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a b s t r a c t 

Each patient’s cancer has a unique molecular makeup, often comprised of distinct cancer cell subpopula- 

tions. Improved understanding of dynamic processes between cancer cell populations is therefore critical 

for making treatment more effective and personalized. It has been shown that immunotherapy increases 

the survival of melanoma patients. However, there remain critical open questions, such as timing and 

duration of immunotherapy and its added benefits when combined with other types of treatments. We 

introduce a model for the dynamics of active killer T-cells and cancer cell subpopulations. Rather than 

defining the cancer cell populations based on their genetic makeup alone, we consider also other, non- 

genetic differences that make the cell populations either sensitive or resistant to a therapy. Using the 

model, we make predictions of possible outcomes of the various treatment strategies in virtual melanoma 

patients, providing hypotheses regarding therapeutic efficacy and side-effects. It is shown, for instance, 

that starting immunotherapy with a denser treatment schedule may enable changing to a sparser sched- 

ule later during the treatment. Furthermore, combination of targeted and immunotherapy results in a 

better treatment effect, com pared to mono-immunotherapy, and a stable disease can be reached with a 

patient-tailored combination. These results offer better understanding of the competition between T-cells 

and cancer cells, toward personalized immunotherapy regimens. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Each patient’s cancer has a unique molecular makeup, often

omprised of populations of genetically, functionally or epigenet-

cally distinct cancer cell subpopulations that undergo dynamic

volutionary processes throughout the disease course and treat-

ent periods. The goal of making cancer treatment more effec-

ive and personalized therefore requires an improved understand-

ng of such dynamic processes, including evolutionary competition

f space, glucose and other resources between cell populations

hat lead to the survival of fitter populations ( Gillies et al., 2012;
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lauche et al., 2018; Greaves, 2015 ). Mathematical modelling of

eterogeneous cell population dynamics and treatment responses

as shown great promise as a means to suggest mono- or combi-

ation therapies that can theoretically control or even inhibit dis-

inct cancer cell populations, as well as provide mechanistic in-

ights into treatment sensitivity and resistance for adaptive inter-

ention designs ( Bozic et al., 2013; Bozic and Nowak, 2014; Fischer

t al., 2015; Louzoun et al., 2014; Michor and Beal, 2015; Zhang

t al., 2017; Zhao et al., 2016 ). However, most of the modelling

orks have focused on genetic differences and architecture of sub-

lones and their evolution, even though also non-genetic differ-

nces between or within tumors are known to contribute to the

ndividual disease course and personalized responses to therapies

n various hematological cancers and solid tumors, including pa-

ients with advanced malignant melanomas. 
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Elimination

− Death

+λ R̂ −λ R

− Death

+αT(1− pT)T
T−cell division

− Resource consumption

+ Division of cancer cells

Fig. 1. Presentation of the model as relations between different cell types (T for 

active killer T-cells, C for cancer cells) and resources (R). The other parameters are 

explained in Table 1 . Positive terms increase the density and negative terms de- 

crease the density with the ellipse pointing the affected entity. Cancer cell death 

includes both normal cell death and inhibition caused by targeted treatments and 

chemotherapies. T-cell death includes normal cell death, self-regulation and death 

caused by chemotherapy. Cancer cells consume resources to maintain their prolif- 

erative capacity. Killer T-cells get activated when they encounter cancer cells’ anti- 

gens, but cancer cells can also inhibit T-cell activation by binding their ligands (such 

as PD-L1) to inhibitory receptors on T cell surface (such as PD-1). Lightning bolt ar- 

rows point the relations which are affected by different treatments. The extension 

of the model to multiple cancer cell subpopulations is presented in Supplementary 

Fig. 2. 
Melanoma is initiated by DNA mutations in melanocytes with

major risk from exposure to ultraviolet light. Melanomas typ-

ically occurs in skin, where it forms lesions of irregular size,

shape and color. In localized disease, common treatment is re-

moval by surgery. However, in the case of advanced malignant

melanoma where the disease has metastasized, multidisciplinary

treatments, such as radiation therapy, targeted therapy (e.g., BRAF

inhibitors such as vemurafinib), chemotherapy (e.g., dacarbazine)

or immunotherapy (e.g., anti-PD-1 such as nivolumab and pem-

brolizumab) are recommended ( Bhatia et al., 2009; Garbe et al.,

2016; Maverakis et al., 2015 ). Novel immunotherapies have greatly

improved the response rate, duration and tumor stability in pa-

tients with advanced melanoma even after treatment discontinu-

ation ( Huang et al., 2019; Topalian et al., 2014 ). However, vary-

ing treatment outcomes persist ( Gauci et al., 2019 ), and despite

the improved clinical benefit, a proportion of patients remain non-

responsive leading to progressive disease ( Robert et al., 2015 ).

In some cases, the treatment has to be repeated periodically to

control the cancer, leading to a chronic disease ( Lipson et al.,

2013 ). However, dormant cancer can also be reached ( Aguirre-

Ghiso, 2007; Ossowski and Aguirre-Ghiso, 2010; Schreiber et al.,

2011; Senft and Ronai, 2016 ), where undetectable cancer persists

after treatment. 

Immune-checkpoint inhibitors are revolutionizing the treatment

of patients with advanced-stage cancers. In particular, the blockade

of programmed cell death protein 1 (PD-1) increases the survival

of patients with metastatic melanoma and other solid tumors. De-

spite encouraging results, however, clinical outcomes of anti-PD-

1 therapy remain highly variable and durable treatment benefit is

limited to a minority of patients ( Keenan et al., 2019 ). Immune-

checkpoint inhibitors reactivate patient’s immune system to defeat

cancer, especially antigen-specific killer T-cells (or CD8+ T-cells).

Approximately 20–50% of human cancers express programmed

death-ligand (PD-L1) that inhibits the killer T-cell function by bind-

ing to its receptor PD-1 on the T-cell surface ( Chen and Mell-

man, 2013 ). Monoclonal antibodies, such as anti-PD-1, block the in-

activating binding of PD-L1 to its receptor protein PD-1 on killer T-

cell surface, enabling the T-cell to attack the tumor ( Pardoll, 2012 )

(see Supplementary Fig. 1). Additionally, antigen delivery from dy-

ing cancer cells leads to increased activation of killer T-cells that

elevates the regulation of T-cells also by other mechanisms, for ex-

ample T-cell self-regulation. To understand the patient-specific re-

sponses to immunotherapies, one needs to take into account the

dynamics and competition between active killer T-cells and cancer

cells. Some of the currently unaddressed questions in melanoma

therapy concern the timing of checkpoint blockage, respective ben-

efits of targeted versus checkpoint inhibitors, and how to optimize

the benefit-risk ratio of these regimens ( Robert, 2018 ). 

Immunotherapies are also being tested in combination with

other cancer therapies, including targeted or cytotoxic chemother-

apies, where the former inhibits the growth of cancer cells by in-

terfering with specific target molecules (e.g., oncogenes), whereas

the latter prevents proliferation of the rapidly proliferating cells

(e.g. traditional chemotherapy). The use of targeted treatments is

preferred as they selectively kill cancer cells harboring a specific

mutation or other molecular aberration that drives the particu-

lar cancer cell, and therefore they often cause less toxic effects in

noncancerous cells. However, cancer cell populations without the

aberration often remain resistant against the targeted treatment,

and resistant subpopulations may also emerge by new mutations.

For clinical applications, it is important to study the often subtle

balance between the therapeutic efficacy and the degree of side-

effects, especially when modelling the response of chemotherapies

that lead to the death of both cancerous and T-cells. Even though

heavy treatment dosage may potentially kill most cancer cells, the

patient might not tolerate very intense treatment periods. There is
 need to better understand various treatment choices and their

cheduling, as those currently used in the clinics may not be opti-

al, but rather a result of trial and error or other considerations,

uch as cost issues. 

