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Abstract

The corpus callosum (CC) is the largest fiber tract in the human brain, allowing inter-

hemispheric communication by connecting homologous areas of the two cerebral

hemispheres. In adults, CC size shows a robust allometric relationship with brain size,

with larger brains having larger callosa, but smaller brains having larger callosa relative

to brain size. Such an allometric relationship has been shown in both males and

females, with no significant difference between the sexes. But there is some evidence

that there are alterations in these allometric relationships during development. How-

ever, it is currently not known whether there is sexual dimorphism in these allometric

relationships from birth, or if it only develops later. We study this in neonate data.

Our results indicate that there are already sex differences in these allometric relation-

ships in neonates: male neonates show the adult-like allometric relationship between

CC size and brain size; however female neonates show a significantly more positive

allometry between CC size and brain size than either male neonates or female adults.
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The underlying cause of this sexual dimorphism is unclear; but the existence of this

sexual dimorphism in neonates suggests that sex-differences in lateralization have

prenatal origins.
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1 | INTRODUCTION

The corpus callosum (CC) is the largest fiber bundle in the human

brain, interconnecting the two hemispheres. It is estimated to consist

of more than 200 million fibers. These fibers interconnect homolo-

gous regions in the two hemispheres, and play an important role in

almost all aspects of cognition, from vision to language

(Akelaitis, 1941; Hines et al., 1992; Iwamura, 2000; Mitchell &

Blakemore, 1970; Selnes, 1974; Westheimer & Mitchell, 1969). It has

been a focus of research for decades, but with some considerable

inconsistencies in results.

One key locus of these inconsistencies has been sexual dimor-

phism. Several reports of sexual dimorphism of the CC have been pub-

lished (Clarke et al., 1989; DeLacoste-Utamsing & Holloway, 1982;

Witelson, 1989), but with small sample sizes, and numerous methodo-

logical problems, including inaccuracies introduced by a nonplanar mid-

line; distortions due to variability in where the fornix appears to join

the CC; and the presence of blood vessels. Perhaps the most severe of

these methodological problems was noted by Bishop and Wahlsten

(1997), who pointed out that the CC, like most every other substruc-

ture of most every other organism, should be expected to scale allome-

trically with brain size (Huxley & Teissier, 1936), and this appears to be

the case, at least for primates (Ardesch et al., 2021). Analyses have

often used a linear regression, and have controlled for brain size; or

have used a ratio of CC size to brain size. In either case, the linear

assumption is problematic (Packard & Boardman, 1988; Smith, 2005).

Allometric scaling does not assume linearity; allometric scaling assumes

that the relation of Y to X is captured by the exponential function

Y = aXb. Thus, Y is not linearly related to X, unless b = 1; rather log(Y) is

linearly related to log(X). If b = 1, Y increases proportionally with X; if

b < 1, Y increases less than proportionally with X; if b > 1, Y increases

greater than proportionally with X. For a measure of area, such as the

CC, proportional growth would have Y increasing to the two-thirds

power of the volume of X, as per the geometric rule relating, for exam-

ple, the cross-sectional area of a sphere to its volume.

Since men and women generally differ in brain size, not taking

this allometric relationship into account can produce ostensible differ-

ences in the size of its substructures, including the CC; differences

which are, in fact, not differences if the allometric relationship is taken

into account. Bishop and Wahlsten (1997) produced a meta-analysis

of existing literature, taking this allometric relationship into account,

and concluded that there was no evidence of sexual dimorphism in

the CC. Subsequent studies of the CC that accounted for the allome-

tric relation between the CC area and forebrain volume (FBV) sup-

ported the notion that men and women show a relationship between

CC size and brain size that is not sexually dimorphic (Bruner

et al., 2012; Jäncke et al., 1997; Jäncke et al., 2019; Jäncke &

Steinmetz, 1998, 2003; Leonard et al., 2008; Luders et al., 2014).

Though the existing evidence does not support the idea of sexual

dimorphism in the CC in typical adults, there is some evidence that

this may not hold for development (Schmied et al., 2020). Schmied

et al. (2020) reported that there was no sexual dimorphism in infants

at 6 months of age, but that males and females showed divergent tra-

jectories thereafter, with males showing more rapid expansion of the

CC. This result does suggest that there is transient sexual dimorphism

in these allometric relationships after 6 months or age (the earliest

time-point in their longitudinal sample); but it does not suggest that

there is not sexual dimorphism before 6 months of age. To get a

clearer picture of the developmental trajectory of these allometric

relationships the current study addresses this question in neonates.

