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In this review, we will summarize the past and current state-of-the-art developments in

attenuation and scatter correction approaches for hybrid positron emission tomography

(PET) and magnetic resonance (MR) imaging. The current status of the methodological

advances for producing accurate attenuation and scatter corrections on PET/MR

systems are described, in addition to emerging clinical and research applications.

Future prospects and potential applications that benefit from accurate data corrections

to improve the quantitative accuracy and clinical applicability of PET/MR are also

discussed. Novel clinical and research applications where improved attenuation and

scatter correction methods are beneficial are highlighted.

Keywords: positron emission tomography/magnetic resonance imaging, attenuation correction, scatter

correction, positron emission tomography image quantification, magnetic resonance-based attenuation

correction

INTRODUCTION

Hybrid positron emission tomography/magnetic resonance (PET/MR) systems for clinical imaging
have been first introduced nearly a decade ago, with systems capable of either sequential or
simultaneous image acquisition. The first concept studies for successful combined PET/MR
measurements were initially performed in 1996 [1]. After solving several technical challenges
due to the complexity of integration of PET and MR, the first commercial whole-body PET/MR
systems were installed in 2010 [2, 3]. PET/MR instrumentation has been an active field and
has been discussed in several review articles [4–9]. The introduction of simultaneous PET/MR
systems for clinical use has been suggested to mark a paradigm shift for neuroimaging, and
the combination of both systems offers a multitude of advantages [10–12]. As can be seen in

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2019.00243
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2019.00243&domain=pdf&date_stamp=2020-01-29
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jarmo.teuho@tyks.fi
https://doi.org/10.3389/fphy.2019.00243
https://www.frontiersin.org/articles/10.3389/fphy.2019.00243/full
http://loop.frontiersin.org/people/749274/overview
http://loop.frontiersin.org/people/41673/overview
http://loop.frontiersin.org/people/873084/overview
http://loop.frontiersin.org/people/835329/overview


Teuho et al. MRAC and SC in PET/MR

several clinical and research scenarios, PET/MR offers many
advantages over positron emission tomography/computed
tomography (PET/CT) or standalone MR.

Fusion information of MR and PET provides advantages
over PET and computed tomography (CT) in neurological
applications, as overlayingMR and PET image supplies improved
diagnostic information in characterization of many conditions
[13]. Beyond image fusion,MR offers a library ofmultiparametric
imaging information from morphology, function to even
metabolism that cannot be obtained from CT. MR has also
an excellent sensitivity in capturing the small changes in
brain structure and function [14]. PET on the other hand,
offers a high specificity and a wide quality of radiotracers
applicable for investigation of numerous molecular targets [14].
Potential applications include metabolism, receptor function,
neurotransmitter distribution, inflammation, antigen targeting,
and tissue perfusion. Thus, PET/MR unlocks amultitude of novel
research and diagnostic applications. To improve data synergy
between PET and MR, the focus from hardware integration
has shifted to development of integrated data processing and
analyses [14]. It is clear that both the research and the diagnostic
capabilities of hybrid PET/MR could be extended from that of
PET/CT, once fusion information from PET and MR is realized
in a more complementary fashion.

However, as PET imaging is severely affected by both photon
attenuation and scatter, effective data corrections for both
physical phenomena are needed to produce quantitative images
reflecting the true spatial distribution of the radiotracer. The
physical basis of both scatter and attenuation is explained in
detail in review papers of Zaidi and Hasegawa [15], Zaidi
and Montandon [16], and Martinez-Möller and Nekolla [17].
Thus, a prerequisite to these corrections is the availability of an
accurate attenuation map containing the attenuation coefficients
for 511-keV photons at each voxel [17], which makes attenuation
correction fundamental to produce visually and quantitatively
accurate PET images. Shortly after the introduction of the
first commercial PET/MR systems, this became a fundamental
limitation of the modality, until the methodological challenges
were addressed and effective methods were introduced.

Rotating transmission sources and a bilinear scaling
procedure with CT can be applied for attenuation correction
on standalone PET and PET/CT systems, respectively [18].
On PET/MR, there are two basic methodological challenges
related to attenuation correction. First, MR-based attenuation
correction (MRAC) is a challenge due to the very basic idea of
what MR images represent—proton density and relaxation time
properties of biological tissues [17]. However, for attenuation
correction purposes, tissue electron density information needs to
be resolved. Therefore, there is no standardized transformation
procedure that can translate the MR tissue intensities to tissue
attenuation properties as in CT-based attenuation correction
(CTAC). An equally important second challenge is the short T2∗

relaxation time of bone, which makes it hard to delineate bone,
unless MR sequences based on ultrashort echo time (UTE) or
zero echo time (ZTE) sequences are used [19].

Thus, the main challenges in MRAC originated from
deriving bone density information on an individual basis and
differentiating bone in MR images. These two challenges led to

the first clinically implemented MRAC methods ignoring bone
entirely in the body and brain region and replacing bone with
soft tissue. However, neglecting bone in attenuation map in the
head region was shown to cause large, spatially varying bias
in regions close to bone, such as in the cortical regions of the
gray matter with errors of magnitude across the brain ranging
from −10 to −25% [20, 21]. These errors could also be visually
regarded as cortical hypometabolism, representing a potential
factor for misdiagnosis, thus impairing the diagnostic quality of
the PET/MR images [20, 21]. This led to a large and active field of
methodological development in MRAC.

To account for these challenges, a multitude of innovative
methods for MRAC were developed over the course of years
following the introduction of the first simultaneous PET/MR
systems. These methods are well-summarized in the excellent
review papers of Martinez-Möller and Nekolla [22], Hofmann
et al. [23], Berker and Li [24], Bezrukov et al. [18], Chen
and An [25], Izquierdo-Garcia and Catana [26], Keereman
et al. [17], Wagenknecht et al. [27], and Mehranian et al.
[28] and partially in Teuho [29]. These methods have been
proven to be fairly accurate, as a recent multicenter study
with 11 MRAC methods and three radiotracers including [18F]-
fluorodeoxyglucose ([18F]-FDG), [11C]-Pittsburgh compound
B ([11C]-PiB), and [18F]-Florbetabir showed. The methods
included have an average global performance within ±5% of
CT-based reference [30]. To illustrate this, Figure 1 shows the
reported global bias and standard deviation of the methods
reported in the MR-Based Attenuation Correction for PET/MR
Neuroimaging section, where applicable.

Thus, while the challenge of improving accuracy of MRAC
with adult brains with normal anatomy can be considered
to be solved [30, 47], future methodological advances are of
interest. It seems that the focus of methodological research in
MRAC is now shifting on improving the accuracy of the existing
methods and applying them to novel clinical and research
applications. While the accuracy of MRAC is no longer the
major methodological problem, increasing accuracy is always
desirable [36] in combination of the assessment and application
of MRAC methods for more challenging clinical and research
applications. Therefore, any application that involves detection
of subtle changes in the brain, such as dementia trajectory or
epilepsy lesion detection, will benefit from increased accuracy of
MRAC and subsequently from accurate scatter correction.