In the present work, we introduce a comprehensive model

or the dynamics of active killer T-cells and their competition

gainst distinct cancer cell populations under various treatment

odalities, including immunotherapies, targeted and chemothera-

ies. Rather than defining the cancer cell populations based on ge-

etic differences alone, we consider cell populations that are either

ensitive or resistant to a targeted therapy. Using the model, we

ake predictions of possible outcomes of the various treatment

trategies and provide experimentally-testable hypotheses regard-

ng, for example, therapeutic efficacy of treatment schedules (tim-

ng and duration) and toxic effects at different doses. As the first

isease model, we chose melanoma, due to its clinical relevance

nd variety of options actually used in melanoma treatment. We

emonstrate the behavior of the model dynamics in several case

tudies that model the effects of anti-PD-1 and targeted therapies,

s well as their combinations, in comparison with chemothera-

ies in virtual melanoma patients characterized by key model pa-

ameters. Our modelling questions focus on the effects of therapy

particularly, targeted, chemo- and immunotherapy) on the cancer

ell populations. In particular, how do patients respond to these

reatments, when using different treatment initiation criteria (Case

tudy 2), durations (Case studies 2, 3 and 4), dosages (Case study

) or combinations (Case studies 3 and 4). 

. Materials and methods 

.1. Model overview 

The dynamics of cancer cells and active killer T-cells are illus-

rated in Fig. 1 for one cancer cell population (see Supplemen-

ary Fig. 2 for multiple cancer subpopulations). Resources R corre-

pond to nutrients, such as glucose, that flow in to and out of the

icroenvironment of cancer being modeled. Cancer cells ( C ) use
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Table 1 

Parameters of the model. Boldfaced parameters are changed in the case corresponding to cancer microenvironment of a virtual melanoma 

patient (see also Tables 2 and 3 ). # T and # C denotes density unit of T-cells and cancer cells as mass/volume and – denotes unitless variables. 

Symbol Value Unit Meaning 

ˆ R 1.5 mass/volume Concentration of resources flowing into the region of interest. 

λ 1 – Relative flow speed of resources. 

s i varies – The proliferation strategy of cancer cell subpopulation i . 

α0 0.1 1/(timeunit ∗# C ) Lower limit of α( ̄s i ) . 

a 1 1/(timeunit ∗# C ) Upper limit of α( s i ) is α0 + a . 

b 0.5 – The strategy value at which α(s i ) = α0 + a/ 2 

γ 0.8 # C /(mass/volume) Resource usage common to all cancer cells. 

K 8 # C The maximum amount of cancer cells in the region of interest. 

μT 0.5 1/timeunit Normal apoptosis rate of active killer T-cells. 

μi 0.4 1/timeunit Normal apoptosis rate of cancer cell subpopulation i . 

w 0.7 – Maximum proportion at which cancer cells limit each other’s resource 

consumption. 

m varies # T /timeunit Maximum rate of killer T-cell activation. 

u 0.1 # C $$ /timeunit The amount of antigen delivery giving the half maximal activation. 

v 2 – The effect on the slope of h ( d C ) at u . 

αT varies 1/(timeunit ∗# T ) Birth rate of active killer T-cells. 

θ 0.6 – Proportion of active killer T-cells that enter the region of interest. 

ε 0.015 – The proportion of delivered antigens by one normal cancer cell apoptosis, 

compared with death caused by drugs or killer T-cells. 

ξi varies 1/(timeunit ∗# T ) Rate at which T-cells kill cancer cell subpopulation i . 

ϕi varies 1/(timeunit ∗# C ) Rate at which cancer cell subpopulation i makes killer T-cells ineffective. 

δ 0.6 1/(timeunit ∗# T ) Rate of active killer T-cell self-regulation. 

c( τ) varies mass/volume Concentration of a drug at time τ after adding the drug. 

Table 2 

Functions of the model. # T and # C denotes density unit of T-cells and cancer cells as mass/volume; –

denotes unitless variables. 

Symbol Equation Unit Meaning 

α( s i ) Eq. (4) 1/(timeunit ∗# C ) Resource consumption rate specific for subpopulation i . 

d C Eq. (8) # C /timeunit The antigen delivery rate by dying cancer at time t . 

h ( d C ) Eq. (9) # T /timeunit Activation of killer T-cells. 

H p Eq. (10) – Hill equation expressing the effect of a cytostatic drug. 

p i Eq. (11) – Killing effect of cytostatic drug on cell type i 

β i Eq. (12) 1/timeunit Killing effect of targeted drug on cell type i . 

ρ i Eq. (13) – Effect of immunotherapy. 
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hese resources to divide. When a cancer cell dies, it delivers anti-

ens, which then cause the activation of killer T-cells ( T ), leading to

he increase in their number. The activated killer T-cells divide as

ell in the microenvironment. Each of the cell types undergo cell

eath caused either by apoptosis or drug treatments. T-cells have

lso self-regulation that is a way of the immune system to prevent

verpopulation of killer T-cells. 

The model parameters are listed in Table 1 and functions in

able 2 . The cell-type specific proliferation strategy s i is one of the

ey model parameters as it corresponds to the rate at which cancer

ells consume resources to proliferate. The higher the strategy pa-

ameter, the more aggressive is the cancer subpopulation. Param-

ter γ specifies how much one resource unit contributes to cell

ivision, assumed to be equal in all the cancer cell subpopulations.

.2. Model dynamics 

We obtain the following ordinary differential equations (ODEs)

or resources ( R ), cancer cell subpopulations ( C i ) and active killer

-cells ( T ): 

dR 

dt 
= λ( ̂  R − R ) −

⎛ 

⎝ 1 − w 

∑ 

j 

C j 

1 + 

∑ 

j 

C j 

⎞ 

⎠ 

∑ 

j 

α( ̄s C j ) RC j (1)

dC i 
dt 

= γα( ̄s C i ) 

⎛ 

⎝ 1 −w 

∑ 

j 

C j 

1 + 

∑ 

j 

C j 

⎞ 

⎠ RC i 

⎛ 

⎝ (1 −p i ) 

⎛ 

⎝ 1 −

∑ 

j 

C j 

K 

⎞ 

⎠ −p i 

⎞ 

⎠ 

−μi C i − βi C i − ξi C i θT (2) 
dT 

dt 
= h (d C ) + (αT (1 − p T ) − μT ) T − αT p T T − δ

2 

T 2 

−
∑ 

i 

(1 − ρi ) ϕ i C i θT . (3) 

These ODEs are explained and justified in more detail in

ection 2.3 . The Runge–Kutta method (RK45) was used to calculate

umerically the dynamics of ODEs with R version 3.4.4 and RStu-

io version 1.1.453. Parameter values, especially the ones related

o treatments, are altered to obtain multiple situations in the case

tudies corresponding to virtual melanoma patients characterized

y combinations of model parameters. These virtual patient cases

re presented in Section 3 . 

.3. Model details 

This sub-section describes the model in more detail in the form

f ODEs for resources R and each cancer cell subpopulation C i in

he microenvironment of cancer as well as for active killer T-cells

 in the body. A resource-consumer model was used with logistic

quation as the basis of competition between the cancer cell sub-

opulations. 

.3.1. Resources and cancer cells 

Let R denote the concentration of resource (such as glucose) in

he region of interest. Resources flow in and out following chemo-

tat dynamics, that is, there is a constant inflow of medium with

esource concentration 

ˆ R , and the resource concentration of the

utflowing medium equals R . The inflow and the outflow have the

ame flow speed λ, so that the volume of the resource medium
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in the region of interest remains constant. In the absence of con-

sumption, the resource concentration follows the differential equa-

tion 

dR 
dt 

= λ( ̂  R − R ) ( Smith and Waltman, 1995 ). 

When the cancer cell density is low, cancer cells consume re-

sources according to the law of mass action ( Tóth and Érdi, 1989 ),

with the proliferation consumption rate α( s i ). It is assumed that

this rate is of the form 

α(s i ) = α0 + a 
s i /b 

1 + s i /b 
, (4)

which is an increasing function of s i with the upper limit of α0 + a .

The upper limit is given since cells cannot consume resources in-

finitely fast. Even if cancer cells would lack division regulation, the

cell cycle cannot happen infinitely fast. Additionally, high cancer

cell density restricts resource consumption, for example, through

increasing the distance between veins ( Tannock, 1968 ). Therefore

the resource consumption rate α( s i ) is multiplied by the factor 

1 − w 

∑ 

j 

C j 

1 + 

∑ 

j 

C j 
, (5)

which is a decreasing function of the total cancer cell density and

where w is the maximum proportion of restriction. The half satu-

ration is reached when the total cancer cell density is one. How-

ever, with the chosen parameter values, the maximum total can-

cer cell density is around 0.8 in all case studies investigated in

Section 3 due to other restrictions, such as the amount of inflow-

ing resources ( ̂  R ), and thus the saturation 

∑ 

j 

C j 

(1+ ∑ 

j 

C j ) 
< 0 . 5 . 