We measure the CC and FBV in male and female neonates, and com-

pute the allometric relationship in either sex. We ask whether or not

those relationships differ for male and female neonates, and how they

compare to the same relationships in adults.

2 | MATERIALS AND METHODS

2.1 | Participants

Participants were neonates whose parents were recruited as part of

the FinnBrain Birth Cohort Study (www.finnbrain.fi) (Karlsson

et al., 2018). Written informed consent was obtained from all parents.

The study was conducted according to the Declaration of Helsinki

and was reviewed and approved by the Ethics Committee of the Hos-

pital District of Southwest Finland. Neuroimaging data were collected

from 189 neonates at the age of 1–8 weeks after birth. Inclusion cri-

teria for neuroimaging were gestational age at birth ≥35 weeks and

birth weight > 1500 g. Exclusion criteria were previously diagnosed

CNS anomalies or abnormal findings on a previous magnetic reso-

nance imaging (MRI) scan. Of the 189 participants, 64 were excluded

due to failed MRI scanning or motion artifacts in the MR images. In

the final sample we included these 125 neonates (female: 44%, age

after birth [days]: M = 26.2, SD = 7.7, range = 11–54).

2.2 | MRI acquisition

Participants were scanned with a Siemens Magnetom Verio 3 T scan-

ner (Siemens Medical Solutions, Erlangen, Germany) during natural
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sleep. The imaging protocol included a sagittal 3D-T1 MPRAGE

(Magnetization Prepared Rapid Acquisition Gradient Echo) sequence (TR:

1900 ms, TE: 3.26 ms, inversion time: 900 ms) with whole brain cover-

age and isotropic voxels of 1.0 mm3. There was also an axial T2-PD-TSE

(Dual-Echo Turbo Spin Echo) sequence (repetition time (TR): 12070 ms,

effective echo times (TE): 13 ms and 102 ms), as well as a diffusion

sequence. Here, we used only the T1 and T2 data. All brain images were

assessed for incidental findings by a pediatric neuroradiologist.

2.3 | Neonate template

All available good quality imaging data were used to create a dual-

contrast neonate template. Each subject's T1 and T2 were nonunifor-

mity corrected (Sled et al., 1998), and then their T1, as well as a left–

right flipped copy, was linearly registered to the 6-month symmetric

template from the Infant Brain Imaging Study–the youngest of the

existing templates based in the Talairach-like MNI152 symmetric tem-

plate, an average of 152 T1-weighted images (Collins et al., 1994;

Fonov et al., 2009, 2011). The average scaling from the native MRIs

to the template was then computed, and the inverse used to scale the

template to the average size of the neonate population; this served as

an initial target for construction of the neonate template. An iterative

procedure that minimizes the mean squared intensity difference

between the current iteration of the template–templatei–and each

subject's MRI, and minimizes the magnitude of all deformations used

to map templatei to each subject's MRI was used to construct the

template, as described in Fonov et al. (2011). This method was applied

to produce linear and nonlinear transformations from the template to

each scan, then these transformations were used to map the subject's

T1s to the template space, where they were averaged to create the

neonate T1 symmetric template. Finally, the intensity of the T1 tem-

plate was linearly scaled so that it had the same intensity range as the

MNI152 T1 symmetric template. The T2 data and a left–right flipped

copy of them were then registered to their T1 counterparts, and these

transformations were combined with the T1 transformations to map

the T2 scans into the template space where they were averaged to

create the T2 symmetric template; as with the T1 template, the inten-

sity of the T2 template was linearly scaled so that it had the same

intensity range as the MNI152 T2 symmetric template.

2.4 | FBV measurement

The multi-contrast template was then manually labelled in order to

derive masks of the structures of interest. To ensure that these labels

were accurate, we created multiple copies of the template, each

warped differently, to represent the morphological variability in the

sample. To achieve this, we clustered the data with Ward's method

(Ward, 1963). The morphological variability in the sample was well-

represented by 21 clusters. We then warped the multi-contrast tem-

plate to the subject at the center of each of these clusters. We then

labelled each of these variants (without the raters' awareness that

they were, in fact, identical except for being different deformations),

and then unwarped the labelled templates, and took the majority label

at each voxel. For the case at hand, that is, the forebrain, we used all

gray-matter, white-matter, subcortical, ventricular, and upper brain-

stem voxels to create a mask for the neonate template. This forebrain

mask was then transformed from the neonate template to overlay

each subject's MRI using the inverse of the deformations computed

above, and used to extract the subject's FBV via mincstats.