In addition to attenuation correction, scatter correction
is one of the major quantitative corrections performed in
PET, as the fraction of scattered photons in three-dimensional
(3D) PET acquisitions in the brain region can be increased
to over 30% [48]. Both attenuation and scatter correction
are related, as the attenuation sinogram is used in the
calculation of the scattered photons when performing single
scatter simulation (SSS). A few reports have investigated the
effects of the accuracy of the attenuation map on scatter
correction. These investigations unanimously concluded that the
errors in the attenuation map introduced to calculated scatter
sinograms are much smaller than errors produced by incorrect
attenuation correction [49–52]). While scatter correction has
not been a major issue to be addressed for neurological
PET/MR imaging, developments in scatter correction are
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FIGURE 1 | A scatter plot diagram that contains the reported global average bias and standard deviation in percentage of the methods included in this review. It can

be seen that majority of the published methods perform with a mean bias up to ±5% in positron emission tomography (PET) evaluation. Most of the methods also

have a mean bias in the range of the difference (−6 to +4%) to what was previously reported in a phantom study between different positron emission

tomography/computed tomography (PET/CT) and positron emission tomography/magnetic resonance (PET/MR) systems [31]. Segmentation-based methods: 1–4

[30] MR-ACDIXON, MR-ACUTE, MR-ACCAR−RiDR, MR-ACRESOLUTE; 5 [32] 6-class discrete; 6 [33] ZTE; 7 [34] ZTE; 8 [35] ZTE; 9 [36] ZTE. Atlas-based methods: 10–15

[30] MR-ACONTARIO, MR-ACMUNICH, MR-ACSEGBONE, MR-ACUCL, MR-ACMAXPROB, MR-ACBOSTON; 16 [37] Single-atlas; 17 [38] Pattern recognition; 18–19 [39] Mean

atlas, PASSR; 20 [40] GMM regression; 21 [41] UTE; 22 [42] Atlas; 23 [43] U-net AC; 24 [44] Single-template. Emission-based methods: 25 [30] MR-ACMLAA, 26 [45]

MR-MLAA, 27-29 [46] MLAA, P-MLAA+, P-MLAA++.

also beneficial for increasing the quantitative accuracy of
PET images. Consequently, methodological developments that
increase the accuracy of attenuation correction will also result in
minimization of errors in scatter correction.

MR-BASED ATTENUATION CORRECTION
FOR PET/MR NEUROIMAGING

A multitude of MRAC methods have emerged, and significant
methodological advances have been made in the PET/MR
field of neuroimaging, since the introduction of the first
PET/MR systems. Attenuation correction for PET/MR can
be performed based on anatomical MR images, PET data-
driven approaches, or a combination of both. The attenuation
correction strategies can be roughly divided into (a) methods
based on image segmentation, (b) atlas or database approaches
including machine learning methods, and (c) emission data-
driven approaches, which use PET data alone or in synergy
with existing magnetic resonance imaging (MRI) data. A strict
division between methods is challenging, as some of the
methodology can be used in combination, e.g., segmentation
and template. Table 1 contains a generalized summary of the
methodology between different MRAC methods, with concerns,
solutions, and future directions.

For a complete list of methods, we refer to the excellent review
papers of Hofmann et al. [22], Berker and Li [23], Bezrukov et al.
[53], Izquierdo-Garcia and Catana [18], Keereman et al. [25],

Wagenknecht et al. [27], Chen et al. [26], and Mehranian et al.
[28]. The physical basis of attenuation correction concerning
PET/MR is addressed in Martinez-Möller and Nekolla [17]. In
this section, we will focus on methods that allow for bone
delineation for brain imaging applications, as methods that
ignore bone should be avoided.

MRAC Methods Based on Image
Segmentation
The aims of any segmentation-basedMRACmethod are to divide
the tissues from MR images into specific classes and to assign
the attenuation coefficients either based on predefined value
or determining that value individually. The number of classes
used depends on the method, where three tissue classes (bone,
soft tissue, air) are considered the minimum, while additional
classes might improve the accuracy. The first methodological
challenge is to ensure that tissues are segmented and classified in
an accurate and reproduciblemanner, so that the overlap between
tissues that have large differences of attenuation coefficients is
minimized, such as bone (0.151 cm−1) and air (0.0 cm−1).
Challenging regions to segment are those that include, e.g.,
tissue interfaces such as the sinus region. Challenges for image
segmentation for UTE and ZTE can be found, e.g., in Delso et al.
[54, 55] and Aasheim et al. [56].

The tissues in the head region might be roughly divided into
the following classes: soft tissue (0.094–0.100 cm−1), adipose
tissue (0.086–0.093 cm−1), air cavities, and bone. A further
division can be made between the nasal cavities (sinus region),
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TABLE 1 | Generalized summary of the methodology between (a) segmentation-, (b) template-, and (c) emission-based MRAC methods. Essential concerns, potential

solutions, and future directions are highlighted.

Segmentation Atlas Emission

Requirements MRI image data—T1, T2, UTE, ZTE. Database of CT-MRI-PET images. Emission data.

Need to ensure Quality of the segmented images (no

signal voids, artifacts) and the accuracy

of segmentation.

High number of subjects for database

creation and method validation, especially

for deep learning.

High quality of the emission data by

accurate corrections and calibrations.

Specific advantages Subject-specific anatomy and

anatomical variation is accounted for,

fast and simple to implement.

Continuous attenuation coefficients for

the entire head region.

Can estimate attenuation in the

presence of signal voids and implants.

Specific disadvantages Robustness in challenging anatomical

regions (e.g., sinuses) or presence of

MRI artifacts.

Accounting anatomical and attenuation

coefficient variability.

Non-emitting objects remain invisible.

Issues that have been addressed since

previous reviews

Subject-specific continuous attenuation

coefficients can be derived with R2* or

ZTE intensity to HU calibration.

Bone/air delineation in challenging

regions can be improved with additional

masks and templates.

Methods have been applied to

challenging datasets, such as tumor

imaging and pediatrics.

Computational burden can be reduced

by using GPUs.

Web-based pipelines have been

implemented to ensure that methods are

usable outside specific research centers

which do not have access to large

datasets or are computationally intensive.

Crosstalk reduced with TOF,

high-quality data corrections,

calibrations, and anatomical priors.

Quantitative accuracy is now

comparable to atlas- or

segmentation-based methods.

Clinical validation with a high number of

patients has been performed.

Remaining issues that need to be

addressed in the future

Image intensity uniformities due to

B0/B1 inhomogeneities and image

noise.

Signal voids due to metal implants or

dental fillings.

Wider availability and application of the

methodology for both research and

clinics.

Validation of deep learning algorithms

with various datasets and across

PET/MR systems. Potential ethical issues

when using web-based pipelines.

Specific data requirements and

calibrations needed if applied in the

clinical routine.

Applicability across various radiotracers

with specific uptake.

Suggested countermeasures to

remaining issues

Implement assisted regional

segmentation or improved MR

sequences to countermeasure implants

or signal voids.

Implement emission-based attenuation

correction to account the regions where

MR signal is not available.

Ensure the availability of the methodology

if no intellectual property or ethics issues

do not permit to share the methodology.

Open access databases of CT–MRI–PET

datasets for both training and validation of

algorithms, especially for deep learning.