The dynamics of cancer cells are determined by the balance be-

tween proliferation and apoptosis. It is assumed that cells attempt

division with a rate that is directly proportional to their resource

usage, with the conversion coefficient γ : 

γα( ̄s C i ) 

⎛ 

⎝ 1 − w 

∑ 

j 

C j 

1 + 

∑ 

j 

C j 

⎞ 

⎠ RC i . (6)

However, not all attempted divisions are successful. In the pres-

ence of a cytostatic drug, mitosis is interfered and the attempted

cell division results in the death of the dividing cell with a proba-

bility p i , which is further discussed in Section 2.3.3 . The division

proceeds with the probability of (1 − p i ) . Furthermore, the mi-

croenvironment of cancer is assumed to have a carrying capacity,

e.g., due to limitations of space, resulting in a variable likelihood

of a successful division 

1 −

∑ 

j 

C j 

K 

, (7)

which decreases with the total cancer cell density. 

Cancer cells of type i have a natural death rate μi , and targeted

drugs increase the death rate by β i , depending on sensitivity or re-

sistance of the cancer subpopulation to the drug. Modelling of the

treatment effects are discussed in more detail in Section 2.3.3 . Ad-

ditionally, active killer T-cells that enter the microenvironment of

cancer ( θT ) kill cancer cells with the subpopulation-specific rates

ξ i . If a cancer cell subpopulation i does not present the antigen

that T-cells are specific for, active killer T-cells do not recognize

the cells at all (ξi = 0) . 

2.3.2. Active killer T-cells 

When cancer cells face cell death, they deliver antigens to the

blood stream ( Chen and Mellman, 2013 ). The total rate at which
uch antigens are delivered is given by 

 C = 

∑ 

i 

(
εμi + γα( ̄s i ) 

(
1 − w 

∑ 

C j 

1 + 

∑ 

C j 

)
Rp i + βi + ξi θT 

)
C i , 

(8)

hich includes normal cancer cell death ( μi ), death by drugs

s well as death caused by active killer T-cells ( ξ i θT ). Here,

< 1 specifies the proportion of delivered antigens by one nor-

al cancer cell apoptosis (poorly immunogenic), compared with

eath caused by drugs or killer T-cells (immunogenic cell death)

 Ferguson et al., 2011; Zhou et al., 2019 ). The delivery of antigens

eads to the activation of antigen-specific killer T-cells from naï T-

ells, so that killer T-cells are produced with the rate 

 (d C ) = m − m 

1 + (d C /u ) v 
, (9)

hich is an increasing function of antigen delivery rate d C , where

 is the maximum rate of killer T-cell activation and h (u ) = m/ 2

nd v affects the slope at u . Sigmoid function is chosen since

mall amount of antigen delivery might not be sufficient to in-

oke proper activation due to lack of a robust signal and complex-

ty of immune response ( Motz and Coukos, 2013 ). The amount of

aï T-cells is assumed to be large compared with the activation

ate h ( d C ), so that the amount of naï T-cells can be assumed to be

onstant and h ( d C ) is scaled accordingly. 

Active killer T-cells proliferate with the rate αT and they go

hrough normal cell death at the rate μT . Since killer T-cells do di-

ide, they are inhibited by cytostatic drugs with the rate p T , lead-

ng to restricted proliferation and increased cell death, which are

onsidered toxic side-effects. In contrast, targeted treatment is as-

umed not to affect T-cells directly but only trough increasing anti-

en delivery (8) by cancer cell death. Active killer T-cells circu-

ate in the body until they detect their target and infiltrate into

he tumor microenvironment ( Chen and Mellman, 2013 ). The pro-

ortion of active killer T-cells present in the microenvironment of

ancer is assumed to be constant θ for simplicity. These T-cells

T then proceed to kill cancer cells. However cancer cells use the

D-1/PD-L1 binding to make active killer T-cells ineffective, with

he subpopulation-specific intensities ϕi . If a cancer subpopulation

 does not have PD-L1, then ϕ i = 0 . The dynamics of the ineffec-

ive killer T-cells are not considered in the model. Immunotherapy,

uch as anti-PD-L1/anti-PD-1, is be used to prevent the binding of

D-1 and PD-L1 ( Chen et al., 2012 ), and this happens with the can-

er cell-type specific rate ρ i , as further discussed in Section 2.3.3 .

he immune system uses self-regulation to prevent overpopulation

f killer T-cells and autoimmune disease ( Disis, 2010 ), and this is

odeled as T-cells interacting with each other with the rate δ. 

.3.3. Treatment modelling 

The dose-response effect of a cytostatic drug with a concentra-

ion of c p ( τ ) is modeled using the Hill equation ( Gesztelyi et al.,

012 ): 

 p = H(c p (τ ) , IC50 p , n p ) = 1 − 1 

1 + (c p (τ ) /IC50 p ) n p 
, (10)

here IC 50 is the half-maximal inhibitory concentration and n , so

alled Hill coefficient ( Gesztelyi et al., 2012 ), affects the slope of

he Hill function at the concentration IC 50. 

The activity of chemotherapy is based on the proliferation rates

f cells. For example, some nerve cells hardly divide, whereas most

ancer cells divide rapidly, making them more vulnerable to the

ytostatic drugs. However, there might be differences in the prolif-

ration rates between cancer cell subpopulations within the same

umor. Chemotherapy disrupts cell division by damaging bench-

arks in the cell cycle ( Malhotra and Perry, 2003 ). The more
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apidly dividing cell populations reach those benchmarks more of-

en, and therefore do not have time to repair, causing a cell death.

ytostatic drugs cause failure of division, followed by cell death,

ith the probability p i , and so division proceeds with the proba-

ility 1 − p i , where 

p i = p( ̄s i ) = 

s i 
1 + s i 

H(c p (τ ) , IC50 p , n p ) (11) 

ith the subscript p denoting the Hill parameters of the cytostatic

rug. In addition to the dose-response effect by Eq. (10) , the prob-

bility p i depends on the proliferation strategy s i , since the speed

f cell division affects the outcome of cytostatic treatment. 

Molecularly-targeted treatments often have less side-effects,

nd therefore their clinical use is warranted provided one can se-

ect treatments targeting the patient-specific cancer driver mu-

ations or other molecular targets. In case there are no effec-

ive drugs for a resistant cancer subpopulation, there is another

ay to control the resistant subpopulation by letting more rapidly

ividing, sensitive cancer cells dominate the resistant ones. The

ensitive cancer subpopulation is controlled by the treatment

 Zhang et al., 2017 ). Targeted therapy increases death rate by β i 

hich follows the Hill Eq. (12) . If the drug does not affect cell type

 , the rate βi = 0 , otherwise 

i = 1 − 1 

1 + (c β (τ ) /IC50 β ) n β
, (12) 

here the subscript β denotes the Hill parameters for the targeted

rug. 

In this model, cancer cells use PD-1/PD-L1 binding to disturb

he immune response, and hence anti-PD-L1/anti-PD-1 can be used

s immunotherapy. Immunotherapy reduces PD-1/PD-L1 binding

y the cancer cell subpopulation-specific intensity 

i = 

(c ρ (τ ) /EC50 ρ ) n ρ

1 + (c ρ (τ ) /EC50 ρ ) n ρ
, (13) 

here EC 50 ρ is the concentration that produces half-maximal effi-

acy and n ρ affects the slope at EC 50 ρ . When the drug concentra-

ion c ρ ( τ ) gets bigger, ρ i approaches 1. This is desired since ρi = 1

ould mean complete prevention of unwanted PD-1/PD-L1 binding

odeled by (1 − ρi ) C i θT . 

The treatment is given as an infusion at the beginning of a

reatment period, during which the drug concentration is assumed

o be a positive constant for simplicity. After the treatment pe-

iod the drug concentration is assumed to be zero. The length of

he treatment period is varied to consider the differences in drug

learance in the case of infusion. If the treatment is given as daily

osages, it is done only during the treatment period that deter-

ines for how long the daily dosages are given without a break

drug holiday). 

.4. Measures 

The following numeric measures are calculated from the model

ynamics. They are used to quantify and compare different situa-

ions in terms of medical outcomes. 