2.5 | CC measurement

The CC was first defined on the MNI152 template (for another pro-

ject [Lewis et al., 2013]). The boundary and 25 divisions of the CC

were identified on the midsagittal slice of the template. The CC was

divided into 25 subregions in order to provide high-resolution results

while maintaining comparability with the five regions utilized by

Clarke et al. (1989). This division into 25 subregions has been used

previously with diffusion tractography to map the regions of the brain

connected by different parts of the CC (Lewis et al., 2013); this map-

ping is used here to assess the allometric relationship in the anterior

and the posterior of the brain, separately (see section 2.6). The bound-

ary and divisions of the CC were established using a semiautomated

procedure based on Clarke's method (Clarke et al., 1989). The proce-

dure was as follows. The midsagittal slice of the template was

extracted and upsampled to 0.1 mm � 0.1 mm. An intensity-based

flood-fill was used to establish an initial boundary of the CC. An

implementation of the active contour algorithm was then used to

transform this initial estimate into a smoothed boundary at the centre

of the gradient at the edge of the CC. Lines were then radiated from

the geometric centroid of the CC at 1-degree intervals, and for each

line that crossed the CC, the point midway between the two points of

intersection with the boundary was determined, and the shortest

length line that crossed the CC through that point was determined.

The curved line that passed through the midpoint of each of these

lines and extended to the CC boundary on either end defined the mid-

line. The midline was divided into 25 equal length segments. The

shortest length lines that crossed the CC at the points defined by

these midline segments defined the subregion boundaries. The subre-

gions are identified as 1–25 from rostral to caudal as illustrated in

Figure 1. The method is described in more detail in Lewis et al. (2009)

and Lewis et al. (2013).

The MNI152 template was then linearly and nonlinearly regis-

tered to the neonate template via a series of intermediaries, that is,

the 24, 12, and 6 month templates (Fonov et al., 2011), using ANTs

with mutual information (Avants et al., 2009). These intermediary

templates were used to minimize the issues related to intensity and

morphological changes over development. The resulting transforms

were concatenated in order to bring the CC from the MNI152 tem-

plate to the neonate template. The neonate template was then line-

arly and nonlinearly registered to each of the neonate subjects in

order to overlay the CC on each, and to measure the CC area in each,

as depicted in Figure 2.
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2.6 | Analysis

The CC area and FBV measures were then submitted to a regression

analysis, in order to determine the value of the exponent in the allome-

tric equation:

CCarea ¼ constant�FBVexponent, ð1Þ

For a 3D substructure showing proportional growth, the expo-

nent of such an equation would be 1. But since for the CC we are

measuring the cross-sectional area, in the case of proportional growth,

the exponent of this allometric equation would be 2/3 (Schmidt-

Nielsen & Knut, 1984). This equation is transformed into a linear form

by taking the log of either side, producing:

log CCareað Þ¼ constantþexponent�log FBVð Þ, ð2Þ

allowing its use in a linear regression analysis. The analyses deter-

mine the exponents, that is, the slope of the regression lines,

which we will then compare between the sexes, and with the

slopes of the fit lines for the regressions reported by Jäncke and

Steinmetz (1998) for adult data via a similar analysis. All analyses

control for age at time of scan (gestational weeks to birth and

postnatal days).

F IGURE 1 The definition of the
corpus callosum on the MNI152 template.
The boundary of the CC is determined via
an active contour (a); (b) lines are radiated
from the geometric centroid, and the
midpoints of those that intersect the CC
are calculated; (c) the shortest lines that
cross the CC passing through the
midpoints in b are found, and their

midpoints are calculated; (d) the curve
passing through the midpoints in c and
extending to the CC boundary is divided
into 25 equal length segments; the
shortest lines crossing the CC at the ends
of a segment define the subregion
boundaries; (e) in color