Solve the need for large paired datasets

by the use of algorithms for deep learning

which apply unpaired data (CycleGan).

Provide routine quality control protocols

to ensure the consistency of

calibrations performed.

Apply the methodology for more

challenging radiotracers.

MRAC, magnetic resonance-based attenuation correction; MRI, magnetic resonance imaging; UTE, ultrashort echo time; ZTE, zero echo time; CT, computed tomography; PET, positron

emission tomography; HU, Hounsfield unit; GPUs, graphics processing units. Essential concerns, potential solutions, and future directions are highlighted.

different classes of bone (spongy and cortical: 0.130–0.172 cm−1),
and different brain tissues (gray and white matter: 0.099 cm−1,
cerebrospinal fluid: 0.096 cm−1). Each of these tissues has a
different attenuation coefficient, which might vary on an inter-
or intrapatient basis. Thus, the most preferable way would be to
account and assign the attenuation coefficients on an individual
basis. This would reduce the variation caused by the differences
in individual anatomy and different patient groups. Thus, the
second methodological challenge is to account for the variation
of attenuation coefficients in tissues and in patients.

Segmentation-based methods are popular due to ease of
implementation and low computational cost. Multiple methods
based on segmentation of T1-weighted images have been
proposed. Zaidi and Fei proposed using T1-weighted MRI
images, which are co-registered to PET data and segmented by
fuzzy C-means clustering to air, scalp, skull, gray matter, white
matter, and nasal sinuses [57, 58]. Statistical parametric mapping

version 8 (SPM8) has also been applied to extract the bone
component from T1-weighted images, which is added to the
Dixon-based attenuation map [59, 60] or by deriving a three-
to six-class attenuation map from T1-images alone [32, 61]. The
advantage of these methods is that they are straightforward to
apply across multitude of datasets, as the only requirement is
access to T1 data, which is collected routinely. In addition to T1-
weighted MR images, methods based on segmentation of [18F]-
sodium fluoride ([18F]-NaF) PET [62] or on a combination of
segmentation and a fixed point source have been applied [63].

Methods based on bone delineation from short echo time
(STE) sequences such as UTE or ZTE have become one of the
most popular fields in segmentation-based MRAC. To visualize
and account for bone, UTE-based methods were introduced in
Keereman et al. [64], Catana et al. [65], and Berker et al. [66].
While these methods showed improvements in the visual and
quantitative accuracy of PET images, inconsistencies in bone
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delineation were reported with UTE [21, 56, 67, 68], which later
resulted in improved segmentation methods andMRI sequences.
After the introduction of UTE, methods based on ZTE emerged
[55, 69, 70]. With both UTE and ZTE, the development of more
advanced segmentation techniques and new MRI sequences has
been an active field of research, to increase the accuracy of bone
delineation and segmentation.

To improve the quality of segmentation, several techniques
have been applied. One is to use regional masks [71] or
anatomical templates [36] to assist in the delineation of different
tissues. Specific masks for challenging regions such as the sinus
cavities have been also proposed [72, 73]. Delineation of tissues
based on tissue clusters from dual echoUTE has also been applied
[54]. Recently, improved segmentation with UTE was achieved
by using custom templates and tissue probability maps with
statistical parametric mapping version 12 (SPM12) segmentation
engine to improve the delineation of both air and bone [74].
Machine learning techniques have also been used to refine
the quality of the attenuation maps derived with UTE and
could potentially be applied in any segmentation-based MRAC
method [75].

Improved MRI sequences for UTE include STE/Dixon and
fuzzy clustering [76], improved UTE using point-wise encoding
time reduction with radial acquisition (PETRA) [77] or likewise
a fast dual-echo ramped hybrid encoding (dRHE) [78], and
reduction of eddy current artifacts [79]. Sequences based on
triple-echo UTE have also been applied [66, 79, 80]. These
methods have shown improvements in terms of accuracy of the
attenuation map, PET image quality, and quantitative accuracy,
compared to UTE-based methods introduced previously. Recent
developments include also the use of 3D radial ZTE imaging [81],
which is primarily a proton density-weighted sequence. Several
studies on successful use of ZTE-based methods on MRAC have
been published recently [55, 69, 70, 72] in addition to assessment
of repeatability [82].

Nevertheless, all previously described methods assign discrete
linear attenuation coefficients to each class. Methods that
apply continuous attenuation coefficients for bone have been
introduced to address the limitations with discrete attenuation
coefficients. A common factor for these methods is to apply
a calibration curve (sigmoid, polynomial, or linear function)
between the relationship of Hounsfield unit (HU) values vs. R2∗

values or ZTE intensities. This allows for mapping of the MR
intensities in the bone region to HU values on a voxel basis. HU
to R2∗ mapping has been successfully applied in Navalpakkam et
al.; [41], Ladefoged et al. [71], Baran et al. [74], and Juttukonda
et al. [83], while HU to ZTE intensity transformation has been
applied in Khalifé et al. [84] and Yang et al. [72]. The performance
of methods using continuous attenuation values is generally
considered superior over discrete-tissue methods.

In summary, it can be seen that methods based on UTEs,
such as UTE and ZTE, have become a very popular option for
segmentation-based MRAC as they allow us to visualize and
segment bone with fairly good accuracy, addressing the first
challenge, which is the delineation of skull bones. Previously,
segmentation-based methods were limited by assigning fixed
attenuation coefficients to bone, but lately, this problem has

been circumvented by implementing calibration curves between
HU and R2∗ or HU and ZTE intensities, addressing the second
methodological challenge. However, there are several regions,
such as air–tissue interfaces in the sinus cavity, which are
still challenging for segmentation-based methods. To account
for this challenge, a multitude of techniques from improved
MR acquisition to masks and templates to assist segmentation
have been applied, helping to improve the accuracy of the
available methods.

Methods Based on Atlas or Database
Approaches Including Machine Learning
Atlas- or template-based methods are typically based on using a
co-registered database or atlas of CT and MR images. Methods
can be further divided into approaches applying a single
probabilistic atlas or a multiple atlas. To create a substitute
CT, the subject MR image is matched to an MR image in the
database or a predefined template. The best match is determined
using a predefined similarity metric. Thereafter, the purpose
is to create a CT substitute corresponding to subject anatomy
with continuous attenuation coefficients for the whole image
volume, usually referred to as pseudo-CT. The substitute pseudo-
CT is usually created in a volume-by-volume, slice-by-slice, or
voxel-by-voxel basis, using a trained classifier, image intensity
mapping, or registration techniques. Recently, methods based on
machine learning or deep learning techniques have also become
increasingly popular.

The most straightforward implementation is to use a single
atlas in combination of a predefined template. Templates can
be created by taking an average of multiple co-registered CTAC
or transmission-based attenuation correction (TXAC) images
to represent mean attenuation coefficients and anatomical
variability in a given population [85]. Template-based
approaches using registration and nonlinear wrapping of a
predefined TXAC or CTAC template to the individual subject
anatomy using SPM have been proposed [44, 86]. SPM8 has
also been used to perform segmentation and state-of-the-art
registration with a probabilistic template to derive a pseudo-CT
[87]. Similar approaches have been implemented by either
wrapping of a CT atlas to the patient MR image using a
two-step registration [88] or registering a subject MR image
to an MR template and mask pair, followed by a two-step
registration to delineate bony regions with the mask [89].
Limitations of the single-atlas approaches include ignoring
the intersubject variation of attenuation coefficients and that
the anatomical transformation might be prone to errors in
registration between the template and subject images, especially
with non-conventional anatomy or in the presence of disease.