Treatment effect 

The treatment effect is monitored by cancer cell population

ean density, calculated as the integral of the amount of cancer

ell population over time divided by the length of the selected

ime period. Additionally, the maximum of total cancer cell density

 C max ) quantifies the maximal tumor burden of the patient during

he given time interval. In some cases, the total cancer cell density

ecreases after reaching the C max . However, even a transient high

 max may be fatal to the patient. The methods to measure of total

ancer density or cancer burden depend on the cancer type. For

elanoma and many other solid tumors, changes in tumor burden
n the clinical evaluation of cancer therapeutics is typically mea-

ured with anatomical assessment of tumor volume or area using

maging technologies ( Dancey et al., 2008 ). 

Side-effects 

The side-effects are considered as the amount of T-cell loss

aused by cytostatic drugs, which is calculated as the proportion of

he amount of dead T-cells caused by cytostatic drugs to the over-

ll loss of T-cells (death or changing to inefficient form because of

D-1/PD-L1 binding). The scaling is done so that levels of multiple

ituations can be compared with each other. 

Time in treatment 

Treatments cause also complications other than toxic effects on

he patient, such as time spent in hospital, which results in vari-

ble tolerability. Additionally, more treatment cycles usually means

ore drugs, leading to higher costs of treatment. To take such bur-

ens of treatment into consideration, we calculated the proportion

f time in treatment by dividing the total period of time spent in

reatment by the overall time interval. 

. Results 

We demonstrate the model dynamics using several case studies

hat correspond to virtual melanoma patients characterized by key

iological model parameters. We especially focus on modelling the

ersonalized effects of immunotherapies, such as pembrolizumab

r nivolumab, which are anti-PD-1 molecules with similar mode-

f-action. In clinical practice, nivolumab is given to patients every

nd week and pembrolizumab every 3rd week. However, the opti-

al timing and duration of these treatments is poorly understood

ither alone or in combination with other therapies, such as tar-

eted therapies (e.g. BRAF or C-KIT inhibitors) or chemotherapies

e.g. dacarbazine or temozolomide). Therefore, our case studies are

etermined by changing personal model parameters that affect

he dynamics of active killer T-cells and their competition against

ancer cell subpopulations, for example cancer cells’ effectiveness

gainst killer T-cells ( ϕi ) or maximum activation of killer T-cells

 m ) in an individual patient. Those parameters that are changed in

he case studies are marked with bold font in Table 1 , and their

alues are listed in Table 3 . Each case is started with cell densities

f 0.05 for all cell types. 

The majority of parameter values were obtained by testing if

umerical solutions are reasonable in comparison to the observed

linical outcomes in melanoma and other solid tumors ( Aguirre-

hiso, 2007; Ossowski and Aguirre-Ghiso, 2010; Schreiber et al.,

011; Senft and Ronai, 2016; Topalian et al., 2014; Wolner et al.,

018 ). Additionally, sensitivity analysis of the model parameters

as performed to identify those parameters having highest ef-

ect on the numerical solutions (see Section 3.6 and Supplemen-

ary section 8). The doubling times were calculated for melanoma

ells in each case study as explained in Supplementary section 3.

he doubling times were reasonable compared to experimental re-

ults in melanoma cells ( Laing et al., 2003 ). Killer T-cell parame-

ers were chosen so that small density is reached in the absence

f cancer cells if initial T-cell value is positive (some T-cells remain

n the system after defeating cancer). Additionally, the maximum

ate at which cancer cells limit each other’s resource consumption

 w ) multiplied by the saturation of cancer cells (maximum around

.44) was compared to observations of 4–56% relative volume of

ecrotic tissue in melanoma ( Tufto and Rofstad, 1998 ). 

As different cancer types share similar qualities, some of the

arameters are more generally related to cell functionality ( ̂  R , λ,

, w and ε), while others are specifically linked to cancer type,

ere melanoma ( α( s i ), μi , θ , ξ i and ϕi ). Parameters related to T-

ell dynamics ( αT , μT , m, u, v and δ) do not specifically concern

nly killer T-cells working against melanoma. Treatment parame-

ers ( c ( τ ) and Hill-parameters) are specific to a drug and its effect
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Table 3 

Parameters and their values that vary between case studies. Cancer doubling time presents the doubling time of 

cancer cells in total when no treatment is used (calculations in Supplementary Section 3). Calculated doubling 

times are close to median potential doubling time for melanoma cells of 8.6 days reported in experimental studies 

( Laing et al., 2003 ). 

Unit Fig. 2 a Fig. 2 b Fig. 2 c Fig. 3 Fig. 7 Fig. 8 

Parameter s C 1 – 1 1 1 1 1 1 

s C 2 – 0.95 0.95 0.95 – 0.95 0.95 

αT 1/(timeunit ∗# T ) 0.505 0.505 0.267 0.505 0.505 0.505 

ξ 1,2 1/(timeunit ∗# T ) 1.5 1.5 1.5 1.5 2 1.5 

ϕ1,2 1/(timeunit ∗# C ) 5 1 1 3 4 3 

m # T /timeunit 0.5 0.5 1.5 0.5 0.5 0.5 

Treatment ρ1,2 – 0.999 – – 0.999 0.999 0.999 

β1 1/timeunit – – – – 0 –

β2 1/timeunit – – – – 0.432 –

c p ( τ ) mass/volume – – – – – 0 . 5 − 5 

IC 50 p mass/volume – – – – – 2 

n p – – – – – – 2 

Cancer doubling time in days 8 7 6 6 8 8 

Fig. 2. Three representative cases of dynamic competition between active killer T-cell (T) and cancer cell populations ( C 1 and C 2 ) at baseline (no treatment). Here one 

subpopulation ( C 1 ) divides faster and eventually dominates the less aggressive subpopulation ( C 2 ). The differences between subpopulations affect, for example, the treatment 

outcome, when the different cancer cell subpopulations (here C 1 and C 2 ) also have other undesirable qualities (e.g., treatment resistance, metastatic capabilities or promotion 

of angiogenesis). In real patient case, for example, formation of metastases would be more likely if the faster dividing subpopulation also has elevated metastatic capabilities. 

a) Active killer T-cells decrease without treatment, leading to fast increase of cancer cells toward a maximum level (here, 0.80). The maximum amount of cancer cells is 

restricted by carrying capacity of the cancer microenvironment as well as by the sufficiency of resources. This baseline case is further investigated when treatment is given 

in Section 3.3 . b) The amount of active killer T-cells increases without treatment, leading to decreased amount of cancer cells. The cancer cell amounts alternate, but they 

are approaching a fixed steady state, which reflects the case when the initial immune response is effective and cancer is not even detected. c) Whenever the amount of 

cancer cells try to increase, the active killer T-cells increase accordingly, but decreases steeply after cancer cell count has decreased. In this case, the density of killer T-cells 

and cancer cells approach a cyclic attractor that defines their balance in the absence of treatment or other intervention. All parameter values are listed in Tables 1 and 3 . 

Trajectories of b) and c) are presented in Supplementary Fig. 4. 
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on specific cancer type. Here the drug concentration is assumed

constant during the treatment period, therefore also the effect ( p i ,

β i or ρ i ) is constant. In addition to cancer specificity, some pa-

rameters are also considered patient specific as individuals have

different melanoma subtypes and different physiology. Ideally, all

parameters should be estimated individually, but in clinical prac-

tice this is still impossible and generally estimated values have to

be used. However, most important parameters that should be es-

timated individually are parameters that relate to the interactions

between cancer cells and T-cells ( ξ i and ϕi ). Additionally, the in-

filtration of T-cells ( θ ) varies as some cancers modify the environ-

ment to block the T-cell infiltration, and cancer cells might even

inhibit the development of immune response in the first place

( m = 0 )( Chen and Mellman, 2013 ). 

In the case studies, maximum of two cancer cell subpopulations

were included for simplicity (denoted by C 1 and C 2 ) to demon-

strate the model behavior when one subpopulation divides faster

than the other ( s C 1 > s C 2 ) . Additionally in the third case study

( Section 3.4 ), where targeted therapy is used, one subpopulation

was considered resistant ( β1 = 0 ) and the other sensitive ( β2 > 0)

to the targeted treatment. There could be also other differences be-

tween the cancer cell subpopulations, for example, one subpopu-

lation might not present the same antigen causing ineffectiveness
f T-cells ( ξi = 0 ). However, these possibilities are not investigated

ere due to increased complexity. In the case studies, the concen-

ration of targeted therapy and immunotherapy are kept constant,

ence for β i and ρ i only the effect size is given instead of concen-

ration. 

