levels. Over 132738 students have registered with ViLLE to date, for online learning

support.

3.1.2 Formative assessment: ViLLE Homework (HE) and Demo exercise (DE)

Homework for Algorithms and Programming is set weekly for 8 weeks. Each set of exercises has 5-10

questions, comprising exercise types: objective, code tracing, visualization, filling missing parts of

code. A demo exercises are set bi-weekly, after the first three weeks of the semester. Each set has 4-7

coding questions. The maximum possible total score for HEs is 217 and for DEs, 400. The due date for

homework is usually one week after the HE notification date. Students are allowed to submit their

Problem-solving skills in learning programming

answers as many times as they like (via ViLLE), each new submission replacing previous submissions.

Submitted answers for HE are automatically graded. Students receive instant feedback/scores for every

submission. While instructors may view submission history, students can no longer see previous

submissions. The purpose of “multiple submission attempts” and feedback is to support student

learning and their study behaviours, and to improve their scores. A few code completion exercises are

manually graded by instructors and marks with feedback entered via ViLLE. Figure 1 presents a

screenshot illustrating student interaction with ViLLE.

---------------Figure 1 here---------------

DE exercises are also delivered to students via ViLLE a week before the day when DE sessions are

to be conducted. Figure 2 shows a sample screenshot of coding exercises for a DE session.

---------------Figure 2 here---------------

Students are expected to prepare DE solutions at home and present their solutions to designated

DE sessions. In a DE session, all students’ solutions are discussed, and a few students are selected

randomly via ViLLE, to demonstrate their answers to the entire class. No marks are awarded for class

demonstrations (DEs). However, students who complete the DE exercises are instructed to enter their

solutions into ViLLE, via the instructor’s computer for subsequent marking. The marks for DEs are

calculated by ViLLE based on their registered responses in the lecturer’s computer (Veerasamy, et al.,

2016). Both HE and DE are hurdles and students should secure at least 50% in each category to be

eligible to sit final exam.

 3.1.3 Summative assessment: Final Exam (FE)

There is one summative assessment task, the final examination (FE), which is conducted at the end of

the course of study, electronically via ViLLE. The exam duration is 180 minutes. The FE is a hurdle

and students must secure at least 50% to pass the course. The exam is divided into three sections:

Problem-solving skills in learning programming

multiple choice questions, short answer questions, and coding questions. The maximum possible score

for the FE is 90.

3.1.4 Problem-solving Inventory (PSI)

The PSI is a questionnaire to measure an individual’s self-appraisal in problem-solving skills (Heppner

& Petersen, 1982). The PSI questionnaire contains 35 closed-format Likert type questions including

three filler questions with 6-point in the Likert scale. The PSI consists of three subscales denoted: PSC

(11 items), AAS (16 items) and PC (5 items) (Table 1).

---------------Table 1 here---------------

The PSI questions (in English), were translated into Finnish for students whose native language is

Finnish and validated by colleagues (fluent in English and Finnish) for linguistic quality checking and

equivalence. The PSI questions were presented via ViLLE at the beginning of the semester, to be

completed optionally. The reliability and validity of PSC is .85; AAS is .84, PC is.72 and the total

inventory (N =150) is .90, which suggests that the constructs were internally consistent. Similarly, the

estimates of validity for PSI suggest that the scores of three factors (PSC, AAS and PC) are

significantly correlated (ps < .0001) with students’ ratings of their levels of PSI, and

satisfaction/dissatisfaction with their PSI (Heppner & Petersen, 1982). In addition, the Cronbach Alfa

internal consistency reliability coefficient of the PSI scale is .88 and the credibility coefficient obtained

with dividing in half was found as r = .85 (Akben, 2018). It shows that PSI has very good internal

consistency and stability in predicting an individual’s self-perception of PSS. This PSI has also been

used to measure student PSS in programming courses (Yurdugül & Aşkar, 2013; Uysal, 2014; Özen,

2016). We ran the Cronbach alfa, a psychometric test to measure PSI reliability yielding 0.855, which

indicates a high level of internal consistency for our scale, with the collected data. The validity of the

survey responses based on student honesty; students tend to respond selectively to overweight their

Problem-solving skills in learning programming

own capabilities in order to present a good impression (Rosenfeld, Booth-Kewley, & Edwards, 1996).

However, studies have vouched for PSI’s significant internal consistency in predicting student PSS.

4. DATA ANALYSIS AND RESULTS

Table 2 provides the PSS score bands and the number of students by PSS levels calculated via the PSI

survey, and as defined by Heppner et al. for further analysis (Heppner & Petersen, 1982).

---------------Table 2 here---------------

A Shapiro-Wilk test was conducted to check if data were normally distributed (Ghasemi &

Zahediasl, 2012). The p-value was smaller than the alpha level. That is, the mean scores for PSS, HE,

DE and FE were not normally distributed. Accordingly, we used Spearman’s Rank correlation

coefficient (SpR) to measure the statistical dependence between the selected variables PSI and HE, DE,

and FE (Jauke & Kossowski, 2011). Table 3 presents the summary of SpR results between the

assessment task variables, for the year 2016.

