
No Tits alternative for cellular automata

Ville Salo∗

University of Turku

August 6, 2018

Abstract

We show that the automorphism group of a one-dimensional full shift
(the group of reversible cellular automata) does not satisfy the Tits alter-
native. That is, we construct a finitely-generated subgroup which is not
virtually solvable yet does not contain a free group on two generators. We
give constructions both in the two-sided case (spatially acting group Z)
and the one-sided case (spatially acting monoid N, alphabet size at least
eight). Lack of Tits alternative follows for several groups of symbolic
(dynamical) origin: automorphism groups of two-sided one-dimensional
uncountable sofic shifts, automorphism groups of multidimensional sub-
shifts of finite type with positive entropy and dense minimal points, auto-
morphism groups of full shifts over non-periodic groups, and the mapping
class groups of two-sided one-dimensional transitive SFTs. We also show
that the classical Tits alternative applies to one-dimensional (multi-track)
reversible linear cellular automata over a finite field.

1 Introduction

In [52] Jacques Tits proved that if F is a field (with no restrictions on charac-
teristic), then a finitely-generated subgroup of GL(n, F ) either contains a free
group on two generators or contains a solvable subgroup of finite index. We say
that a group G satisfies the Tits alternative if whenever H is a finitely-generated
subgroup of G, either H is virtually solvable or H contains a free group with
two generators. Whether an infinite group satisfies the Tits alternative is one
of the natural questions to ask.

The fact that GL(n, F ) satisfies the Tits alternative implies several things:

• The ‘Von Neumann conjecture’, that a group is amenable if and only if it
contains no nonabelian free subgroup, is true for linear groups.1

• Linear groups cannot have intermediate growth (between polynomial and
exponential). Generally known as the Milnor problem [44].

• Linear groups have no infinite finitely-generated periodic2 subgroups. Gen-
erally known as the Burnside problem [15].

∗email: vosalo@utu.fi
1Mentioned open by Day in [24].
2A group G is periodic, or torsion, if ∀g ∈ G : ∃n ≥ 1 : gn = 1.
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The first item is true because solvable groups are amenable. The second
is true by the theorem of Milnor [44] and Wolf [55], which states that if G
is finitely-generated and solvable then either G is virtually nilpotent or G has
exponential growth rate. The third is true because free groups are not periodic,
and solvable groups cannot have finitely-generated infinite periodic subgroups
because the group property “all periodic f.g. subgroups are finite” is satisfied
by abelian groups and is closed under group extensions.

These three properties (or lack thereof) are of much interest in group theory,
since in each case whether groups can have these ‘pathological properties’ was
open for a long time. It seems that none of the three have been answered for
automorphism groups of full shifts Aut(ΣZ) (equivalently, groups of reversible
cellular automata).

Question 1. Does Aut(ΣZ) have a finitely-generated subgroup which is non-
amenable, but contains no non-abelian free group?

Question 2. Does Aut(ΣZ) have a f.g. subgroup with intermediate growth?

Question 3. Does Aut(ΣZ) have an infinite f.g. subgroup which is periodic?

We show that the classical Tits alternative is not enough to solve the three
questions listed – it is not true. Concretely, we show that there is a residually
finite variant of A5 o Z which does not satisfy the Tits alternative and embeds
in the automorphism group of a full shift.

A (two-sided) full shift is ΣZ where Σ is a finite alphabet, with dynamics
of Z given by the shift σ : ΣZ → ΣZ defined by σ(x)i = xi+1. A subshift is a
topologically closed shift-invariant subsystem of a full shift. A special case is a
sofic shift, a subsystem of a full shift obtained by forbidding a regular language
of words, and SFTs (subshift of finite type) are obtained by forbidding a finite
language. An endomorphism of a subshift is a continuous self-map of it, which
commutes with the shift. The automorphism group of a subshift X, denoted
by Aut(X), is the group of endomorphisms having (left and right) inverses, and
the automorphism group of a full shift is also known as the group of reversible
cellular automata. See [41] for precise definitions, [36] for definitions in the
multidimensional case, and [17] for subshifts on general groups. All these notions
have one-sided versions where N is used in place of Z. In the case of one-sided
subshifts we will only discuss full shifts ΣN.

In symbolic dynamics, automorphism groups of subshifts are a classical topic
[35, 20], with lots of progress in the 80’s and 90’s [12, 13, 39, 10] especially in sofic
settings, but also in others [37, 28]. In the last few (half a dozen) years there has
been a lot of interest in these groups [46, 51, 47, 22, 19, 23, 27, 26, 21] especially
in settings where the automorphism group is, for one reason or another, more
restricted. Also the full shift/sofic setting, which we concentrate on in this
paper, has been studied in recent works [29, 48, 49, 3].