.1. Baseline cases: no treatment 

We first investigated selected patient cases without any treat-

ent (i.e. baseline cases). In some cases this means that cancer

ells will eventually dominate, resulting in a decreased amount of

ctive (and effective) killer T-cells in the body. Interestingly, chang-

ng the behavior of killer T-cells relative to that of cancer cells may

lso lead to cases where killer T-cells are able to control cancer

ells even without treatment. Some representative cases are pre-

ented in Fig. 2 , where the cell densities of the model are shown

s a function of time. 

Fig. 2 a presents a challenging case, where the amount of active

iller T-cells decreases monotonically and the total amount of can-

er cells increases to a maximum level. Notably, after around 40

ays, the cancer cell subpopulation C 2 also starts decreasing, since

he other cancer subpopulation C 1 proliferates more aggressively,

nd therefore starts to dominate also C . In this case, treatment
2 
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Fig. 3. Single-shot immunotherapy. a) Immunotherapy is given for a period of 16 days (grey bar), started when the total amount of cancer cells exceeds a threshold of 0.5 

(dashed orange line). During the treatment, the drug concentration is assumed constant resulting in a constant treatment effect. In this case, the treatment almost completely 

prevents PD-1/PD-L1 binding and thus prevents cancer cells from making active killer T-cells ineffective ( ρ i ≈ 1). b) and c) Phase plane plots showing the isoclines (black 

lines) of the killer T-cell density T and cancer cell density C , b) during no treatment and c) during treatment. It is assumed that dynamics of resources are fast and in their 

stable state at each point. The trajectories shown with respect to time in panel a) are shown also in the phase plane plots (blue lines). The trajectory is plotted with a 

solid curve when the actual treatment status is the same as in the phase plane plot (treatment or no treatment). Red circle marks the fixed attractor that would have been 

reached without treatment and this area is zoomed on the top right corner with blue line denoting the trajectory when no treatment is used. c) The corresponding phase 

plane when immunotherapy is used. Solid blue line corresponds to the trajectory during treatment while dashed blue line is the trajectory when no treatment is used. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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s needed, and different treatment options are further discussed in

ection 3.3 . 

Fig. 2 b presents a positive case, where active killer T-cells are

ore effective against cancer cells, whereas cancer cells’ PD-1/PD-

1 binding is expressed less than in Fig. 2 a. This results in a situ-

tion where active killer T-cells manage to control the cancer cells

ithout treatment, and their amounts fluctuate and approach a

xed steady state (stable attractor). If the active killer T-cells prolif-

rate less often, while the T-cell activation is increased, the active

iller T-cells defeat cancer cells in each relapse attempt, resulting

n a cyclic attractor ( Fig. 2 c). Periodic behavior has been found both

n cancer ( Fortin and Mackey, 1999 ) and in the immune system

 Stark et al., 2007 ) so likely it is possible also in the competition

etween immune system and cancer cells. However, such cyclic be-

avior presents a phenomenon that is likely to take place in the

ery early phases of the disease, when immune system is still able

o control the growing tumor ( Dunn et al., 2004; O’Donnell et al.,

019 ). Thus the melanoma might not yet be diagnosed and treated

nd cyclic behavior may well have gone undetected so far in real

atient cases and clinical trials. 

These representative cases demonstrate how different values in

he key model parameters related to underlying biology result in

oth inter-patient and intra-tumor variation in disease progres-

ion, and influence the individual physiology and pathophysiology.

n some cases, the immune system deals with the cancer progres-

ion so early the cancer might not even be detected and diagnosed.

owever, some patients do need treatment, and how to tailor it to

he individual needs is investigated in the following sections. 

.2. Case study 1 – single-shot immunotherapy 

In the first case study we investigate the effect of immunother-

py on the virtual melanoma patient presented in Supplementary

igure 5a without treatment. The dynamics without treatment are

imilar to Fig. 2 a, however only one cancer cell subpopulation is

onsidered in order to investigate the attractor landscape more

asily. To start treating the patient, an anti-PD-1 immunotherapy is

iven when the total amount of cancer cells exceeds a pre-defined

hreshold (here, 0.5, a detection limit of a diagnostic test). Fig. 3 a

hows the case of this patient with one treatment period starting

t day 18 (gray bar). One treatment period of 16 days is already

nough in this case to increase the amount of active killer T-cells

o a level that suffices to control the cancer cells below the thresh-
ld. Such a dormant cancer has been also reported in real patients

 Aguirre-Ghiso, 2007; Ossowski and Aguirre-Ghiso, 2010; Schreiber

t al., 2011; Senft and Ronai, 2016 ). Additionally, major pathologic

esponses after a single dose of anti-PD-1 were observed also in

eal patients ( Huang et al., 2019; Tokuyasu et al., 2019 ). 

From Fig. 3 a it can be seen that both the killer T-cells and can-

er cells start to approach a fixed steady state that is different from

he steady state reached without treatment. To illustrate dynamics

ear the different attractors, we constructed phase plane diagrams

 Fig. 3 b and c). The two phase plane diagrams show how the given

reatment causes a change in the isoclines and the steady state

hanges from the red circle in Fig. 3 b to the intersection of black

ines in Fig. 3 c. During treatment the trajectory starts to reach the

ew attractor (solid blue line in Fig. 3 c). Once the treatment is

topped, the phase plane and attractors return to that of Fig. 3 b

nd the cell densities are located on the phase plane in such rela-

ion to attractors that the original attractor is unattainable; instead,

 better situation for the patient, with decreased cancer cell den-

ity and increased killer T-cell density, is reached. With insufficient

reatment (too short duration or too small dosage), the cell popu-

ation dynamics end up to the original attractor, corresponding to

o treatment (red circle). 

This case study demonstrates how there may exist multiple at-

ractors, and the ones with smaller density of cancer cells could be

onsidered as more favorable for the patient. It is also evident that

ifferently behaving cells (e.g., more aggressive cancer cells or less

ffective killer T-cells) result in different phase planes and attrac-

or landscapes. Some steady states could be reached with only one

ufficient treatment period, whereas cyclic attractors are observed

hen repeated treatments are required, both indicating stable dis-

ases that are under control with the proper treatment. An absence

f an asymptotic trajectory (either fixed or cyclic) indicates a pro-

ressive disease. In the following sections, the virtual patient cells

arbor more than one cancer population, which cause more com-

lex phase planes and model behavior. 

.3. Case study 2 – repeated immunotherapy 

Let us next consider another virtual patient, with such aggres-

ive cancer, consisting of two subpopulations, that cannot be sta-

ilized with single treatment period alone, but who requires re-

eated immunotherapy. At baseline, without any treatment, the

ell population densities of this patient are as in Fig. 2 a. Therapy
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is clearly needed, and it is considered to be given using two differ-

ent regimens, either pre-defined or adaptive treatment initiation,

which are compared in the following subsections. 

3.3.1. Pre-set treatment periods versus threshold-based treatment 

initiation 

A widely-used treatment option is to pre-set treatment periods

with pre-set intervals (e.g. Fig. 4 a). The duration of treatment pe-

riod and the intervals between treatments (so-called drug holiday)

are changed to illustrate different schedule options for pre-set pe-

riods. It is observed from the mean density of total cancer cells,

as expected, that shorter treatment durations require shorter drug

holidays for an effective treatment outcome ( Fig. 4 c). The corre-

sponding mean densities of the killer T-cells ( Fig. 4 e) give similar

results as T-cell level does not increase if the drug holiday is too

long compared to the treatment period. 

Another, more adaptive option is to start treatment only when

the total cancer cell count (i.e., total tumor burden) exceeds a given

threshold, and then treat for a pre-set period until the total tumor

burden goes below the threshold (e.g. Fig. 4 b). One interesting ob-

servation is that a selected treatment threshold gives quite simi-

lar mean densities ( Fig. 4 d and f) regardless of the treatment pe-

riod, because shorter treatment periods are repeated if the cancer

cell count remains still over the threshold. As expected, the mean

density of total cancer cells increases when the threshold is in-

creased since higher cancer levels are allowed before the treatment

is started. 

A practical question is: which of these options, pre-set peri-

ods or threshold-based treatment initiation, should be chosen for a

given patient? Perhaps not surprisingly, the answer depends on the

parameters of the treatment regimen: the duration of the treat-

ment period, relative to the intervals between treatments, and the

chosen threshold level. By choosing specific combinations, either

one of the two regimens can result in a smaller mean density, and

hence better therapeutic effect. To give an example, where pre-

set periods results in a smaller total cancer mean density when

equally long treatment periods are chosen, red boxes are marked

in Fig. 4 c (pre-set periods) and in Fig. 4 d (threshold). On the other

hand, choosing of treatment combinations of the blue boxes of

Fig. 4 c and d results in smaller mean density for the threshold-

based regimen. These four cases are shown separately in Supple-

mentary Figure 6. 