---------------Table 3 here---------------

There is a negative linear relationship between PSS and HE, DE and FE. The Sig values (2-tailed)

of HE (0.034), DE (0.016), and FE (0.001) point to a correlation between the selected variables and

hence evidence to reject the null hypothesis of no relationship between the two variables. In addition,

the negative correlation values indicate that students who have low PSS may struggle to perform better

in FE. However, the SpR correlation values of PSS and HE (-0.165) and PSS and DE (-0.199) are weak

although the SpR correlation value of PSS and FE (-0.254) is nearly moderate. As mentioned, students

who have poor PSS will also perform poorly in formative assessment tasks. We verified this via the

average HE and DE scores for each PSS level to ascertain if there was a significant difference in

assessment tasks performance between PSS levels. Table 4 presents the results.

---------------Table 4 here---------------

Problem-solving skills in learning programming

On average, students with Level1 PSS performed better in assessment tasks than students with

lower PSS (Levels 2 and 3). The average formative assessment (HE and DE together) score for PSS

Levels 1, 2 and 3 is, respectively, 82%, 79% and 75%.

---------------Figure 3 here---------------

We used the Kruskal-Wallis test to show that there was no statistically significant difference in HE

scores between the different PSS groups (χ2(2) = 1.350, p = 0.509>0.05), with a mean rank HE score of

92.42 for PSS Level1, 83.26 for PSS Level2 and 79.04 for PSS Level3. Similarly, a corresponding

Kruskal-Wallis test for DE yielded a p-value 0.173 > 0.05. Hence, there was no statistically significant

difference in DE scores between the different PSS levels (χ2(2) = 3.507), with a mean rank DE scores

of 94.44, 85.38 and 73.73, respectively for PSS Level1, Level2 and Level3. As the test results were

insignificant, we did not do a Bonferroni’s post-hoc correction on HE and DE for students with

different PSS.

Similarly, students who are good problem solvers performed significantly better in the final

examination. To answer the second research question (b), we calculated the average FE scores for each

PSS level, to ascertain if there was any significant difference between the three PSS groups, based on

their overall mean FE scores. Table 5 and Figure 4 reveal a significant difference between PSS levels

for average FE scores (83%, 79% and 69%). Overall, students with effective and moderate PSS (Levels

1 and 2) secured higher scores than students with poor PSS (Level3) in the final programming

examination.

---------------Table 5 here---------------

---------------Figure 4 here---------------

We also identified the impact of PSS on FE scores (out of 90 marks) to answer the research

question (b). Figure 5 presents the number (%) of students versus score range for various PSS levels.

Problem-solving skills in learning programming

---------------Figure 5 here---------------

23% of students at PSS Level3 attained low scores (<45); however, only 11% of students at PSS

Level1 and 12% of students at PSS Level2 got low scores in the FE. Nearly 11% at Level3, 20% at

Level2, and 8% at Level1, got 67-77 marks in the FE. Also, 50% Level1 got above 88-90 marks in the

FE. However, only 8% at Level3 got above 88-90 marks in the FE. These differences answer research

question (b) (that student PSS may influence student final programming exam performance).

Furthermore this was confirmed by a Kruskal-Wallis test followed by Bonferroni post-hoc correction.

There was a statistically significant difference in FE scores between the different PSS groups (χ2(2) =

11.700, p = 0.003< 0.05), with a mean rank FE scores of 101.46 (Level1), 87.98 (Level2) and 64.69

(PSS Level3). In addition, Figure 6 presents the overall grades obtained by all students despite their

PSS levels.

---------------Figure 6 here---------------

In addition, the post hoc test using the Bonferroni correction also revealed that the distribution of

FE scores for PSS Level3 was statistically significantly different to the FE scores for PSS Levels 1 (p =

0.026) and 2 (p = 0.029). However, the distribution of FE scores for PSS Level2 is not statistically

significantly different to FE scores for PSS Level1 (p = 1.000). Therefore, we conclude that there is a

statistically significant difference in FE scores between the students with high-level PSSs compared

with those with low-level PSS. Our Bonferroni multiple comparison post-hoc correction results

prompted us to ascertain whether PSS can serve as a significant predictor for student achievement in

final exams for programming (research question (c)). We used multiple linear regression analysis to

identify whether or not FE would be impacted by PSS.

---------------Table 6 here---------------

The multiple regression results (Table 6) clearly demonstrate that PSS may be used as a good

regression model variable to predict FE (p-value (0.004 < 0.050, coefficient 0.222) is significantly

Problem-solving skills in learning programming

different from 0. Hence, student PSS scores can be included as predictor variables for the purposes of

developing a predictive model to predict students’ final exam performances in introductory

programming courses.