The popular opinion is that the automorphism group of a full shift is a
complicated and intractable object. However, with the Tits alternative (or the
three questions listed above) in mind, looking at known (published) finitely-
generated subgroups as purely abstract groups does not really support this
belief. As far as the author knows, all that is known about the set of finitely-
generated subgroups of Aut(ΣZ) for a nontrivial alphabet Σ follows from the
facts that it is independent of the alphabet, contains the right-angled Artin
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groups (graph groups) and is closed under direct and free products (‘cograph
products’) and finite group extensions (and of course contains the trivial group).
See [13, 39, 48]. All groups generated by these facts satisfy the Tits alternative
by results of [2], see Proposition 2.

Some of the known (families of) groups which satisfy the Tits alternative are
hyperbolic groups [32], outer automorphism groups of free groups [5], finitely-
generated Coxeter groups [45], and right-angled Artin groups and more generally
groups obtained by graph products from other groups satisfying the Tits alter-
native [2]. In particular, we obtain that the automorphism group of a full shift
contains a finitely-generated subgroup which is not embeddable in any such
group.

Two particularly famous concrete examples of groups that do not satisfy
the Tits alternative are the Grigorchuk group [31] and Thompson’s group F
[16]. These groups also have many other interesting properties, so it would be
more interesting to embed them instead of inventing a new group for the task.
The Grigorchuk group can indeed be embedded in the automorphism group of
a subshift, by adapting the construction in [7], but the author does not know
whether it embeds in the automorphism group of a sofic shift. Thompson’s group
F embeds in the automorphism group of an SFT [50], but is not residually finite,
and thus does not embed in the automorphism group of a full shift. We mention
also that there are solvable groups of derived length three whose automorphism
groups do not satisfy the Tits alternative [34].

The variant of A5 o Z we describe is not a very complex group, and it is
plausible that some weaker variant of the Tits alternative holds in automorphism
groups of full shifts, and allows this type of groups in place of ‘virtually solvable
groups’. In particular, our group is elementarily amenable [18], and one could
ask whether every finitely-generated subgroup of the automorphism group of
a mixing SFT is either elementarily amenable or contains a free nonabelian
subgroup. If this were the case, it would solve the Von Neumann, Milnor and
Burnside problems for automorphism groups of mixing SFTs.

The group we construct satisfies the law [g, h]30, and is thus an example
of a residually finite group which satisfies a law, but does not satisfy the Tits
alternative. It turns out that such an example has been found previously [25,
Theorem 1], and we were delighted to find that indeed our example sits precisely
in the variety used in their theorem. However, our example is rather based on
an answer3 of Ian Agol on the mathoverflow website [38]. The idea behind
the embedding is based on Turing machines [3] in the two-sided case. In the
one-sided case we use a commutator trick applied to subshifts acting on finite
sets.

2 Results and corollaries

In the two-sided case, we obtain several results, all based on the same construc-
tion (Lemma 3) and the fact the automorphism group of the full shift embeds
quite universally into automorphism groups of subshifts.

Theorem 1. For any finite alphabet Σ with |Σ| ≥ 2, the group Aut(ΣZ) of re-
versible cellular automata on the alphabet Σ does not satisfy the Tits alternative.

3The answer reads ‘A5 o Z’.

3



The following summarizes the (well-known) embeddings listed in Section 5,
and the corollaries for the Tits alternative.

Theorem 3. Let A,Σ be finite alphabets, |A| ≥ 2. Let G be an infinite finitely-
generated group, and X ⊂ ΣG a subshift. Then we have Aut(AZ) ≤ Aut(X),
and thus Aut(X) does not satisfy the Tits alternative, if one of the following
holds:

• G = Z and X is an uncountable sofic shift,

• G = Zd and X is a subshift of finite type with positive entropy and dense
minimal points.

• G is not periodic and X is a nontrivial full shift.

The first embedding is from [39, 48], the second is from [36]. The third item
is straightforward to prove, but suggests some interesting generalizations (see
the discussion after the proof).

The mapping class group MX of a subshift X is defined in [9]. Combining
the embedding theorem of [39, 48] and results of [9] (and a short additional
argument) gives the following.

Theorem 2. Let A,Σ be finite alphabets, |A| ≥ 2. If X ⊂ ΣZ is a nontrivial
transitive SFT, then Aut(AZ) ≤ MX , and thus MX does not satisfy the Tits
alternative.

Automorphisms of two-sided full shifts also appear in some less obviously
symbolic dynamical contexts, in particular the rational group Q of [30] contains
the automorphism group of a full shift, [54] constructs its classifying space
(more generally those of mixing SFTs), implementing it as the fundamental
group of a simplicial complex built out of integer matrices, and [53] ‘realizes’4

automorphisms of full shifts in the centralizer of a particular homeomorphism
of a sphere of any dimension at least 5.