F IGURE 2 A schematic of the
method of measuring the corpus callosum
in the neonates. The neonate template is
linearly and nonlinearly registered to each
subject in order to overlay the CC
subdivisions on that subject. The cross-
sectional area of the CC is then calculated
for that individual
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First, we investigated the sex-specific association between FBV

and total CC area, that is, the two-way interaction between sex and

the log of FBV regressed on the log of total CC area. In subsequent

post hoc regression analyses we investigated the association between

the log of FBV and the log of total CC area for male and female neo-

nates separately, and compared the results to those of their adult

counterparts, as reported by Jäncke and Steinmetz (1998) from a simi-

lar analysis. Each of these comparisons used the 95% confidence

intervals (CIs) of the β-values corresponding to the slopes estimated

by the regression analyses (using the confint function in R) to compare

between the sexes or with the adult slopes reported by Jäncke and

Steinmetz (1998). For the neonate data, we also report the signifi-

cance of the interaction term for sex. For the comparisons with the

results reported by Jäncke and Steinmetz (1998), we computed one-

sample t-tests.

Assumptions of the regression analyses were checked by visual

inspection of the correct specification of the model (Residuals

vs. Fitted plot, Lowess line), the normal distribution of the residuals

(Normal Q-Q plot), the homoscedasticity (Scale-Location diagram) and

critical outliers (Residuals vs. Leverage plot, Cook's distance) (using

the plot function in R). Assumptions were met in all analyses. Homo-

scedasticity was additionally tested by means of the Goldfeld-

Quandt-test (using the gqtest function in R); a p-value >.05 indicates

homoscedasticity. Homoscedasticity was met in all analyses.

Lewis et al. (2013) also provide the mapping between cortical

regions and the 25 CC segments, based on diffusion tractography. We

use this mapping as the basis for two subanalyses of this allometric

relation: for the frontal lobe and the anterior CC; and for the posterior

lobes and the posterior CC. According to the results of Lewis et al.

(2013), the frontal lobe connections via the CC pass through segments

1–16, and segments 17–25 interconnect the parietal, occipital, and

temporal lobes. To measure the volumes of the frontal lobes versus

posterior lobes, we utilized the divisions of the gray and white matter

provided by lobe_segment (Collins et al., 1999). Since this software

was originally designed to work with the MNI152 t1 template, in

order to use it, we linearly and nonlineary registered the MNI152 t1

template to the Neonate template, again via a series of intermediaries,

as described above, and transformed the lobe_segment atlases to over-

lay the Neonate template.

3 | RESULTS

Table 1 provides the sample descriptives. The results of the regression

analyses are shown in Tables 2–4 and Figures 3–5. The male neonates

show an allometric relationship with a slope of almost that of propor-

tional growth, that is, the CC scales with brain size with an exponent

only slightly different from 2/3. The female neonates show an allome-

tric relationship with a slope that significantly exceeds the slope of

proportional growth, and which is also significantly greater than that

of the male neonates. With sex as an interaction term, the interaction

is significant (p = .029); thus the results show sexual dimorphism in

TABLE 1 The sample descriptives

Variable Males N = 70 M ± SD (range) Females N = 55 M ± SD (range)

Sex difference

(p-value)

Age (days) 26.4 ± 7.9 (11–43) 26.0 ± 7.4 (14–54) .788

Gestational weeks 39.9 ± 1.1 (37.6–42) 39.9 ± 1.2 (36.3–42.1) .868

Total CC area (mm2) 139.62 ± 18.31 (98.00–187.62) 135.86 ± 20.03 (91.26–169.77) .276

Forebrain volume

(mm3)

412,757.74 ± 29,537.18 (357,502.12–473,818.88) 395,701.92 ± 27,871.48 (343,834.00–450,826.00) .001

Anterior CC area

(mm2)

87.57 ± 12.24 (60.25–116.71) 86.23 ± 15.29 (56.60–116.49) .586

Frontal lobe volume

(mm3)

183,362.25 ± 13,586.89 (158,586.12–212,617.62) 173,347.90 ± 12,933.20 (146,955.88–199,547.50) <.001

Posterior CC area

(mm2)

52.05 ± 9.48 (31.03–80.07) 49.63 ± 8.31 (33.73–68.34) .138

Posterior lobes

volume (mm3)

229,395.49 ± 17,382.20 (198,916.00–265,237.25) 222,354.02 ± 16,080.81 (191,251.75–255,145.88) .022

TABLE 2 The results for the assessment of the allometric relation
between log(totalCCarea) and log(ForeBrainvolume) in male and female
neonates. Note that the β of either group falls outside of the CI(95%)
of the other

Group β SE CI(95%)