5. DISCUSSION

This study investigated the relationship between student problem-solving abilities and their

performance in formative and summative assessment tasks in an introductory programming course. The

foregoing analysis revealed a monotonic relationship between student PSS scores and formative and

summative performances. However, the strength of the relationship between these variables (HE, DE,

and FE) on PSS is weak (Table 3), implying that PSS may impact academic performance in

programming courses. Furthermore, there is no significant difference in performance in formative

assessments between students with effective PSS and students with poor PSS (Figure 3). Hence, these

results do not answer our research question (a) although there is a small mean (HE and DE mean

scores) difference in formative task scores among the various PSS groups (Table 4).

The SpR results for PSS and FE (Spr = -254) and mean FE results suggest that effective problem

solvers may perform better in the FE than poor problem solvers (Table 5). Specifically, the results of

multiple comparison tests (Kruskal-Wallis and Bonferroni correction) answer our research question (b),

revealing that there is a statistically significant difference in final exam scores between the students

with effective PSS and those with poor PSS, although both groups of students performed similarly on

formative assessment tasks. In addition, Figure 5 results suggest that students with poor PSS may

struggle to achieve high scores in FE compared to students with effective and moderate PSS.

Furthermore, we found no significant differences between effective problem solvers and moderate

problem solvers in their FE scores. However, Table 6 results answer our research question (c) and

suggest that student PSS could be a possible predictor for student achievement in final exams of

Problem-solving skills in learning programming

programming. In addition, the findings on relationship between student PSS and FE performance is

consistent with literature review of other studies (Omiwale, 2011; Bester, 2014). However, our study

results did not congruence with research studies examined the relationship between student prior PSS

and final grades (Özyurt, 2015; Lishinski et al., 2018). Therefore, we conclude that the students with

poor PSS scored on average lower than those with good and effective PSS.

The multiple linear regression results for PSS on FE scores, and the differences between mean FE

scores within each PSS group answered research question (c), and suggested that student PSS may

impact FE performance. Therefore, we conclude that student PSS can be considered as a significant

factor to predict student final programming exam performance. However, our research findings on

relationship between PSS and formative assessment tasks led us to surmise that in general PSS may not

be considered as a significant factor to predict student performance in formative assessment tasks,

although this should be analysed further to support our conclusion. In addition, the results on

connection of PSS on formative assessment tasks raised a few other controversial points. First,

increasing use of the Internet and other support systems as resources for solution ideas which, in turn,

may have caused a diminution of originality in analysing problems and in problem solving; students

often use ICT applications to obtain results for given assessment tasks (Veerasamy & Souza-Daw,

2012). Second, formative assessments are designed to assess students for learning, and to improve

learning outcomes and PSS. However, if the student is not genuinely involved or does not invest the

required amount of effort in completing and submitting formative assessment tasks, then it is difficult

for those students to perform better in the FE. This is because, typically, final exams assess overall

student knowledge of the subject, requiring students to think critically, to find solutions. For example,

students are often are presented problems in final exams, previously not encountered. However,

students are expected to solve these new problems through problem-solving techniques that they learnt

via formative assessments and other learning sources (Martin, 1971). This implies that if the students

Problem-solving skills in learning programming

have not developed a deep learning, via their formative assessments, to prepare solutions, they may

struggle to perform well in summative tasks. Moreover, if the instructional methodologies and

formative assessments are not aligned with summative assessments, then students may struggle to cope

with final exam stress or may be unable to transfer their problem-solving skills (Mayer, 1998). That is,

students’ lack of “learning transferability” requires application of what is previously learned to

intended assessments. For example, if students are presented with problems in summative assessment

tasks that are not previously encountered in formative assessment tasks, during or prior to their study,

they are likely perform poorly or even fail. In addition, if the students fail to solve formative

assessment problems, they too may have issues related to PSS transferability, when attempting to solve

non-routine problems. As noted, solving a programming problem requires computational thinking,

which is a subset of PSS, and is considered to involve abstraction, automation, solution execution and

evaluation, including the act of transferring existing knowledge for new situations (Voskoglou &

Buckley, 2012). It is possible that formative assessment tasks used in this course were not as well

aligned, if at all, with the FE questions or students were not introduced to techniques to solve non-

routine problems. Furthermore, we also infer from our Kruskal-Wallis test results on PSS and

formative assessment tasks that it is possible that students might have correctly completed the given

formative assessment, without understanding the objective of the formative assessment question

(Jolliffe, 1990). However, for formative exercises not discussed in the class, students may well have

felt justified in using other resources to complete homework. In addition, it is also possible that

students might have not done formative assessments on their own, even though they were encouraged

to use multiple submission attempts and, in turn, to develop their PSS. This needs further analysis.