Considering only the mean density as a measure of treatment

benefit does not however give the whole truth, since it does not

take into account the overall time of treatment for the various reg-

imens. For example, choosing a long treatment period with short

gaps between repeats means that treatment is almost continuous.

Small treatment threshold value might also result in nearly con-

tinuous treatment. It can be seen from Fig. 5 , that the pre-set pe-

riod has to be chosen carefully in order to reach beneficial results

(a population mean close to 0.8 means that the treatment fails).

On the other hand, successful treatment result can be reached also

without increasing the time in treatment (in the chosen time in-

terval), provided the relative timing of treatment period and drug

holiday is chosen based on the individual characteristics (blue dot-

ted line). When threshold-based treatment initiation is used, the

shorter treatment periods are repeated if necessary and this leads

to equal levels of overall treatment time ( Fig. 5 green symbols). 

Overall, using a threshold-based adaptive regimen results in a

successful treatment outcome (cancer is kept in control) more of-

ten, compared to pre-set periods, since the treatment is given as

long as needed, although it might mean longer continuous treat-

ment periods due to repeated periods. Drug holidays between the

treatments, if too long, can easily cause a relapse that short treat-

ment periods cannot overcome. In practice it is difficult to deter-

mine the amount of cancer at each time point, especially if the
ancer is inside the tissues, therefore choosing the threshold-based

reatment initiation might not be applicable unless diagnostic tests

re improved. 

.3.2. Changing pre-set period of immunotherapy 

The previous section demonstrated that if the pre-set treatment

eriods are applied with too long gaps between treatments, the

reatment easily fails (i.e., cancer is not under control). On the

ther hand, it would be preferred to apply treatment as seldom

s possible to reduce side-effects and costs of treatment. To inves-

igate this trade-off, we next consider changing the pre-set treat-

ent period after starting the immunotherapy to test the effect

f having longer drug holiday between treatments. In Fig. 6 a, the

reatment schedule is changed successfully after three treatment

eriods (48 days), which enabled increased drug holiday from 6

ays to 16 days. Interestingly, whereas having such longer drug

oliday from the beginning would result in a rapid treatment fail-

re ( Figs. 4 c and 6 , and Supplementary Figure 6), starting with a

ighter schedule makes it later possible to increase the treatment

aps, provided those are chosen based on patient characteristics.

or instance, in Fig. 6 b, the new drug holiday is only slightly longer

20 days vs. 16 days), yet there is a marked increase in total cancer

ell density due to longer drug holidays, during which the amount

f killer T-cells decreases to a level from where the amount can-

ot recover any more, at least by the given treatment of 12 days.

n Fig. 6 c, the treatment schedule is changed later (after 102 days),

ut this also leads to a treatment failure in this patient case, in-

icating that scheduling of the first treatment periods is critical

or determining whether or not the treatment could be given with

onger drug holidays later. 

As the treatment starts to fail when going from the case of

ig. 6 a to b and c, it is not surprising that the cancer cell maximum

nd mean density increase, as well as the tumor burden after one

ear (barplots on the right-hand side of Fig. 6 ). On the other hand,

he proportion of time in treatment is longer in the case of Fig. 6 a

han in the case of Fig. 6 b, since the treatment is given more of-

en (the barplots below the dynamics). When comparing the treat-

ent response of Fig. 6 a to that of Fig. 4 a (measures marked with

lue lines on Fig. 6 ) it is noticeable that the proportion of time

n treatment is smaller (due to a sparser treatment schedule), but

till resulting in similar cancer total density after one year. With

he heaviest treatment schedule of Fig. 4 a (12 days treatment, 6

ays drug holiday), the lowest mean population density is reached,

s expected, but this comes at the expense of time spend in treat-

ent. The practical question is: which one is more important for

he patient. If the treatments are not well-tolerated, then it might

e preferred to reduce the time in treatment, even if the tumor

urden stays on a slightly higher level. 

.4. Case study 3 – combination of targeted and immunotherapy 

In the previous sections, we investigated the virtual patients’

esponses to various regimens of immunotherapy only. In some

ases, however, it might be more beneficial to combine the im-

unotherapy with targeted treatments, especially if it can be tar-

eted to the patient’s molecular aberrations, and in this way boost

he treatment responses. To make the situation more challenging,

e assume that the targeted treatment is effective against only

ne of the cancer cell subpopulations ( C 2 in this case), whereas

he other subpopulation is resistant to the targeted treatment. 

To study the potential benefits of such personalized immune-

reatments, we treated the virtual patient with various strategies,

here the patient either receives immunotherapy alone ( Fig. 7 a),

hich resulted in a chronic disease with repeated treatment, or us-

ng a combination of targeted and immunotherapy ( Fig. 7 b and c).
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Fig. 4. Pre-set immunotherapy periods versus threshold-based treatment initiation. a) Pre-set period of 12 days of treatment followed by 6 days of drug holiday. b) Im- 

munotherapy is started when the total cancer cell density goes above the treatment threshold of 0.3, followed by 12 days period. Treatment is repeated at first three times 

and later two times since the cancer cell density stays over the threshold. c) Mean density of total cancer cells for different treatment periods and drug holidays (marked 

with ∗ in panel a)). To give comparative examples, a few treatment options are marked with red or blue boxes. The red box corresponds to treatment period of 18 days, 

followed by a drug holiday of 18 days, with a mean population density of 0.20. In the blue box, the corresponding values are 8, 10 and 0.70. d) Mean density of total cancer 

cells for different treatment periods and thresholds of treatment initiation. The red box corresponds to treatment period of 18 days and threshold of 0.75, with a mean 

density of 0.49. In the blue box, the corresponding values are 8, 0.2 and 0.19. e) Mean population density of active killer T-cells in the case of pre-set treatment period, and 

f) in the case of threshold-based regimen. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Both of the treatments were initiated simultaneously, for simplic-

ity, but their durations differ so that the combined treatment dura-

tion is always set to 14 days and its division to the two treatment

options is varied. When both of the treatments have the same du-

ration of 7 days ( Fig. 7 b), the treatment has to be repeated, due to

rapid decrease in the amount of killer T-cells, and eventually only

the resistant cancer subpopulation C 1 stays alive, and the targeted

treatment becomes useless. In contrast, when changing the dura-

tions of the treatment periods, it is possible to come up with more

effective modalities in which the chosen drug combination leads to

a situation where no further treatment is needed in order to keep

the cancer density below the treatment threshold of 0.5 ( Fig. 7 c).

This is because after the second treatment period, the densities of

cancer cells and killer T-cells trajectories reach a suitable balance

that leads to a better attractor for the patient (in similar fashion as

in Section 3.2 ). 

To investigate these situations more systematically, the total

cancer mean densities are calculated when the treatment threshold

is varied with the proportion of targeted treatment ( Fig. 7 d). Ad-

ditionally, to investigate the trade-off between therapy effect and

therapy intensity, the corresponding numbers of treatment initia-

tion are calculated ( Fig. 7 e). One can see that with most treatment

proportion combinations, smaller threshold leads to smaller cancer

mean densities, but that also requires more treatment periods. Im-

munotherapy works by itself (0% of targeted therapy) but adding

a small proportion of targeted therapy decreases total cancer cell

mean density, while with most of the treatment thresholds, equal

number of treatment initiations is needed. 

Our model also predicts in this case study that combination

therapy works better than targeted therapy alone. When only tar-

geted treatment is used, if treatment is initiated too early (thresh-

old ≤ 0.1), total cancer cell density increases rapidly to maximum

value due to the targeted treatment being effective only on one

cancer subpopulation, which decreases rapidly and only the resis-

tant subpopulation remains. Since there is not enough sensitive

cancer cells to deliver antigens in the first place, the density of

T-cells does not increase sufficiently to dominate the resistant can-

cer subpopulation ( C 1 ). However, if the treatment is initiated too

late (threshold ≥ 0.31), the treatment succeeds once, followed by

relapse, since by the time of the second treatment initiation, the

density of the sensitive cancer subpopulation ( C 2 ) has fallen too

low, and the targeted therapy does not have enough effect to in-

crease the level of killer T-cells. 