Male neonates 0.65 0.23 0.18,1.11

Female neonates 1.31 0.25 0.80,1.82

TABLE 3 The results for the assessment of the allometric
relationship between log(anteriorCCarea) and log(FrontalLobevolume) in
male and female neonates. Note that the β of either group falls
outside of the CI(95%) of the other

Group β SE CI(95%)

Male neonates 0.69 0.24 0.22, 1.16

Female neonates 1.45 0.28 0.9, 2.01
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the allometric relationship between CC size and brain size in neo-

nates. Further, female neonates show an allometric relationship with a

slope that is significantly greater than the slope in the relationship

reported by Jäncke and Steinmetz (1998) for their adult counterparts,

that is, 1.31 versus 0.66. The male neonates show an allometric rela-

tionship with a slope that is greater than that of their adult counter-

parts, but not significantly so, that is, 0.65 versus 0.52.

Figure 3 shows the scatter-plot of the allometric relationships for

the male and female neonates. As can be seen by the nonoverlap of

the confidence intervals for each sex with the fit-line for the opposite

sex, the allometric relationship between total CC area and FBV is sex-

ually dimorphic (p = .029). This conclusion can also be read from

Table 2.

Figure 4 (left) shows the scatter-plot of the allometric relation-

ships for the female neonates and their adults counterparts, as

reported by Jäncke and Steinmetz (1998). Figure 4 (right) shows the

scatter-plot of the allometric relationships for the male neonates and

their adults counterparts, as reported by Jäncke and Steinmetz (1998).

As can be seen by the nonoverlap of the confidence intervals for the

female neonates with the fit-line for their adult counterparts, the allo-

metric relationship between total CC area and FBV has a significantly

greater slope in female neonates than in adult females (t[54] = 2.6,

p = .012). As can be seen by the overlap of the confidence intervals

for the male neonates with the fit-line for their adult counterparts, the

allometric relationship between total CC area and FBV does not differ

significantly between male neonates and adult males (t[69] = 0.6,

p = .574). The results of the regression analysis for the frontal lobe

and the anterior portion of the CC are shown in Table 3 and Figure 5

(left). The results of the regression analysis for the posterior lobes and

the posterior portion of the CC are shown in Table 4 and Figure 5

(right).

These results clearly identify the sexual dimorphism seen in the

allometric relationship between CC size and brain size as being pre-

dominately due to a difference in the relationship between the size of

the anterior of the CC and the size of the frontal lobe. It should be

noted that the frontal lobe in female neonates is significantly smaller

than the frontal lobe in male neonates (p < .001).

4 | DISCUSSION

Previous research has established that larger brains have larger cor-

pora callosa, in both men and women, and that that relationship is

allometric with an exponent not significantly different from 2/3, as

expected for proportional scaling of a cross-sectional area to a volume

(Jäncke & Steinmetz, 1998). As pointed out by Bishop and Wahlsten

(1997), the failure to take this allometric relationship into account ren-

dered previous claims of a sexual dimorphism in the CC questionable.

The same holds for subsequent studies which have failed to take this

allometric relationship into account. Group comparisons based on

absolute measures, ratios, or linear controls, have been determined to

be potentially quite misleading (Packard & Boardman, 1988). To date

then, the question of whether or not there is a sexual dimorphism in

the CC remains in doubt, but the existing evidence suggests that in

adults there is not.

There is, however, some evidence that there are developmental

changes in this allometric relationship (Schmied et al., 2020). Schmied

et al. (2020) reported that male and female infants showed divergent

trajectories after six months of age, with male infants showing more

rapid expansion of the CC than female infants (cf. Danielsen

et al., 2020). Interestingly, Schmied et al. (2020) reported that there

was no sexual dimorphism in infants at 6 months of age. Those results

suggest that the sexual dimorphism may be due, at least in part, to

postnatal processes such as e.g. myelinization. But they do not pre-

clude the possibility that allometric scaling may show a complex tra-

jectory, with fluctuations throughout development. The results here

suggest that this is the case, and that prenatal processes may produce

still earlier sexual dimorphism in the CC. We have shown that male

F IGURE 3 A scatter plot of the allometric relation between log
(totalCCarea) and log(ForeBrainvolume) in male and female neonates.
Males are shown as blue triangles; females as magenta circles. The
male regression line is solid blue; the female regression line is dashed
magenta. The slope of the regression line in male neonates is 0.65;
the slope of the regression line in female neonates is 1.31. These
slopes are significantly different, that is, sexually dimorphic (p = .029).
Note that the regression controls for age at scan (in terms of

gestational weeks to birth and postnatal days)