Despite these results, it raises the question: What can be done to help students who do not have

problem solving transferability skills despite understanding how to solve routine problems presented in

assessment tasks? Our results (Table 4 and Figure 3) revealed that poor problem solvers performed

Problem-solving skills in learning programming

similarly to moderate and effective problem solvers in formative assessment tasks. However, they

failed to achieve high scores in the final exam, due to lack of problem-solving transferability skills or

lack of familiarity with summative assessment tasks (Table 5). Therefore, further analysis is required to

identify the similarities and differences between students with different PSS levels based on problems

presented in formative assessment tasks and summative assessment tasks. However, in keeping with

several previous studies, our results (Table 6) revealed that PSS has a marked effect on student learning

outcomes, and is one of the strongest determinants of summative performance indicators for

programming courses. Hence, PSS may be used to determine student learning and performance.

6. CONCLUSION, LIMITATIONS AND FUTURE WORK

We have identified that performance in formative assessment and PSS are weakly correlated. However,

student PSS and FE scores have a moderately negative correlation. Specifically, there is a difference in

FE scores between students with good versus those with poor PSS. Additionally, students with poor

PSS may have issues with problem-solving transferability skills, which need further study. Therefore,

our results provide evidence that existing assessment tasks in introductory programming may need

changes in order to bridge the gap between PSS and performance in assessments. It may be concluded

that measuring student PSS in the beginning of novice programming course can be useful in predicting

the student final programming exam performance in the course. In addition, our results represent a

motivation to ascertain factors that prevent students with poor PSS from securing high scores in FE.

Our study has several limitations. First, the sample size was not sufficiently large and the data were

obtained from one course within one university. Second, we used self-reported survey data to examine

student PSS levels, which may contain potential sources of bias; it is unknown whether or not students

responded to the questionnaires, honestly. Despite these limitations, our findings provide some further

ideas for both teaching practice and future research. Both PSS and assessment tasks are important

Problem-solving skills in learning programming

variables with PSS being strongly connected with student final exam performance. Hence, establishing

student PSS at the outset may aid instructors to obtain pedagogically meaningful information to allow

for strategies to alleviate problem-solving.

Our study may be extended to identify the impact of problem-solving transferability skills on

student programming problem-solving, by examining the following questions: How to improve student

programming problem-solving skills via assessment tasks? What may be done to help students to be

creative when they are faced with non-routine programming problems? How student non-routine

problem-solving skills may be promoted by providing programming assessment tasks? What is the

impact of student problem-solving transferability skills on student performance in programming

courses? How do student general problem-solving skills differ from specific problem-solving skills for

learning programming?

7. EDUCATIONAL IMPLICATIONS

The aforementioned limitations aside, our findings provide ideas for pedagogy in introductory

programming. Primarily, it is possible to categorize students based on PSS, to explore student

constructivist learning improvements (Vygotsky, 1980; Ben-Ari, 2001). PSS levels may assist

instructors to design constructivist-relevant assessments, to improve abstract reasoning skills for

programming. Moreover, problem-solving skills are identified as one of the required “employability

skills in the 21st century” (Suarta et al., 2017). That is, students should be able to succeed in studies and

in the workplace. This requires assessment should to be (also) aligned with employment skills

requirements. This means that while students’ academic achievements may be highly valued, they may

not suffice to secure employment, as employers expect students to have well developed problem-

solving skills (Yorke, 2014). Therefore, assessing student PSS levels may help instructors to develop

Problem-solving skills in learning programming

instructional interventions and assessment tasks, to improve student academic self-efficacy, problem-

solving and in learning programming.

Second, identifying effective approaches to teaching programing via application of valid

methodological frameworks is important (Koulouri, Lauria, & Macredie, 2015). Specifically, PSS is a

required skill to be able to understand the fundamentals of computing and should be learned while

studying programming (Deek & McHugh, 2003). Therefore, we surmise that teaching problem-solving

strategies before the course commences may improve novice students’ conceptual knowledge.

However, the difference between initial measures of student PSS at the beginning and at the end of the

course should be measured to tune the adapted curriculum, pedagogy, and tools for supporting learning.

Third, integrating problem-based learning (PBL) with assessment tasks in the programming

curriculum would enhance student self-efficacy and the sense of their own PSS. Notably, integrating

problem-solving methodology and code development tasks would reduce the PSS gap between weak

and good students. For example, PBL is a pedagogy that fosters positive development in student critical

thinking. However, PBL implementation requires educators to come up with innovative and

challenging tasks to realize its benefits (O'Grady & J, 2012). Therefore, attention should be paid to

aligning formative and summative assessments improve skills transferability (Cain & Woodward,

2012; Morgan, et al., 2015). Cain et al. presented the constructive alignment portfolio model for

teaching introductory programming (Cain & Woodward, 2012). This model was defined based on

constructive learning theory, which advocates use of assessments that cover both conceptual

knowledge and programming competencies. Other studies propose lesson plans associated with course

specific learning outcomes, which would increase student learning and impact their performance in

assessments aligned with standards and classroom instruction (Näsström & Henriksson, 2008; Lucas,

Dippenaar, & Toit, 2014). Assessments should be defined in a learner-centred approach or as an active

engagement to employ student in solving authentic problems, to support constructive alignment. It

Problem-solving skills in learning programming

involves a variety of activities including multiple drafts of written work, oral presentation by students,

group projects, and service learning assignments; these activities facilitate student engagement.