Several methods based on a multiatlas approach have been
introduced, where an atlas of multiple pairs of CT and anatomical
MR images is used to derive patient-specific substitute pseudo-
CT either by intensity mapping or by registration. Several
approaches to derive the pseudo-CT substitute exist, such as
using patches to match CT and MRI intensities [90, 91] or image
registration techniques [50, 92–94]. The substitute pseudo-CT
can be also derived by linking the intensities between CT and
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MR images with a trained model, such as using a Gaussian
mixture regressionmodel with probabilistic measures [40, 95, 96]
or a Gaussian mixture model based with patches [97]. While
methods using multiple atlases are inherently more complex
and computationally intensive, they are able to overcome the
limitations of single-atlas approaches [98].

Probabilistic measurers in combination of atlases have been
also applied for pseudo-CT creation, which can be used to
improve the quality of segmentation or to generate continuous-
valued attenuation maps [39, 53, 99]. In addition, pattern
recognition [38] or machine learning techniques [41] have
been successfully applied. Machine learning applying a random
forest regression with patch-based anatomical signatures was
used to generate pseudo-CT from T1-weighted images in
Yang et al. [100]. Recently, several methods based on deep
learning have also become increasingly popular in the creation
of a suitable attenuation maps for MRAC.

Santos Ribeiro et al. [101] proposed a feed-forward neural
network to directly output a continuous-valued head attenuation
map by nonlinear regression of several UTE images and
a template-based MRAC map. Gong et al. [102] used a
convolutional neural network with Dixon images only or in a
combination of Dixon and ZTE images to generate a continuous
valued attenuation map. Similarly, a deep convolutional neural
network that derived attenuation maps based on ZTE images was
shown to outperform both ZTE and atlas-basedmethod in Blanc-
Durand et al. [43]. Interestingly, while most evaluations have
been performed with adults with normal anatomy, Ladefoged
et al. [103] evaluated deep learning methods in pediatric brain
tumor patients, with robust performance. The preliminary results
obtained with these methods are encouraging.

However, it would be advantageous if conventional MR
images collected routinely or PET data could be used to obtain an
attenuation map. The use of deep convolutional neural networks
with T1 images only has been reported in Han [104] and Liu et al.
[105], and they have been applied also to synthetize a pseudo-
CT from patient-specific transmission data [106]. Recently, Liu
et al. [107] proposed to use only uncorrected PET images with
a deep convolutional encoder-decoder network to generate a
pseudo-CT. Very recently, a multiparametric MRI model was
also suggested to generate pseudo-CT maps based only on Dixon
MRI images and was evaluated on head and pelvic images
[108]. Among other benefits, these methods also show a great
potential for whole-body applications. Finally, any deep learning
methodology conventionally requires a large dataset of paired CT
andMRI images. Recently, methods based on unpaired image-to-
image translation using Cycle-Consistent Generative Adversarial
Networks (CycleGan) [109] have been applied to pseudo-CT
generation [110, 111], which might circumvent this requirement.

In summary, the atlas or database approaches range from
simple single-template methods to complex approaches, allowing
us to derive continuous attenuation coefficients not just in
bone but also in a range of tissues. There is also a multitude
of good methods available. Most of these methods, however,
have been solely applied in research context. Until recently,
a few promising studies in using atlas-based approaches on
non-normal populations such as pediatric patients and in brain
tumors have emerged. Naturally, pediatric patients require that

an atlas fit for different anatomy will be created. In this regard,
the research questions on the applicability of the atlas-based
methods for more challenging clinical and research applications
is being addressed.

Recently, several machine learning approaches have emerged,
which can be applied in a flexible manner. They can be applied in
conjunction with segmentation- or emission-based methods, to
refine the quality of the segmentation or the resulting attenuation
maps. A very promising aspect is that machine learning methods
might be able to create accurate attenuation maps solely on
conventional T1 and T2 data or from non-attenuation-corrected
PET images alone, without requiring specific sequences such
as UTE or ZTE. While these methods have initially shown
promising results, they need to undergo further validation studies
to investigate their applicability in larger patient groups, different
datasets, and a variety of radiotracers, in case PET images are used
to derive an attenuation map.

Emission-Based Attenuation Correction
Approaches for PET/MR
Emission-driven methods allow for estimating attenuation maps
(a) based on reconstruction of emission data alone, (b) based on a
combination of jointly reconstructed emission and transmission
data, and (c) by the use of information from scattered
coincidences, background radiation, or radiating sources. An
extensive and thorough review of the methods that apply
emission data for attenuation correction in PET and single-
photon emission computed tomography (SPECT) was conducted
by Berker and Li [22]. In this section, we will focus mainly
on emerging PET/MR-specific approaches applied for clinical
imaging of the head region.

A popular approach for emission-based attenuation
correction is the maximum likelihood reconstruction of
attenuation and activity (MLAA), which was originally proposed
by Nuyts et al. [112], based on a concept introduced by Censor
et al. [113]. The MLAA method is based on simultaneous
reconstruction of both attenuation and activity using maximum
likelihood expectation maximization (MLEM) algorithm and
enables deriving an attenuation sinogram up to a constant
using measured emission data only. The accuracy of the
method is improved if high quality of the emission data can
be guaranteed.

To reduce the cross-talk and dependence on count statistics
in MLAA, the use of time-of-flight (TOF) information with
MLAA has been shown to be beneficial [114]. In addition,
incorporating spatial constraints or prior information, e.g., from
MR data, can be used to improve the MLAA estimate [115]. MR-
guided MLAA imposes MR spatial and CT statistical constraints
with a Gaussian mixture model and Markov random field
smoothness prior to improving the quality of the attenuation
map [116]. Another approach is to jointly estimate the emission
distribution and the attenuation correction factors, avoiding
the reconstruction of the attenuation map. Rezaei et al. [117]
proposed a maximum likelihood algorithm to jointly estimate
the activity distribution and attenuation correction factors
(MLACF), up to a scaling constant.

Advanced MLAA methods with additional penalty functions
might offer better performance in brain imaging as shown
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in Ahn et al. [118] and Mehranian et al. [46], which could
overcome the limitations of earlier MLAA methods for brain
imaging when compared to, e.g., atlas-based methods [42].
Recent developments in the methodology have allowed for
reaching <5% of error in brain PET quantification with TOF-
based MLAA using an MRI prior [46]. Deep learning has been
also applied to improve the quality of the MLAA for attenuation
correction in the brain using nonconventional tracers, such
as 18F-radiolabeled N-(3-fluoropropyl)-2β-carboxymethoxy-3β-
(4-iodophenyl) nortropane ([18F]-FP-CIT) used for brain
dopamine transporter imaging [119]. Thus, it would seem that
most of the limitations in the emission-based methods are
being addressed.