In the case of one-sided SFTs, there are nontrivial restrictions on finite sub-
groups, and the group is generated by elements of finite order. The automor-
phism group of ΣN is not finitely-generated if |Σ| ≥ 3, while |Aut({0, 1})N| = 2
[35, 11]. We prove that the Tits alternative also fails in the one-sided case.

Theorem 4. Let |Σ| ≥ 8. Then Aut(ΣN) does not satisfy the Tits alternative.

This group embeds in Aut(ΣZ), so Theorem 1 follows from Theorem 4. While
Aut(ΣZ) embeds in many situations where we have a symbolic group action,
Aut(ΣN) embeds more generally in many monoid and (non-vertex-transitive)
graph contexts, though unlike in the case of Z, we are not aware of anything
concrete to cite.

The group Aut(ΣN) also arises in a less obviously symbolic context: It is
shown in [6] that if Sd denotes the set of centered (coefficient of xd−1 is zero)
monic polynomials p of degree d over the complex numbers, such that the filled-
in Julia set (points whose iteration stays bounded) of p does not contain any

4While the precise statement in [53] is natural and interesting, it seems hard to get a non-
trivial group-theoretic interepretation of this result just from the statement of the theorem: it
does follow that the automorphism group of a full shift is a subquotient of the homeomorphism
group of the sphere but since this group contains free groups, so is any other countable group.
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critical point, then π1(Sd) (the fundamental group of Sd as a subspace of Cd)
admits Aut({0, . . . , d−1}N) as a quotient. Unfortunately, the Tits alternative is
not closed under quotients (since free groups satisfy the Tits alternative trivially
by the Nielsen-Schreier theorem), so we do not directly get a corollary for π1(Sd).

3 Residually finite wreath product

Grigorchuk group and Thompson’s group F are presumably particularly famous
examples of groups not satisfying the Tits alternative mostly because they are
particularly famous for other reasons, and happen not to satisfy the Tits alter-
native – one can construct such examples directly by group extensions: A5 o Z
does not satisfy the Tits alternative by a similar proof as that of Lemma 2.

The group A5 o Z is not residually finite since A5 is non-abelian [33, The-
orem 3.1], and thus cannot be embedded in the automorphism group of a full
shift. Informally, there is an obvious way to ‘embed’ it, but this embedding
is not quite a homomorphism, because the relations only hold on some ‘well-
formed’ configurations. In this section, we describe the abstract group obtained
through this ‘embedding’ – a kind of broken wreath product. Luckily for us, it
turns out not to satisfy the Tits alternative either.

Let N ⊂ N be an infinite5 set, let G be a finite group and write G +N Z for
the group generated by the elements of G and a new element 	, which act on⊔

n∈N Gn by
a · (g1, g2, . . . , gn) = (ag1, g2, . . . , gn)

for a ∈ G and n ∈ N , and

	 · (g1, g2, . . . , gn) = (g2, g3, . . . , gn, g1).

More precisely, the formulas attach a bijection on
⊔

n∈N Gn to each a ∈ G
and to 	 (by the above formulas), and G +N Z is the group of bijections they
generate. This is a variant of the usual wreath product of G and Z, but G +N Z
is obviously residually finite for any finite group G, since it is defined by its
action on the finite sets Gn. Note that 	 simply rotates (the coordinates of)
Gn for n ∈ N , and generates a copy of Z.

A subquotient of a group is a quotient of a subgroup.

Lemma 1. Let H be a finitely-generated group which has An
5 as a subquotient

for infinitely many n. Then H is not virtually solvable.

Proof. Suppose it is. Then there is an index k solvable subgroup K ≤ H. Let
H1 ≤ H be a subgroup. Let h : H1 → H2 be a surjective homomorphism. Then
for K ′ = h(K ∩ H1), we have [H2 : K ′] ≤ [H1 : K ∩ H1] ≤ k. Because K ′ is
a subquotient of the solvable group K, it is solvable, and we obtain that any
subquotient of H has a solvable subgroup of index at most k.

The group An
5 is now a subquotient of H for arbitrarily large (thus all) n,

so An
5 has a solvable subgroup K ′ of index at most k. Since K ′ is solvable, its

projection to any coordinate i of the product An
5 must be a proper subgroup of

A5, thus of index at least 5. Thus we have [An
5 : K ′] ≥ 5n > k for large enough

n, a contradiction.

5The definition works fine if N is a finite set, but then the group we define is finite, and
thus satisfies the Tits alternative.
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Lemma 2. The group A5 +N Z is not virtually solvable, but satisfies a law and
thus does not contain a free nonabelian subgroup.