Specifically, alignment of learning outcomes, assessment, and instruction, may improve student

performance. However, these activities require instructors to assign, evaluate and provide frequent and

prompt feedback in order to help student to amalgamate their learning experiences, and to increase

student-faculty contact (Webber & Tschepikow, 2013). Therefore, the challenge for educators is to

develop diverse assessment methods for introductory courses, to reduce the summative assessment

performance gap between students with good and poor PSS.

8. ACKNOWLEDGEMENTS

The authors wish to thank all members of ViLLE team research project group, Department of Future

Technologies, University of Turku for their comments and support that greatly improved the

manuscript. This research was supported fully by a University of Turku, Turku, Finland.

9. REFERENCES

Adachi, P. J., & Willoughby, T. (2013). More Than Just Fun and Games: The Longitudinal

Relationships Between Strategic Video Games, Self-Reported Problem Solving Skills, and

Academic Grades. Journal of Youth and Adolescence, 42(7), 1041-1052. doi:10.1007/s10964-013-

9913-9

Akar, S. G., & Altun, A. (2017). Individual Differences in Learning Computer Programming: A Social

Cognitive Approach. Contemporary Educational Technology, 8(3), 195-213.

Problem-solving skills in learning programming

Akben, N. (2018). Effects of the Problem-Posing Approach on Students’ Problem Solving Skills and

Metacognitive Awareness in Science Education. Research in Science Education, 1-23. doi:

https://doi.org/10.1007/s11165-018-9726-7

Argaw, A. S., Haile, B. B., Ayalew, B. T., & Kuma, S. G. (2017). The Effect of Problem Based

Learning (PBL) Instruction on Students’ Motivation and Problem Solving Skills of Physics.

Journal of Mathematics Science and Technology Education, 13(3), 857-871.

doi:10.12973/eurasia.2017.00647a

Askar, P. (2009). An investigation of factors related to self-efficacy for Java programming among

engineering students. The Turkish Online Journal of Educational Technology, 8(1).

Bandura, A. (1977). Self-efficacy: Toward a Unifying Theory of Behavioral Change. Psychological

Review, 84(2), 191-215.

Ben-Ari, M. (2001). Constructivism in Computer Science Education. Journal of Computers in

Mathematics and Science Teaching, 20, 45-73.

Bester, L. (2014). Investigating the problem-solving proficiency of second-year Quantitative

Techniques students : the case of Walter Sisulu University. PhD Dissertation, University of South

Africa, Department of Education, Pretoria. Retrieved from http://hdl.handle.net/10500/14214

Bubica, N., & Boljat, I. (2014). Predictors of Novices programmer's performance. Proceedings of

ICERI2014 Conference, (pp. 1536-1545). Seville, Spain.

Cain, A., & Woodward, C. J. (2012). Toward Constructive Alignment with Portfolio Assessment for

Introductory Programming. IEEE International Conference on Teaching, Assessment, and

Learning for Engineering (pp. H1B-11- H1B-17). Hong Kong: IEEE.

doi:10.1109/TALE.2012.6360322

Problem-solving skills in learning programming

Chao, P.-Y. (2016). Exploring students' computational practice, design and performance of problem-

solving through a visual programming environment. Computers & Education, 202-215. Retrieved

from https://doi.org/10.1016/j.compedu.2016.01.010

Deek, F. P., & McHugh, J. A. (2003). Problem solving and cognitive foundations for program

development: an integrated model. Sixth International Conference on Computer Based Learning in

Science (CBLIS), (pp. 266-271). Nicosia, Cyprus.

Dostál, J. (2015, February 12). Theory of problem solving. Procedia - Social and Behavioral Sciences,

174, 2798 – 2805. doi:10.1016/j.sbspro.2015.01.970

Erdogdu, F., & Erdogdu, E. (2015). The impact of access to ICT, student background and school/home

environment on academic success of students in Turkey: An international comparative analysis.

Computers & Education, 82, 26-49. Retrieved from

https://doi.org/10.1016/j.compedu.2014.10.023

Eskin, M. (2013). Components of Problem Solving. In M. Eskin, Problem Solving Therapy in the

Clinical Practice (pp. 21-27). Elsevier.

Falloon, G. (2016). An analysis of young students' thinking when completing basic coding tasks using

Scratch Jnr. On the iPad. Journal of Computer Assisted Learning, 32(6), 576–593.

doi:10.1111/jcal.12155

Ghasemi, A., & Zahediasl, S. (2012). Normality Tests for Statistical Analysis: A Guide for Non-

Statisticians. International Journal of Endocrinology Metabolism, 10(2), 486-489.