Methods that use either transmission sources or background
radiation have been also introduced. Improvement of the
accuracy of the attenuation maps with an external transmission
source was shown in Mollet et al. [120] and Mollet et al.
[121], with supplemental transmission sources [122], and using
different source geometries [123]. External radiation, such as
176Lu emitted by lutetium oxyorthosilicate/lutetium-yttrium
oxyorthosilicate (LSO/LYSO) scintillation crystals, could also
be used to acquire transmission data [124], or the scattered
background radiation could be used to derived an attenuation
map [125]. However, these methods have been mostly applied
solely in research context. Recently, an integrated approach that
includes a moving point source on a helical path around a
24-channel MR-receiver coil to perform a transmission scan
was introduced in Navarro de Lara et al. [126] and Renner
et al. [127], which might offer a clinically feasible approach
for transmission imaging on brain PET/MR. Finally, several
authors have highlighted the benefits of TOF in reducing the
errors in the PET images reconstructed with MRAC [84, 128,
129]. This is due to TOF reconstruction being less sensitive to
inconsistencies in emission data and data corrections such as
attenuation, normalization, and scatter [130].

It can be seen that emission-based attenuation correction is
an active field of research, where large clinical validation studies
have begun to emerge. A scale-corrected MLACF has recently
been shown to provide images that quantitatively and visually
correspond to CTAC-reconstructed PET images in 57 patients
[131]. Benoit et al. [132] studied a modified non-TOF MLAA
algorithm with a relatively large group of patients, i.e., with 204
[18F]-FDG patients, 35 [11C]-PiB patients, and 1 O-(2-[18F]-
fluoroethyl)-l-tyrosine ([18F]-FET) patient. Moreover, in a study
consisting of 34 dementia patients imaged with [18F]-FDG, an
MLAA method was compared with state-of-the-art MRAC and
CTAC, producing errors within a few percent [45]. The authors
suggested that MLAA might be useful in patients where metal
implants or other imaging challenges hinder the use of traditional
segmentation-based methods.

In summary, emission-based attenuation correction has been
an active field of research, and the methods proposed have
begun to show both increases in quantitative accuracy (errors
below 5%) and advantages compared to segmentation- or atlas-
based methods. For example, emission-based methods might be
able to estimate the attenuation coefficients in the presence of
metal implants, which would pose a problem for segmentation-

or atlas-based methods due to large signal voids. Thus, they
would be able to complement both segmentation- or atlas-based
methods in challenging cases where they fall short.

There have been traditionally two challenges in emission-
based MRAC, which have been addressed in recent
methodological studies. Originally, most methods were
validated using [18F]-FDG only and a small group of patients.
Very recently, however, the applicability of the emission-based
methods to a variety of radiotracers has been shown. Moreover,
the sensitivity of MLAA to the quality of emission data has been
addressed in the following manners. For example, by carefully
improving and ensuring the quality of both TOF calibrations
and accuracy of data corrections and by the implementation of
anatomical priors from MRI, the accuracy of the attenuation
map estimation can be improved. Deep learning methods can be
also applied to improve the quality of the emission estimate in
non-conventional radiotracers.

Status of PET/MR Attenuation Correction
for Neuroimaging for Research and Clinics
As can be seen from above, a multitude of MRAC methods
are available for research settings, where most of the presented
methods perform with good accuracy [30, 133]. While the
problem concerning the availability of accurate attenuation
correction in research settings has been solved, investigation of
new attenuation correction methods still is of interest to improve
the accuracy of the available methods for more challenging
research applications. Most of the methods presented in the
previous chapters might be also applied on PET/MR systems
of different vendors, unless a specialized, vendor-dependent
sequence or software is required.

However, it seems that there is still an ongoing discussion
whether reasonably accuratemethods have become commercially
available, especially in challenging clinical applications [134],
while the accuracy of MRAC can be considered adequate for the
majority of routine clinical situations [47]. Furthermore, future
efforts for standardization and quality control are important
for accurate and robust results in both research and clinics
and are needed for PET/MR as well [135]. In addition to
technical efforts, knowledge sharing in terms of new guidelines
and procedures for PET interpretation and reading will help
to improve clinical confidence [28, 136]. Finally, promising
methods available for research use might be eventually translated
to commercial platforms and thus result in further benefit for
clinical applications.

Perhaps the greatest challenge so far has been to present
the knowledge gained in the evaluation of different MRAC
methods in terms of clinically interpretable information. Impact
of MRAC on clinical reading is generally determined by
visual analysis, presence of visible artifacts in MRAC or
PET, lesion detectability, and standardized uptake value (SUV)
quantification accuracy in PET [28]. Recent studies have
proposed that standardized, clinical metrics need to be taken into
use for MRAC method evaluation, to make direct comparison of
method performance less challenging [30, 137]. Implementing
more advanced vendor-based attenuation correction methods
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will certainly result in an increase in the clinical evaluations
performed with MRAC.

Concerning the availability of accurate MRAC methods
outside the research setting, there are currently two state-of-the-
art vendor-based attenuation correction methods for imaging
of the brain region on the Siemens mMR and General Electric
(GE) Signa PET/MR system. The Philips Ingenuity TF is the
only PET/MR system that does not account for bone, as it uses
the method described in Schulz et al. [138]. In this regard,
while it seems that there is an overflow of MRAC methods
to be selected in the research setting, there are also vendor-
based methods available that have been successfully applied
in a multitude of evaluations in clinical setting. Increasing
the amount of clinical evaluations will undoubtedly result
in increased clinical confidence in applying the vendor-based
methods in clinical routine imaging of, e.g., dementia, epilepsy,
and other diagnostic applications.

The Siemens mMR system implements a UTE-based method
with fixed attenuation coefficients (bone: 0.151 cm−1, soft tissue:
0.100 cm−1, air: 0 cm−1) for delineating bone for the head
region, described in the paper of Aasheim et al. [56] from the
internal software version of VB20P and above. Another method
for delineating bone with continuous attenuation coefficients
using a Dixon sequence and superimposed model-based bone
compartment is presented in the paper of Koesters et al. [89].
Similarly, the GE Signa system has two methods routinely
available. The first method is based on atlas registration to
delineate bone with continuous attenuation coefficients for the
head region [88]. The secondmethod is based on a ZTE sequence,
which derives bone in the head region by segmentation of ZTE
images and assigns continuous attenuation coefficients using a
ZTE-intensity vs. HU calibration curve [69], available from the
internal software version of MP26 and above.

Clinical evaluations of the impact on MRAC with the
vendor-based methods have been performed on the Siemens
mMR using the Dixon, UTE, and model-based attenuation
correction. In the study of Werner et al., 13 patients
suspected of having dementia were imaged with [18F]-FDG.
Both UTE and Dixon-based attenuation correction were
assessed for differentiating hypometabolism [139]. In a similar
study consisting of 16 patients, both model-based and Dixon
attenuation corrections were assessed for the visual interpretation
of regional hypometabolism [140]. Both studies concluded that
the typical patterns of hypometabolism were not significantly
changed when even the most inaccurate MRAC was used.
Furthermore, several research and clinical methods were
recently assessed in terms of z-scores, with 27 patients with
suspected dementia [141]. The study concluded that while the
research methods proved superior, the model-based attenuation
correction should be preferred for diagnostic assessment in the
clinical routine.