TABLE 4 The results for the assessment of the allometric
relationship between log(posteriorCCarea) and log(PosteriorLobesvolume)
in male and female neonates. Note that the β of either group falls
within the CI(95%) of the other

Group β SE CI(95%)

Male neonates 0.69 0.32 0.05, 1.32

Female neonates 0.94 0.31 0.31, 1.56
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F IGURE 4 Scatter plots of the allometric relationship between log(totalCCarea) and log(ForeBrainvolume) in (left) female neonates in comparison
to the fitline for their adult counterparts according to Jäncke and Steinmetz (1998); and in (right) male neonates in comparison to the fitline for
their adult counterparts according to Jäncke and Steinmetz (1998). Female neonates are shown as magenta circles with a solid magenta
regression line; the regression line for adult females is dashed. Male neonates are shown as blue triangles with a solid blue regression line; the
regression line for adult males is dashed. The slope of the regression line in female neonates is 1.31; the slope of the regression line in their adult
counterparts is 0.66. These slopes are significantly different (t[54] = 2.6, p = .012). The slope of the regression line in male neonates is 0.65; the
slope of the regression line in their adult counterparts is 0.52. These slopes are not significantly different (t[69] = 0.6, p = .574)

F IGURE 5 Scatter plots of the allometric relationship between log(anteriorCCarea) and log(FrontalLobevolume) in male and female neonates (left),
and between log(posteriorCCarea) and log(PosteriorLobesvolume) in male and female neonates (right). Males are shown as blue triangles; females as
magenta circles. The male regression line is solid blue; the female regression line is dashed magenta. The slope of the regression line for the

anterior CC in male neonates is 0.69; the slope of the regression line in female neonates is 1.45. These slopes are significantly different, that is,
sexually dimorphic (p = .018). The slope of the regression line for the posterior CC in male neonates is 0.69; the slope of the regression line for
the posterior CC in female neonates is 0.94. These slopes are not significantly different (p = .4).

LEWIS ET AL. 7



neonates show an adult-like allometric relationship between their CC

size and FBV, but female neonates show a significantly greater expo-

nent in their allometric relationship than do either male neonates or

adults of either sex. Future research must, of course, verify that there

are such developmental fluctuations in the allometric scaling of the

CC. Research providing charts of brain growth from infancy to matu-

rity (Bethlehem et al., 2022; Howell et al., 2019; Rutherford

et al., 2022) are an important step forward, but need to be augmented

with the data that will allow assessments of the allometric

relationships.

The fact that female neonates show a significantly greater expo-

nent in this allometric relationship than do their adult counterparts is,

in a sense, unsurprising. The cortex, and connectivity, in general, is

known to develop through exuberance and pruning (Innocenti

et al., 1977; Innocenti & Price, 2005; Low & Cheng, 2006; Luo &

O'Leary, 2005; Price & Blakemore, 1985; Stiles & Jernigan, 2010).

Throughout the brain, many times more neurons, glia, synapses, and

connections, are produced than will ultimately survive into adulthood.

In the case of connectivity, this progressive phase is largely complete

by the end of the second trimester. Specifically, for the case at hand,

the first midline crossings are at approximately gestational week

twelve and more crossing fibers continue to be produced until about

20 weeks (Rakic & Yakovlev, 1968). The third trimester and early

postnatal development mix further progressive events, in the form of

myelination and increases in axon diameter, with regressive events, in

the form of natural cell death and selective pruning. We conjecture

that the allometric relationship between CC size and FBV observed in

adults is due to the optimization achieved by this pair of developmen-

tal processes. The allometric relationship with an exponent of 2/3 is

likely only a crude approximation of the true measures of optimiza-

tion: the usefulness of the connections versus their costs. The longer

connections in larger brains are more metabolically expensive, and

longer connections introduce greater conduction delays (Lewis

et al., 2009; Ram�on, 1923; Ringo et al., 1994); thus optimization

should drive the observed relatively lesser connectivity in larger

brains. But while the over-production of neurons, glia, synapses, and

connections, is largely complete by the end of the second trimester,

the elimination of the excess takes place over an extended period of

time. Thus, the fact that female neonates show a significantly greater

exponent in this allometric relationship than do their adult counter-

parts is unsurprising; more surprising is that male neonates do not

show a significantly greater exponent in their allometric relationship

than do their adult counterparts. So while our data suggest that there

is a sexual dimorphism in the allometric relationship between CC size

and brain size in neonates, it is unclear whether this points to exces-

sive exuberance or a delay in the deployment of regressive mecha-

nisms in females, or to a lack of exuberance or precocious deployment

of regressive mechanisms in males.