H.Nowaczyk, R. (1984). The relationship of problem-solving ability and course performance among

novice programmers. International Journal of Man-Machine Studies, 21(2), 149-160. Retrieved

from https://doi.org/10.1016/S0020-7373(84)80064-4

Heppner, P. P. (1982). The Problem Solving Inventory. New York: The American Psychological

Association.

Problem-solving skills in learning programming

Heppner, P. P., & Krauskopf, C. J. (1987). An Information-Processing Approach to Personal Problem

Solving. The Counseling Psychologist, 15(3), 371-447.

doi:https://doi.org/10.1177/0011000087153001

Heppner, P. P., & Petersen, C. H. (1982). The Development and Implications of a Personal Problem-

Solving Inventory. Journal of Counseling Psychology, 29(1), 66-75.

Jauke, J., & Kossowski, T. (2011). Comparison of values of Pearson's and Spearman's Correlation

Coefficients on the same sets of Data. (A. Kostrzewski, Ed.) Quaestiones geographicae, 30(2), 87-

93.

Jolliffe, F. R. (1990). Assessment of the Understanding of Statistical Concepts. Third International

Conference on Teaching Statistics. 1, pp. 461-466. Otago University Press.

Kappelman, L., C.Jones, M., Johnson, V., R.Mclean, E., & Bonnme, K. (2016). Skills for success at

different stages of an IT professional's career. Communications of the ACM, 59(8), pp. 64-70.

doi:10.1145/2888391

Koulouri, T., Lauria, S., & Macredie, R. D. (2015). Teaching Introductory Programming: A

Quantitative Evaluation of Different Approaches. (C. Hundhausen, Ed.) ACM Transactions on

Computing Education, 14(4), 26.1-26.27. doi:10.1145/2662412

Laakso, M.-J., Kaila, E., & Rajala, T. (2018). ViLLE – collaborative education tool: Designing and

utilizing an exercise-based learning environment. Education and Information Technologies, 1655-

1676. Retrieved from https://doi.org/10.1007/s1063017-9659-1

Lee, M. O., & Thompson, A. (1997). Guided Instruction in Logo Programming and the Development

of Cognitive Monitoring Strategies among College Students. Journal of Educational Computing

Research, 16(2), 125-144. doi:https://doi.org/10.2190/PW3F-HLFD-1NNJ-H77Q

Problem-solving skills in learning programming

Lishinski, A., Yadav, A., Enbody, R., & Good, J. (2016). The Influence of Problem Solving Abilities

on Students' Performance on Different Assessment Tasks in Introductory Programming. SIGCSE

’16 (pp. 329-324). Memphis, TN, USA: ACM. doi:10.1145/2839509.2844596

Lishinski, A., Yadav, A., Good, J., & Enbody, R. (2018). Learning to Program: Gender Differences and

Interactive Effects of Students' Motivation, Goals, and Self-Efficacy on Performance. ICER '16

Proceedings of the 2016 ACM Conference on International Computing Education Research (pp.

211-220). Melbourne, VIC, Australia: ACM. doi:10.1145/2960310.2960329

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Morten Lindholm, R. M., . . . Thomas, L.

(2004). A Multi-National Study of Reading and Tracing Skills in Novice Programmers. SIGCSE

Bulletin, 36(4), 119-150.

Longi, K. (2016). Exploring factors that affect performance on introductory programming courses.

Master’s Thesis, University of Helsinki, Department of Computer Science, Helsinki.

Lucas, K., Dippenaar, S., & Toit, P. D. (2014). Analysis of assessment practice and subsequent

performance of third year level students in natural sciences. Africa Education Review, 563-583.

Retrieved from https://doi.org/10.1080/18146627.2014.935004

Martin, R. G. (1971). Plagiarism and Originality: Some Remedies. The English Journal, 60(5), 621-

625. Retrieved from http://www.jstor.org/stable/813078

Mayer, R. E. (1998). Cognitive, metacognitive, and motivational aspects of problem solving.

Instructional Science, 26(1), 49-63. Retrieved from https://doi.org/10.1023/A:1003088013286

Md.Yunus, A. S., Hamzah, R., Tarmizi, R. A., Abu, R., Md.Nor, S., Ismail, H., . . . Bakar, K. A.

(2006). Problem Solving Abilities of Malaysian University Students. International Journal of

Teaching and Learning in Higher Education, 17(2), 86-96.

Morgan, M., Sheard, J., Butler, M., Falkner, K., Simon, & Weerasinghe, A. (2015). Teaching in First-

Year ICT Education in Australia: Research and Practice. In D. D’Souza, & K. Falkner (Ed.), 17th

Problem-solving skills in learning programming

Australasian Computing Education. 160, pp. 27-30. Sydney, Australia: Australian Computer

Society.