Similar methods have also been applied in the diagnostic
evaluations in brain tumors and amyloid imaging. A study from
Rausch et al. evaluated Dixon-based attenuation correction and
the model-based method described in Koesters et al. [89], where
the authors showed no significant change in diagnosis even when
an attenuationmap without bone was used [137] in brain tumors.

Su et al. [80] showed that an attenuationmap without bone is also
sufficient for visual interpretation and clinical diagnosis when
using [18F]-Florbetapir to determine either amyloid positive or
negative status. In a very recent study, Rausch et al. [142] assessed
three vendor-based attenuation correction methods, where the
authors found no significant changes in time–activity curve
(TAC) pattern categorization in [18F]-FET PET and that tumor
grading seems to be feasible, regardless of the choice of the MR-
AC method. Thus, the accuracy of the vendor-based attenuation
correction has been shown to be feasible for both amyloid and
tumor imaging.

Evaluations of the template-based method described in the
paper of Wollenweber et al. [88] have been performed against
CTAC [37, 143], a multiatlas method [98], and ZTE-based
attenuation correction [70]. The ZTE method has also been
evaluated against Ge-68 transmission sources [34], in dynamic
PET [33], and in MR-based radiotherapy of the head [35].
In these evaluations, the ZTE-based method proved superior
to the template-based method, especially if the intent is to
perform kinetic analysis. These studies have shown that the
ZTE-based methods can be considered to be feasible in clinical
PET/MR imaging applications. Undoubtedly, more evaluations
on the vendor-based methods presented above will follow in the
near future.

As can be seen, there are a wide range of MRAC options
from the first-generation of segmentation-, atlas-, and emission-
based methods to second-generation machine learning and
deep learning methods. However, the current application of
these methods for PET/MRI in multicenter clinical trials is a
challenge contrary to PET/CT in population multisite studies
such as Alzheimer’s Disease Neuroimaging Initiative (ADNI)
or Open Access Series of Imaging Studies (OASIS). Since the
methods developed for research used perform, to some extent,
differently in terms of different magnitude of residual bias and
regional accuracy, the community still needs to work on the
standardization of MRAC methods in PET/MR neuroimaging.
These challenges could be potentially overcome by using either
a commonly available and acceptable library of well-established
MRAC methods or by using one comparable, integrated method
from either of the PET/MR vendors.

SCATTER CORRECTION FOR PET/MR
NEUROIMAGING

A 30–35% scatter fraction in brain studies can be expected [16],
which makes scatter correction one of the fundamental data
corrections in addition to attenuation correction. The majority
of the scattered events originate from the patient, whereas the
physical hardware components contribute from 5 to 15% of the
scatter [144]. The physical basis for scatter correction in PET/MR
is addressed in the review paper of Martinez-Möller and Nekolla
[17]. In this section, we will summarize the current approaches
and highlight some emerging applications for scatter correction
in brain PET/MR imaging.

While scatter correction has not been a major issue to be
addressed for neurological PET/MR imaging, developments in
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accuracy of scatter correction are considered beneficial especially
in regard to quantitative PET imaging. Furthermore, advanced
scatter correction methods would be beneficial also in whole-
body imaging applications. The current approaches for scatter
correction can be divided into (a) historical approaches; (b)
simulation or model-based methods, which estimate the single
Compton scatter events; and (c) emerging Monte-Carlo-based
scatter correction methods and methods based on machine
learning. InTable 2, a flowchart describing themain steps in both
SSS and Monte-Carlo scatter correction is described.

Scatter Correction, Historical Approaches
Historically, a multitude of methods were introduced for PET
scatter correction, which are summarized in the following books
and reviews: [16, 48, 85, 151–154]. These methods were based
on either using (1) multiple energy windows to acquire PET
data, e.g., Grootoonk et al. [155]; (2) scatter modeling based
on convolution and subtraction, e.g., Bergstrom et al. [156] and
Bailey and Meikle [157]; and (3) performing Monte Carlo (MC)
simulation, e.g., Levin et al. [158]. In addition to software-based
methods, hardware approaches such as coarse septa or beam
stoppers made from lead were suggested [16]. These methods are
no longer in use, with the exception of emerging MC approaches
discussed later in this paper.

Much effort was also put into the development of approximate
scatter correction techniques for PET, when shifting from two-
dimensional (2D) to 3D PET imaging. These techniques are
summarized in the following articles: Bailey and Meikle [157],
Adam et al. [159], Barney et al. [160], Chen et al. [161],
Cherry [162] and Zaidi [163]. The use of full MC methods
to derive a “gold standard” approach for scatter modeling was
also investigated, although they were considered computationally
too intensive to be implemented in clinical routine at the time
[158, 164, 165]. Interestingly, MC-based methods have recently

reemerged due to the availability of parallel graphics processing
units (GPUs), which offer a boost in computing power at a
reasonable cost and availability [166].

In the gradual shift from 2D imaging to 3D imaging in PET,
most methods were superseded by mainly two approaches based
on direct calculation of scatter distribution, which we will refer to
as simulation-based approaches.

Scatter Correction, Simulation- and
Model-Based Methods
Simulation-based approaches proved most successful for
calculation of scatter in 3D PET. Two methods based on direct
estimation of scatter distribution became most widely adopted,
generally denoted as the SSS algorithm of Watson et al. [146]
and the model-based single scatter approach of Ollinger [147],
which are incorporated as part of the iterative reconstruction
loop in clinical PET/CT and PET/MR systems. The algorithm
implementations vary to some extent across different PET system
vendors, e.g., comparing the approaches of Siemens Healthcare
[167], Philips Healthcare [145], and GE Healthcare [168].

Both the simulation-based [146] and the model-based
approaches [147] are essentially based on the direct calculation
of the single scatter distribution, which considers emission
and attenuation sinograms as input data and is scaled to
match the emission distribution. While there are differences
in implementation of how single Compton scattered events
are modeled between these two approaches, some common
principles can be identified. These are as follows: (1) scatter
is due to single Compton scatter events, (2) single scatter
distribution can be calculated by application of the Klein–Nishina
formula using the known emitter density and attenuation
coefficients from emission and attenuation sinogram data,
and (3) the derived scatter estimate can be scaled to the
emission data tails for subtraction (tail fitting) and to account

TABLE 2 | Flowchart of single scatter simulation following the methodology in Accorsi et al. [145], Watson et al. [146], and Ollinger [147] in comparison to Monte Carlo

simulation-based scatter correction shown in Kim et al. [148], Magota et al. [149], and Ma et al. [150].

Single scatter simulation Monte Carlo simulation

(1) Define activity and attenuation distribution from the scatter uncorrected

emission and transmission image.

Provide a scatter uncorrected emission and transmission image and initialize

random number generator for Monte Carlo simulation.

(2) Randomly distribute scatter points within the scatter volume. Generate annihilation photon pairs according to the activity distribution of the

input emission image. Generate a table of the information from the materials and

physical properties.

(3) Select an line of response (LOR). Simulate photon propagation including both navigation and detection processes

for each photon.