Interestingly, if the treatment threshold is around 0.15–0.3 in

this case, the targeted treatment is effective also on its own with-

out immunotherapy (when considering the total time interval of

160 days). For well selected treatment thresholds (e.g., 0.3) only

four treatment initiations are needed, leading to similar stable dis-

ease as in Fig. 7 c. This surprising result is due to such optimal
reatment initiation and period for this patient case that drive the

ancer cell densities on the attractor landscape in a region which

eads to a fixed steady state after the treatment. It should be noted

hat even though the combination treatment might result in some

ases in a smaller tumor burden (cancer cell mean density), it may

ot be still beneficial from the treatment tolerability (and cost)

oint of view, when considering the total amount of drugs used,

ince each treatment period includes two (expensive) drugs in-

tead of one. In an optimal and cost-effective therapy regimen, the

mount of treatments needed should be minimized to compen-

ate for the costs, along with possible tolerability issues caused by

dding more treatments. 

.5. Case study 4 – combination of chemotherapy and 

mmunotherapy 

In the final case study, we consider a situation where a virtual

atient does not have any targeted therapies matching to his/her

ancer aberrations ( C 1 or C 2 ) and who, without treatment, would

ave rapid increase in the total cancer cell density (Supplementary

ig. 5c). Therefore, chemotherapy is the only option, used either

lone (e.g. Fig. 8 a) or in combination with immunotherapy (e.g.

ig. 8 b). Since cytostatic drugs cause side-effects, their minimal use

s preferred with small concentrations. 

When changing the treatment period and concentration of the

ytostatic drug, the proportion of time in treatment decreased in

lmost every case, when comparing the combination treatment to

hemotherapy alone ( Fig. 8 c, green shapes appear on the left side

f the corresponding blue shapes). This indicates that adding the

mmunotherapy decreases the treatment time with additional pos-

ibility of smaller cancer cell mean density ( Fig. 8 c, green shapes

ppear below or on similar level to the corresponding blue shapes).

The side-effects in this case are calculated as the proportion

f T-cell loss caused by cytostatic drug to the overall T-cell loss,

nd they are investigated along with therapeutic effect (total can-

er cell mean density) in Fig. 8 d across various treatment peri-

ds. When the combination of chemotherapy and immunotherapy

s used and the treatment period is short (4 days), the side-effects

re less than the side-effects caused by chemotherapy alone. How-

ver, when the treatment period is increased (20 days) the com-

ination therapy causes slightly more side-effects than mono-

hemotherapy, because the longer period of immunotherapy de-

reases more the overall loss of T-cells by preventing the PD-1/PD-

1 binding, and hence the proportion of T-cell loss caused by cyto-

tatic drug increases. 

The combination therapy leads to smaller or similar cancer pop-

lation mean densities compared to chemotherapy alone, but the

ifferences are not so dramatic that it would be clear which treat-

ent regimen to choose only by looking at the cancer cell mean
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Fig. 6. The effect of changing pre-set immunotherapy schedules. The treatment is started with a period of 12 days of treatment, followed by 6 days of drug holiday, which 

corresponds to Fig. 4 a. After 48 days (black arrow) treatment schedule is changed to have a drug holiday of a) 16 days or b) 20 days. c) Treatment schedule is changed after 

102 days (black arrow), to have a drug holiday of 20 days. Right-side barplots: the treatment success measures are presented for each example, with blue lines marking the 

corresponding values for the case of Fig. 4 a, where treatment is continued with shorter drug holidays of 6 days. Cyan lines mark the case, where the treatment is started 

with 16 days of drug holiday from the beginning. Bottom bars: proportion of time spend in treatment. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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ensity or proportion of T-cell loss caused by chemotherapy. Addi-

ional considerations in practice involve the trade-off between the

se of two treatments simultaneously or potential treatment toler-

bility issues caused by immunotherapy. 

.6. Sensitivity analysis 

To investigate how sensitive the results are to the changes in

he model parameters, we perturbed the underlying biological pa-
ameter values that remained constant in the virtual melanoma

atients (increased and decreased 25% from their values listed in

able 1 ). It was observed, generally, that increasing ˆ R , K, γ or λ
ed to increases in the maximum cancer cell density, as expected,

hereas decreasing these parameters reduced the maximum can-

er cell density accordingly ( Table 4 ). Similarly, increases in the re-

ource competition between the cancer cell populations w reduced

he maximum cancer cell density, and vice versa. Under treatment,

hese general conclusions remain the same. However, the cancer
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Fig. 7. Combined effect of targeted and immunotherapy. a) Immunotherapy with period of 14 is initiated when the total cancer cell density goes over the treatment threshold 

of 0.4. b) Immunotherapy period of 7 days is given with simultaneous 7 days period of targeted treatment that is effective against the cancer cell subpopulation C 2 . 

c) Targeted therapy period of 10 days combined with simultaneous immunotherapy period of 4 days. d) Total cancer cell population mean density when the treatment 

threshold and division of treatment durations is changed. The combined treatment time is fixed to 14 days, and hence the durations of targeted and immunotherapy can be 

calculated from the proportion of targeted therapy. For example proportion of 50% targeted treatment means 7 days of targeted treatment in combination with 7 days of 

simultaneous immunotherapy. e) The corresponding numbers of treatment initiations. 

Table 4 

The change percentages of killer T-cell mean density, maximum T-cell density, cancer cell mean density and maximum 

cancer cell density on average over all case studies and treatment options. Parameter values are increased ( ↑ ) or 

decreased ( ↓ ) 25% from their value listed in Table 1 . Only one parameter value is changed at a time, while others are 

kept constant. Mean dens. denotes mean density. 

Without treatment With treatment 

Change T mean dens. T max C mean dens. C max T mean dens. T max C mean dens. C max 

ˆ R ↑ +11% 0% +43% +42% +224% +79% −1% +15% 
ˆ R ↓ 0% 0% −45% −44% −73% −58% +20% −20% 

K ↑ +1% 0% +4% +4% +6% +3% 0% +1% 

K ↓ −2% 0% −6% −6% −11% −7% +4% −2% 

γ↑ +9% 0% +44% +42% +225% +78% −1% +14% 

γ↓ +5% 0% −45% −44% −73% −58% +20% −19% 

δ↑ 0% 0% 0% 0% −10% −8% +6% +1% 

δ↓ 0% 0% 0% 0% +7% +6% −7% −1% 

θ↑ −14% 0% 0% 0% +2% +9% −9% 0% 

θ↓ +22% 0% 0% 0% +17% −2% +18% +4% 

w ↑ −3% 0% −13% −13% −23% −15% +10% −4% 

w ↓ +4% 0% +14% +14% +45% +20% −4% +4% 

λ↑ +3% 0% +11% +11% +631% +173% −9% +1% 

λ↓ −3% 0% −14% −14% +401% +107% +6% −5% 
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cell mean density did not behave similarly with and without treat-

ment. As the cancer cell density increased faster, the T-cell den-

sity was affected as well, and accordingly the treatment succeeded

more often with the treatment options that caused failure with the

original parameter value. On the other hand, if the total cancer cell

level decreased below the specified treatment threshold, the treat-

ment was naturally not initiated at all leading to decreased killer
-cell mean density and increased cancer cell mean density. For

xample, the effect of changing ˆ R on total cancer cell mean den-

ity in the case study 2 ( Section 3.3 ) is shown in Supplementary

igure 9. The sensitivity analysis shows that increasing the killer

-cell self-regulation parameter δ reduced the killer T-cell levels,

s expected, and decreasing δ had the opposite effect, with neither

ne changing the general conclusions made about the treatment
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same symbol. d) Side-effects caused by chemotherapy on T-cells in the corresponding cases. 
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fficacy. Since θ affects many interactions in the model (T-cell acti-

ation and interactions between cancer cells and T-cells), changing

t had treatment sensitizing effects. Systematic sensitivity analyses

re detailed in Supplementary Section 8. 