Näsström, G., & Henriksson, W. (2008). Alignment of standards and assessment: A theoretical and

empirical study of methods for alignment. Electronic Journal of Educational Psychology, 6(3),

667-690.

O'Grady, & J, M. (2012). Practical Problem-Based Learning in Computing Education. ACM

Transactions on Computing Education, 2(3), A1-A14.

Omiwale, J. B. (2011). Relationship Between Problem-Solving Ability and Achievement in Physics

Among SeniorSecondary School Students in Osun State, Nigeria. (D. Adewuyi, Ed.) The African

Symposium: An online journal of the African Educational Research Network, 11(1), 158-165.

Ozus, E., Celikoz, M., Tufan, M., & Erden, F. (2015). Interpersonal Problem Solving Abilities of

Students of Professional Education Faculty Dressing Programme of Selcuk University. 4th

WORLD CONFERENCE ON EDUCATIONAL TECHNOLOGY RESEARCHES, WCETR2014 (pp.

456 – 462). Elsevier. doi:10.1016/j.sbspro.2015.04.827

Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer programming. New

Ideas in Psychology, 2(2), 137-168. Retrieved from https://doi.org/10.1016/0732-118X(84)90018-

7

Psycharis, S., & Kallia, M. (2017). The effects of computer programming on high school students’

reasoning skills and mathematical self-efficacy and problem solving. Instructional Science, 45,

583–602. doi:10.1007/s11251-017-9421-5

Rajala, T., & Erkki Kaila, M.-J. L. (n.d.). ViLLE. (University of Turku) Retrieved 10 20, 2015, from

http://villeteam.fi/index.php/en/

Problem-solving skills in learning programming

Rosenfeld, P., Booth-Kewley, S., & Edwards, J. E. (1996). Responses on computer surveys: Impression

management, social desirability, and the big brother syndrome. Computers in Human Behavior,

263-274.

Sabin, M., Alrumaih, H., Impagliazzo, J., Lunt, B., & Zhang, M. (2017). Information Technology

Curricula 2017: Curriculum Guidelines for Baccalaureate Degree Programs in Information

Technology. New York, NY, USA: ACM and IEEE. doi:10.1145/3173161

Sharma, R., & Shen, H. (2018). Does Education Culture Influence Factors in Learning Programming:

A Comparative Study between Two Universities across Continents. International Journal of

Learning, Teaching and Educational Research, 17(2), 1-24. Retrieved from

https://doi.org/10.26803/ijlter.17.2.1

Shrout, J. R., & Witty, T. E. (1990). Problem-Solving Appraisal, Self-Reported Study Habits, and

Performance of Academically At-Risk College Students. Journal of Counseling Psychology, 37(2),

203-207. doi:10.1037//0022-0167.37.2.203

Suarta, I. M., Suwintana, I. K., Sudhana, I. G., & Hariyanti, N. K. (2017). Employability Skills

Required by the 21st Century Workplace: A Literature Review of Labor Market Demand. 1st

International Conference on Technology and Vocational Teachers (ICTVT 2017). 102, pp. 337-

342. Atlantis Press. Retrieved from http://creativecommons.org/licenses/by-nc/4.0/

Trumbull, E., & Lash, A. (2013). Understanding Formative Assessment: Insights from Learning

Theory and Measurement Theory. San Francisco: WestEd.

Tu, J.-J., & Johnson, J. R. (1990, June). Can computer programming improve problem-solving ability?

ACM SIGCSE Bulletin, 22(2), pp. 30-33. doi:10.1145/126445.126451

Uysal, M. P. (2014). Improving First Computer Programming Experiences: The Case of Adapting a

Web-Supported and Well- Structured problem-Solving Method to a Traditional Course.

Contemporary Educational Technology, 5(3), 198-217.

Problem-solving skills in learning programming

Webber, K. L., & Tschepikow, K. (2013). The role of learner-centred assessment in postsecondary

organisational change. Assessment in Education: Principles, Policy & Practice, 20(2), 187-204.

Retrieved from https://doi.org/10.1080/0969594X.2012.717064

Veerasamy, A. K., & Souza-Daw, T. d. (2012). Impact of ICT on Society - Higher Education students

in South-East Asia. IEEE Symposium on Business, Engineering and Industrial Applications (pp.

275-278). Bandung: IEEE.

Veerasamy, A. K., Daryl D'Souza, R. L., & Laakso, M.-J. (2018). The impact of prior programming

knowledge on lecture attendance and final exam. Journal of Educational Computing Research,

0(0), 226-253. doi:10.1177/0735633117707695

Veerasamy, A. K., D'Souza, D., Lindén, R., Kaila, E., Laakso, M.-J., & Salakoski, T. (2016). The

Impact of Lecture Attendance on Exams for Novice Programming Students. International Journal

of Modern Education and Computer Science (IJMECS), 8(5), 1-11. doi:10.5815/ijmecs.2016.05.01

White, H. B., Benore, M. A., Sumter, T. F., Caldwell, B. D., & Bell, E. (2013, September 10). What

skills should students of undergraduate biochemistry and molecular biology programs have upon

graduation? Biochemistry and Molecular Biology Education, 41(5), 297-301.

doi:10.1002/bmb.20729

Voskoglou, M. G., & Buckley, S. (2012). Problem Solving and Computers in a Learning Environment.