(4) For a given scatter point, calculate the number of events it contributes to this

LOR from (a) activity distribution estimate, (b) Klein–Nishina cross section, (c)

Compton scattering relationships, (d) solid angles, and (e) scatter medium

distribution.

Simulate physical effects such as photoelectric effect and Compton scattering

using the Klein–Nishina formula for the emission volume, with potential inclusion

of the physical effects occurring in the detector.

(5) Repeat (4) for all simulated scatter points and add all of their contributions to

the LOR.

Repeat the steps from (3) to (4) until two photons are either detected or rejected.

(6) Repeat steps 3–5 for all LORs. Update the corresponding LOR value.

(7) Interpolate in LOR space to obtain the scatter sinogram. Perform coincidence sorting to simulated trues, scattered and random events.

(8) Scale and subtract the scatter sinogram from the measured sinogram. Perform scatter sinogram scaling based on the scaling factor derived from the

relationship of simulated scatter and trues vs. measured scatter and trues.

(9) Reconstruct the image. Reconstruct the image.
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for multiple scattered photons. For discussion in differences
in scatter correction approaches and potential relation of
scatter correction to MRAC, we refer the interested reader to
Teuho [29].

Both simulation- and model-based methods have been
extended and modified since the original publications. The
details of the modifications in the model-based method are
described in detail in the following references: Ollinger [147],
Wollenweber et al. [168], Iatrou et al. [169], and Iatrou et al.
[170]. Extensions and modifications to the original work in
the simulation-based method are described in the following
references: Watson et al. [167, 171–174]. A major extension of
the original work was to include the calculation of scatter for TOF
PET, described in the works of Werner et al. [175], Watson [173],
and Iatrou et al. [170], by inclusion of double scatter in themodel,
which also excludes the need for tail fitting [174, 176].

While the currently available scatter correction methods
for PET neuroimaging in general do not pose problems
for the majority of neuroimaging studies on PET/MR, there
might be specific applications where more accurate methods
for scatter correction would be beneficial. As in the case of
MRAC, increasing accuracy of the available methods is always
seen beneficial.

Emerging Methods Based on MC
Simulation and Machine Learning
Methods based on MC simulation and machine learning
have recently gained interest. MC methods offer potential
improvements in increasing the accuracy of scatter estimation
or tail fitting in cases of challenging acquisition conditions.
Machine learning methods allow potentially new approaches to
be implemented in scatter correction, where the computationally
intensive process of scatter calculation could be ignored entirely.
In addition to these, several groups have investigated how current
scatter correction methods could be improved in terms of tail
scaling [177], out-field of view scatter compensation [178],
multiple scatters [179], or speed [180].

Improved scatter correction methodology might prove useful
in several applications. Data-driven methodologies such as
MLAA benefit from accurate data corrections. Recently, it was
shown that improved scatter correction is helpful for increasing
the visual and quantitative accuracy of PET and could also
result in improved attenuation correction with data-driven
methodologies using PET and MRI [45]. Furthermore, accurate
scatter correction methods could be useful in improving the
quantitative accuracy of dynamic PET data with low count
statistics [150], which is often the case in neuroimaging research.
While studies in the head region do not suffer from the same
effects from, e.g., truncation or large bladder-to-background ratio
as PET/MR studies in the body region, accurate methodologies
developed for the head region might eventually become useful
for whole-body PET/MR as well.

With the introduction of fast GPUs that could be implemented
in parallel, promising methods based on MC simulation have
been proposed. Doing a full MC simulation combined with a
GPU implementation could offer a feasible way to implement
a very accurate method for scatter correction [166]. Recently,
a method based on the paper of Gaens et al. [166] was further

refined and applied in a phantom and patient study using a
brain PET/MR imaging system [150], with promising initial
results. MC simulation has been also applied to implement
more robust scaling of the scatter sinograms in the presence
of high activity in [15O]-inhalation studies [149]. Combining
MC simulation in both scatter calculation and scaling would be
beneficial for neurological applications as well as whole-body
studies, and the availability of GPU-based methods might enable
just that.

Finally, several groups have investigated deep learning
methods for scatter estimation to calculate both scatter
and attenuation estimates without requiring conventional
attenuation map generation and time-consuming scatter
correction. The works of Qian et al. [181] and Berker et al. [182]
have shown promising early results in using deep learning to
calculate scatter estimates for PET, which could offer increases
in both accuracy and computational speed. Interestingly, both
papers discussed that a deep learning network trained with MC-
simulated data would offer further improvements in accuracy
[181, 182]. Finally, a very recent work proposed performing
both scatter and attenuation corrections in image space using
non-corrected PET [183]. Undoubtedly, it is expected that
more deep learning-based methods for both attenuation and
scatter correction will emerge in the upcoming years, given
the popularity of the research topic. An intriguing possibility
might be to combine the best of both worlds—by the use
of fast GPU-based MC for accuracy and deep learning for
computational speed.

Finally, concerning PET/MR neuroimaging, the current status
for vendor-based, clinically available scatter correction methods
could be summarized very shortly. The SSS algorithm and the
model-based SSS with current extensions form the basis of
vendor-based scatter correction in PET/MR systems, which offer
a well-validated and reasonable accurate solution for a multitude
of neurologic applications. Although the challenges in traditional
approaches, e.g., related to tail fitting, are well-known in whole-
body applications, these generally do not pose a problem, with
the exception of very specific neuroimaging applications, such as
[15O]-inhalation studies.

It could also be argued, as with MRAC, that the increase
of accuracy in scatter correction is beneficial in both research
and clinical settings, resulting in improved visual quality and
quantitative accuracy. With the increasing appeal of using either
a GPU-based MC or a deep learning-based approach for scatter
correction, it remains to be seen whether these methods will
be implemented as an alternative approaches in future clinical
PET/MR systems.

EMERGING CLINICAL AND RESEARCH
APPLICATIONS

Finally, there are several clinical and research applications
where accurate attenuation and scatter correction methods will
prove to be beneficial. Eventually, the success of PET/MR
depends on the level of confidence revealed by current and
future reports on clinical and research applications where
combined PET/MR provides useful additional information.
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This might lead to more widespread acceptance of PET/MR
in clinical setting, particularly in neurology and oncology
[28]. However, at the same time, it should be emphasized
that PET/MR is much more than mere attenuation and
scatter correction.

For emerging applications in neurological PET/MR, we wish
to highlight recent reports where accurate data corrections are
beneficial. These include, e.g., PET measurements of cerebral
blood flow (CBF) using [15O]-labeled water ([15O]-H2O)
PET [184] and receptor binding studies with [18F]-(E)-N-(3-
iodoprop-2-enyl)-2β-carbofluoroethoxy-3β-(4-methyl-phenyl)
nortropane ([18F]-PE2I) [33]. When PET is used to derive
the arterial input function for quantification and kinetic
modeling, it should be ensured that the method delivers
consistent performance in terms of regional bias, accuracy, and
precision. The impact of accuracy of attenuation correction
on dynamic PET studies in PET/MR has been studied for
3,4-dihydroxy-6-[18F] fluoro-L-phenylalanine ([18F]-FDOPA)
[185], [11C]-cimbi-36 [186], 4-(2-methoxyphenyl)-1-[2-(N-
2-pyridinyl)-p-[18F]fluorobenzamido]ethylpiperazine ([18F]-
MPPF) [50], (R)-[11C]-verapamil [187], and carbonyl-11C]N-
(2-(1-(4-(2-methoxyphenyl)-piperazinyl)ethyl)-N-pyridinyl)
cyclohexanecarboxamide ([11C]-WAY-100635) with [11C]
N, N-dimethyl-2-(2-amino-4-cyanophenylthio)benzylamine
([11C]-DASB) [106]. The methods evaluated in these studies
have proven to perform with sufficient accuracy for both
dynamic and static PET studies. Furthermore, they have
highlighted the importance that bias between the reference
region (e.g., cerebellum) and the analyzed region should be kept
minimal to ensure accurate quantification in kinetic analysis.