It has been suggested that gonadal hormones may impact fetal

brain development (Chang et al., 2018). Indeed, evidence indicates

that the neurosteroid estradiol plays a supporting role in neurogenesis

(Sahab-Negah et al., 2020). Estradiol interacts with neurons to facili-

tate cellular functions in neurons, enabling apoptosis (Molloy

et al., 2003). It is estimated that naturally occurring cell death

accounts for the loss of approximately 50% of the neurons originally

generated, and that this occurs shortly after the neurons are gener-

ated (Stiles & Jernigan, 2010). Thus, sex-specific hormones can impact

the number of neurons that survive until birth. Estradiol also interacts

with astroglia to stimulate synthesis of neuroprogesterone (Molloy

et al., 2003). Progesterone significantly increases the number of oligo-

dendrocytes in both sexes but more so in females (Swamydas

et al., 2009). Conversely, dihydrotestosterone reduces the number of

oligodendocytes in both sexes but more so in females (Swamydas

et al., 2009).

But gonadal hormones are not the only way that this sexual

dimorphism might be achieved. Recent animal research has demon-

strated differences in growth rates and metabolism between male and

female embryos before there has been sexual differentiation of the

gonads (Burgoyne et al., 1995; Mittwoch, 1993). And an analysis of

sex differences in gene expression during the second trimester has

identified thousands of differences in gene expression, both at the

individual transcript level, as well as the whole gene level (O'Brien

et al., 2019). Also, recent analyses of data from the second trimester

in relation to single cell RNA sequencing findings suggest subtle dif-

ferences in cellular composition between the male and female human

brain (Fan et al., 2018; Zhong et al., 2018). Which of these differences

underlies this sexual dimorphism in the allometric relationship

between CC size and brain size will be a question that future research

must address.

Future research must also address the questions that arise from

the fact that this sexual dimorphism was found to exist in the anterior

portion of the CC, and not in the posterior portion. The anterior por-

tion of the CC interconnects the frontal cortex, which is involved in

many critical cognitive functions, such as executive function, atten-

tion, memory, and language production (Carlin et al., 2000; Chayer &

Freedman, 2001; Damasio & Damasio, 2000; Dimitrov et al., 1996;

Miotto & Morris, 1998; Putnam et al., 2008; Rueckert &

Grafman, 1996; Stuss et al., 1982). Current evidence suggests that

these aspects of cognition are more lateralized in men than in women

(Clements et al., 2006; Goldberg et al., 1994; Gur et al., 2012; Gur &

Gur, 2017; Halpern et al., 2007; Kansaku & Kitazawa, 2001; Williams

et al., 2009), suggesting a relationship between the results here and

functional lateralization of these cognitive functions. But those results

are in adolescents and adults; there is, though, some evidence that

some of these cognitive functions are initially more bilateral (Olulade

et al., 2020). The fact that the frontal lobe is significantly smaller in

female neonates compared to male neonates suggests that frontal

lobe connectivity, in general, develops more slowly in females; per-

haps this leads to the initial bilaterality of frontal lobe functions

remaining more bilateral in the mature female brain compared to

males. But future research must seek to verify our speculation of a

link between this sexual dimorphism in functional lateralization in

older individuals and our results showing sexual dimorphism in neo-

nates in the allometric relationship between CC size and brain size;

and to explain the fact that this effect is restricted to the anterior of

the CC.
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It should be noted that obtaining reliable anatomical measures in

neonates, such as the area of the CC or the volume of structures, is

notoriously difficult. This is particularly an issue when the measures

depend on image contrast, which is quite low. The measures here,

though, are all based on registration between the individual neonate

MRI and the neonate template, rendering the low-contrast less prob-

lematic. Further, all registrations were manually checked to ensure the

validity of the measures.

It should also be noted that the division of the CC into subregions

and the mapping of the cortex to those subregions originated in adult

data. This potentially admits some distortion in the placement of the

subregion boundaries in the neonates; but this method (a) allows the

diffusion tractography results from the adults to be used to determine

the anterior versus posterior measures of the CC (which cannot, as of

yet, be obtained from the neonate data); and (b) in future work will

allow comparisons of measures across development.
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