Egyptian Computer Science Journal, 36(4), 28-46.

Vygotsky, L. S. (1980). Mind in society: The development of higher psychological processes. Harvard

university press.

Yorke, M. (2014). Employability in higher education: what it is – what it is not. Learning &

Employability-Series one. Learning and Teaching Support Network (LTSN) and the Enhancing

Student Employability Co-ordination Team (ESECT).

Problem-solving skills in learning programming

Yukselturk, E., & Altiok, S. (2017). An investigation of the effects of programming with Scratch on the

preservice IT teachers' self‐efficacy perceptions and attitudes towards computer programming.

British Journal of Educational Technology, 789-801. doi:10.1111/bjet.12453

Yurdugül, H., & Aşkar, P. (2013). Learning Programming, Problem Solving and Gender: A

Longitudinal Study. Procedia - Social and Behavioral Sciences. 83, pp. 605-610. ELSEVIER.

Retrieved from https://doi.org/10.1016/j.sbspro.2013.06.115

Özen, Y. (2016). Can I Solve the Problem? A Program Trail on Problem Solving Skill. American

Journal of Applied Psychology, 4(1), 1-10. doi:DOI:10.12691/ajap-4-1-1

Özyurt, Ö. (2015). Examining the Critical Thinking Dispositions and the Problem Solving Skills of

Computer Engineering Students. Eurasia Journal of Mathematics, 11(2).

Problem-solving skills in learning programming

Table 1. Meanings of the problem-solving skills subscale.

Scales of PSI Meaning Interpretation of the PSI possible

scores

Low score* High score**

Problem-

solving

confidence

(PSC)

This scale reflects a basic belief and

trust in one’s PSS to effectively

cope with problems.

11 66

Approach-

avoidance

style (AAS)

This scale reflects a general

tendency to approach or avoid

problem-solving activities.

16 96

Personal

control (PC)

This scale reflects peoples’ control

of their emotions while problem

solving

5 30

Total 32 192

* Low scores indicates that student perceives himself/herself as effective problems solver

** High scores indicates that student perceives himself/herself as poor problem solver

Problem-solving skills in learning programming

Table 2. Students by perceived problem-solving skills level declared in the course entry survey

PSS score band PSS level Meaning Number of

students

32-75 1 (High) Effective problem solver 26

76 -100 2 (Mid) Moderate problem solver 93

101 - 192 3 (Low) Poor problem solver 47

Total 166

Problem-solving skills in learning programming

Table 3. Spearman’s rank correlation coefficient results: PSS, HE, DE, and FE

Variables

No. of students : 166

Spearman’s Rank correlation – year

2016

Sig (2-

tailed)

(i) PSS and HE -165* .034

(ii) PSS and DE -199* .010

(iii) PSS and FE -254** .001

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

Problem-solving skills in learning programming

Table 4. The relationship between PSS (PSS levels) and student HE and DE mean scores

PSS_Level

No. of

students HE_Mean DE_Mean

HE and FE

Mean

Level 1 26 93.74335 70.86538 82.304365

Level 2 93 89.88653 68.33333 79.10993

Level 3 47 88.29297 62.39362 75.343295

Overall 166 90.03942 67.04819

Problem-solving skills in learning programming

Table 5. The relationship between PSS (PSS levels) and student FE mean score

PSS_Level

No. of

students FE-Mean

95% confidence

interval for mean

Lower Upper

Level 1 26 82.90598 73.1170 92.69496

Level 2 93 78.88889 74.4801 83.29764

Level 3 47 68.46336 61.6883 75.23840

Problem-solving skills in learning programming

Table 6. Multiple linear regression results for PSS on FE scores

Model summary and

coefficients

R

Adjusted

R2

Remarks

H5: Results of PSS on FE

scores

0.222 0.043

The coefficient for PSS (0.222) is

significantly different from 0

because its p-value is 0.004, which

is smaller than 0.050. So, the

regression model is a good fit of

the data.

Problem-solving skills in learning programming

Figure legends:

Figure 1. A screenshot of the automatic feedback generated by ViLLE

Figure 2. A sample screen shot of coding exercises for a DE session

Figure 3. The relationship between PSS (PSS levels) and student HE and DE mean scores

Figure 4. The relationship between PSS and mean FE scores

Figure 5. The impacts of PSS on student FE scores – Mark ranges / grade points

Figure 6. Frequency graph for student final exam grade