Using an image-derived input function (IDIF) for kinetic
modeling on PET/MRI will certainly benefit from accurate data
corrections and will be further improved by the complementary
nature of both modalities. MRI data could be used to assist
and complement PET data in several ways [188]. Using TOF
MR angiography can improve the delineation of the arterial
volume in PET [184, 189–191]. The IDIF could be implemented
in an automated pipeline to provide absolute values of cerebral
glucose metabolism in a clinically feasible manner [192]. The
IDIF measured from either MRI and PET could also be
used interchangeably [193]. The need to measure IDIF could
also be circumvented entirely by the measurement of global
CBF by phase-contrast MRI [194]. Another approach is to
incorporate information from arterial spin labeling (ASL) into
PET pharmacokinetic modeling [195]. Thus, methods using
complementary information from MR with PET for defining
IDIF might be beneficial for kinetic modeling in PET, as MR-
driven or MR-assisted approaches might be less dependent on
accuracy of data corrections.

In regard to emerging applications and new opportunities
that complement the neuroimaging field in PET/MR, we wish
to briefly highlight the following review papers. A review of
the neurologic applications where the complementary natures
of PET and MRI are beneficial in both research and clinics
has been provided in Chen et al. [14], Chen et al. [196],
Catana et al. [197], Hope et al. [198], Miller-Thomas and
Benzinger [199]. The clinical applications where PET/MR might
clinically excel are brain tumor imaging, epilepsy, stroke, and

a number of neurodegenerative conditions, to name a few.
Another new clinical field where PET/MR might excel is the
study of movement disorders [200]. There are also numerous
research applications related to neuroreceptor studies, cerebral
metabolism, and blood flow, which are not yet explored
extensively. From a technical viewpoint, deep learning has
several potential applications, although it has been used mainly
for attenuation correction. A very recent review of potential
applications of artificial intelligence for PET/MR neuroimaging
was given in Zaharchuk [201]. Although out of the scope of
this review, synergistic PET and MRI reconstruction might be
also be applied to improve PET image quality in terms of noise
or resolution.

In addition, we would like to specially mention pediatric
PET/MRI imaging, which presents a number of specific
challenges [202, 203] but also has the utmost benefits [204,
205]. Clinical applications for PET/MR in pediatrics have been
highlighted in Gatidis et al. [206], Kwatra et al. [207], Lee et al.
[208]. Accurate PET quantification is crucial in this population,
and the use of combined PET/MR with accurate attenuation
and scatter corrections could lead to reduced injected doses, as
well as reduced exposure to CT radiation burden. This aspect
has significance for pediatric cancer patients, who may need to
undergo repeated diagnostic imaging sessions. In regard to novel
applications, a recent study showed the benefit of PET/MR in low
activity imaging (14 MBq) of [15O]-H2O PET for quantitative
relative cerebral blood flow (rCBF) assessment in unsedated
healthy newborn infants [209]. In this regard, applying and
modifying existing MRAC methods to pediatric cohorts such as
in Ladefoged et al. [103] are encouraged.

Finally, MR-based radiotherapy treatment (MR-RT) and
PET/MR have a lot in common in terms of methodological
applications. PET/MR could be even used to improve
radiotherapy treatment planning, after the challenges related
to patient positioning for radiotherapy planning have been
sufficiently addressed [210, 211]. This requires designing MR
compatible and PET transparent radiotherapy (RT) equipment
[212] and accounting the attenuation of immobilization
devices and flat table tops [213]. The information from MR
and generated pseudo-CT images could give a better insight
for particle RT where the beam range depends strongly
on chemical composition [28]. Numerous accurate MRAC
methods exist, which could be used for MR-RT, with careful
investigation and application of the methodology for more
challenging populations undergoing radiotherapy. Similarly,
there are a multitude of methods that are used for MR-RT
and could be applied for attenuation correction in PET/MR
[214, 215]. The methodological advances in both MR-RT and
PET/MR could be applied to derive pseudo-CT images on both
platforms to improve the PET quantification or accuracy of RT
treatment planning.

DISCUSSION—CONCLUDING REMARKS
AND OUTLOOK

In research settings, the accuracy of the attenuation correction
is no longer the major methodological factor to be solved, and
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promising state-of-the-art methods are in the process of being
implemented in vendor-based attenuation correction as well. The
remaining issues in research settings are being slowly overcome
in all major fields of (a) segmentation-based, (b) template-based,
and (c) emission-based attenuation corrections. In this regard,
the state of MRAC is very positive, with the major focus on
improving the accuracy of the existing methods. This would
indicate that in the future, MRAC will no longer be considered
as an issue, at least in terms of its impact on the clinical
interpretation of the images.

In clinical setting, the next challenge to overcome is for the
PET/MR community to work on standardization of the use of
different MRAC methods in neuroimaging applications. This
concerns especially the application of MRAC in PET/MRI in
multicenter clinical trials, as there are a wide range of MRAC
options available with varying accuracy and regional bias. These
challenges could be potentially overcome by using either a
commonly available and acceptable library of well-established
MRAC methods with similar accuracy or one comparable,
integrated method from either of the PET/MR vendors.

While the currently available scatter correction methods for
PET neuroimaging in general do not pose problems for the
majority of neuroimaging studies on PET/MR, it could be argued
that increasing accuracy for scatter correction would be beneficial
in a range of clinical and research studies. Methods based on MC
calculation might become clinically feasible for accurate scatter
scaling and estimation. GPU-based approaches might eventually
be implemented in vendor-based methods for scatter calculation.

Deep learning is an emerging trend in medical imaging in
general, where both attenuation and scatter corrections are no
exception, and where several methods applying deep learning
in both attenuation and scatter estimation have emerged.
Undoubtedly, more methods will emerge in the near future.
However, for the introduced methods to become eventually
popular, the applicability of the methods between different
PET/MR systems, different MR sequences, PET tracers, and
patient populations should be carefully investigated.

Currently available clinical and research methods for
attenuation and scatter corrections will be useful in numerous
emerging applications in neurological PET/MR, such as
dynamic PET studies with different radiotracers, IDIF used for
kinetic modeling, clinical applications for neurology, pediatric
imaging, and MR-based radiation therapy. Thus, development,
application, and refinement of advanced methods for attenuation

and scatter correction methods in these fields are further
encouraged, with the focus on taking into account fully the
simultaneous acquisition of both PET and MRI.
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