Analysis of steady states was performed in the case study 1

ith more parameters and larger change ranges (Supplementary

ection 8.1.1). It was observed, for instance, that when the rate at

hich cancer cells make active killer T-cells ineffective ( ϕ) is be-

ween 1.40 and 3.42, two stable steady states exist (grey bar in

ig. 9 ), and it is possible to move from one attractor to the other
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ig. 9. Steady states of cancer cells (C) and killer T-cells (T) as the value of ϕ is 

hanged and other parameters are kept constant as in the case study 1. The grey 

ar denotes the range where two stable steady states exist. 
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ith carefully scheduled treatment (e.g., one used in Fig. 3 ). In

he case study 1, ϕ = 3 , and the attractor is changed after single-

hot immunotherapy (see Fig. 3 ). However, when the rate is high

3.42 ≤ ϕ ≤ 5), only a single stable steady state exists with rel-

tively high cancer cell density. In this case, the cancer cell den-

ity returns to that level even if it is temporarily decreased during

reatment. When the rate is small (0 ≤ ϕ ≤ 1.40), only one sta-

le steady state exists as well. However, the cancer cell density is

lready relatively low and depending of the treatment threshold

alue, the treatment might not be initiated at all. For all investi-

ated parameters, it is important to identify, in which parameter

alue range there are more than one stable steady state (attractor

an be changed with treatment), and, in the case of single stable

teady state, if the cancer cell density is high (treatment is only

emporary solution) or already relatively low (treatment might not

e necessary). Steady states for cancer cells and T-cells were calcu-

ated with R-script grind.R ( http://tbb.bio.uu.nl/rdb/grindR/grind.R ).

As the dynamics of cancer and immune system are complex, it

s not surprising that the outcome of treatment is sensitive to ex-

ct rates of interactions. Ideally, all parameters are patient-specific,

nd should be measured from individual patients. However, this

s not yet realistic in clinical practice and parameter values esti-

ated from cell lines or in general population have to be used. In-

ividually, the most important parameters are the interactions be-

ween cancer cells and T-cells. For example, if the rate at which

-cells kill cancer cells ( ξ i ) is too low ( ≤ 1.34 in the case study

), only a single stable steady state exists and treatment can only

emporarily decrease the cancer cell density (see Supplementary

ig. 8k). Similarly, the infiltration of T-cells into the microenviron-

http://tbb.bio.uu.nl/rdb/grindR/grind.R
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ment of cancer depends on the individual’s physiology. If T-cells

cannot infiltrate the microenvironment of cancer ( θ = 0 ), the pos-

sible effect of treatment is only temporary since the only stable

steady state for cancer density is relatively high. Additionally, the

cancer cells might inhibit the immune response (e.g., CTLA4), lead-

ing to decreased or non-existent activation of killer T-cells ( m = 0 ).

The maximum rate of T-cell activation ( m ) should be high enough

( ≥ 0.45 in the case study 1) that a stable steady state with lower

cancer cell density exists (see Supplementary Fig. 8i). Luckily, there

are therapies (e.g., anti-CTLA4), that may help patients with inhib-

ited immune response ( Chen and Mellman, 2013 ). 

4. Discussion 

We have developed a comprehensive model for the dynamics

of active killer T-cells and their competition against distinct can-

cer cell populations under various treatment modalities. To our

knowledge, this is the first mathematical model that incorporates

all the key aspects required for studying the individualized effects

of anti-PD-1 immunotherapies in combination with targeted and

chemotherapies, in terms of both therapeutic and side-effects. Im-

portantly, rather than using the traditional approach that defines

the cancer cell populations based on their genetic makeup alone,

we consider also other, non-genetic differences that make the cell

populations either sensitive or resistant to a therapy. Our model

can be easily tailored to different scenarios, consisting of individual

patients and treatment regimens. Here, we showed how the model

provides insights into immunotherapy when comparing pre-set pe-

riod treatment to more flexible threshold-based treatment initia-

tion. It was noted that pre-set periods have to be chosen carefully

in order to receive positive outcome. Interestingly, starting with

tighter treatment schedule (shorter drug holidays) may enable a

sparser treatment schedule later on. Additionally combination of

targeted and immunotherapy was investigated, which results in a

better treatment effect (cancer cell mean density) with fewer treat-

ment initiations if used in suitable relation to each other. A stable

disease might be also reached with few treatment initiations us-

ing combination therapy or targeted mono-therapy with carefully

chosen treatment thresholds. Similar results were seen when using

combination of chemotherapy and immunotherapy in comparison

to chemotherapy alone. Combination results in smaller or equal

level of cancer mean density and treatment times. 

Systematic analysis of the effects of the various treatment

choices was investigated through measures that capture the ther-

apeutic benefit and toxic side-effects of the considered regimens.

For example, tumor burden, measured as population mean of can-

cer cells, and time spend on treatment, both for immuno- and

other therapies, quantify the efficacy of the treatment and the pos-

sible stress it causes to the patient and expenses to the health care

operator, respectively. However, the eventual success of a treat-

ment regimen is often determined by a subtle trade-off between

the therapy-driven tumor burden reduction and toxic side-effects,

as a function of the treatment intensity (so-called therapeutic win-

dow). Since there are individual differences in how patients expe-

rience both the therapy and its side-effects, the preferred treat-

ment regimen that maximizes the tumor reduction might not be

tolerated in clinical practice. Therefore, it is important to consider

these different measures of treatment responses when deciding

optimal regimens for a given patient. Previous model-based stud-

ies have also demonstrated the importance of high-resolution, dy-

namic monitoring of the cancer populations to achieve a given ob-

jective (e.g. adaptive treatment or cancer control) ( Fassoni et al.,

2019; Fischer et al., 2015; Khan et al., 2018; Komarova et al., 2014;

Lai et al., 2019; Zhang et al., 2017 ). 

In addition to the individual differences, the complexity of can-

cer and human biology poses challenges to the treatment re-
ponse modelling. In the future work, it would be interesting to

nclude, for example, the effect from disrupted angiogenesis (re-

istance to anti-angiogenic therapy ( Bergers and Hanahan, 2008 ),

volution of angiogenic potential in cancer cells ( Nagy and Arm-

ruster, 2012 ), adaptation to low level of resources, quiescent

ells (trade-off of proliferation speed and adaptation to stress-

ul conditions ( Aktipis et al., 2013 ), or delay in the response to

mmunotherapy. Furthermore, the emergence of new mutations

r other molecular aberrations will be important to consider for

odelling clonal evolution, since the relapse is often caused by

ew resistant clones that occur either due to cancer evolution

r in response to chemotherapies ( Gerlinger and Swanton, 2010;

ozłowska et al., 2018 ). In the present work, we considered two

ancer subpopulations (sensitive and resistant), but the model can

e extended to multiple dynamically-adapting populations, once

he underlying rules of clonal evaluation are specified. 

In the current model, it was assumed that cancer cells make

ctive killer T-cells ineffective with PD-1/PD-L1 binding and that

he ineffective T-cells exit the system without possibility to be-

ome effective. However, some drugs are able to cancel the PD-1

ctivation and render the ineffective killer T-cells effective again

 Sakuishi et al., 2011 ). This re-activation effect could be consid-

red as an additional component in the current model, as well as

odelling different mechanisms of immunotherapies (e.g., CTLA4)

r differing targeted therapies (e.g., those having direct positive

r negative effect on T-cells, or those helping T-cells to enter into

he microenvironment ( Chen and Mellman, 2013 ). Additionally, dif-

erent combination treatment regimens could be considered, for

xample chemotherapy and immunotherapy given separately in

ub-sequent time periods. Furthermore, the amount of T-cells and

heir functionality does not go hand in hand, meaning that higher

mount of T-cells does not necessarily mean more efficacy against

ancer, which could be considered in further investigations. Sim-

larly, adding various types of immune cells, including regulatory

-cells or natural killer cells, would more faithfully model the real

mmune-system component. 

In order not to make it overly complicated, the current model

acks many aspects of cancer and immune response, some of

hich are mentioned above. Multiple parameters (e.g., inflow of

esources, drug concentration) are thought as constants for sim-

licity, while in real patient these parameters change in time or

ver the disease progression. Even though adding more aspects

nto the model will make it more realistic, it also poses challenges

o its analysis and estimation with limited data. Our aim in this

ork was therefore to model only those aspects we deem most im-

ortant for the dynamic competition between active killer T-cells

nd cancer cell populations under the selected treatment modali-

ies. To widen the potential applications of the model, one of our

uture aims is to make use of laboratory measurements in can-

er cell line co-cultures, under selected treatment options, to fit

he most critical model parameters with real-world measurements,

nd to evaluate the model qualitative behavior against that seen in

he laboratory experiments. Eventually, with better estimated pa-

ameters, the model could be used to predict the effectiveness and

onsequences of various treatment choices as well the occurrence

nd timing of cancer relapse. We hope this will lead to more re-

listic set-up for tailoring treatment choices for individual cancer

atients based on careful profiling of their primary tumor samples.
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