Proof. First observe that φ(a) = 0 for a ∈ G and φ(	) = 1 extends to a well-
defined homomorphism φ : A5 +N Z→ Z (where we use that N is infinite).

Suppose that g, h ≤ A5 +N Z and N ⊂ N. Commutators vanish under any
homomorphism to an abelian group, so φ([g, h]) = 0. Thus independently of n,
we have [g, h]30 · ~v = ~v for any n and ~v ∈ An

5 , since the exponent of A5 is 30.
This implies that g and h satisfy a nontrivial relation. Since g, h were arbitrary,
the group satisfies the law [g, h]30. It follows that no two elements generate a
free subgroup.

So show that A5 +N Z is not virtually solvable, we show that it has An
5 as

a subquotient for arbitrarily large n. We show it is a subgroup of a quotient
(thus also a quotient of a subgroup). Pick n ∈ N . Then A5 +N Z acts on An

5

and a moment’s reflection shows that this induces a surjective homomorphism
from A5 +N Z to A5 o Z/nZ. We have An

5 ≤ A5 o Z/nZ, so An
5 is a subquotient

and we conclude with Lemma 1.

Since A5 acts faithfully on {1, 2, 3, 4, 5}, it is easy to see that the following
group (again defined by its action) is isomorphic to A5 +N Z: Let elements of
A5 and 	 act on

⊔
n∈N{1, 2, 3, 4, 5}n by

a · (m1,m2, . . . ,mn) = (a ·m1,m2, . . . ,mn)

for a ∈ A5, and

	 · (m1,m2, . . . ,mn) = (m2,m3, . . . ,mn,m1).

We do not study the structure of A5 +N Z in detail, but make a few obser-
vations. First, this group surjects onto the classical wreath product A5 o Z by
observing that any identity between the 	 and a ∈ A5 as generators of A5 +N Z
in particular hold for their action on An

5 for arbitrarily large n ∈ N . If n is
sufficiently large (larger than the length of the identity, to ensure information
does not have time to travel “around the circle”), then the identity must hold
in A5 o Z.

Second, while A5+NZ is not virtually solvable, it is (locally finite)-by-abelian
(just like A5 o Z), showing that it sits rather low in the elementary amenable
hierarchy.

4 The construction in the two-sided case

If Σ is a finite alphabet, write Σ∗ for the set of words over Σ (including the
empty word).

Lemma 3. There exists an alphabet Σ such that we have A5 +2N Z ≤ Aut(ΣZ).

Proof. Let A = {1, 2, 3, 4, 5} and choose Σ = {#} ∪ A2. Before describing
the automorphism, we define an auxiliary faithful action of A5 +2N Z on finite
words. Think of a word w ∈ (A2)n as two words u, v ∈ An on top of each
other, the topmost one defined by ui = (wi)1 and the second vi = (wi)2, for
i = 1, 2, . . . , n. We use the notation w = [ uv ] = ([ u1

v1 ] , [ u2
v2

] , . . . , [ un
vn ]). Define
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a bijection ψ : (A2)n → A2n by ψ([ uv ]) = uvR where vR is the reversal of v
defined by aR = a for a ∈ A and (va)R = a(vR).

Now, conjugate the defining action of A5 +2N Z on A2n to (A2)n through ψ
to obtain the action

a · (
[m1

m′1

]
,
[m2

m′2

]
, . . . ,

[mn

m′n

]
) = (

[
a·m1

m′1

]
,
[m2

m′2

]
, . . . ,

[mn

m′n

]
)

for a ∈ A5, and for 	 the following counter-clockwise ‘conveyor belt’ rotation

	 · (
[m1

m′1

]
,
[m2

m′2

]
, . . . ,

[mn

m′n

]
) = ([ m2

m1
] ,
[m3

m′1

]
,
[m4

m′2

]
, . . . ,

[
m′n

m′n−1

]
).

Now, we define our automorphisms. To a ∈ A5 we associate the automor-
phism fa : ΣZ → ΣZ defined by fa(x)i = Fa(xi−1, xi) where Fa : Σ2 → Σ is
defined by Fa(b, c) = c if b 6= #, Fa(#,#) = # and

Fa(#, [ bc ]) = [ a·bc ]

where a · b, is the action of a ∈ A5 by permutation on b ∈ A. It is easy to see
that fa is an endomorphism of ΣZ, and xi = # ⇐⇒ fa(x)i = #.

To 	, we associate f	 : ΣZ → ΣZ defined by f	(x)i = F	(xi−1, xi, xi+1)i
where F	 : Σ3 → Σ is defined by F	(a,#, b) = # for all a, b ∈ Σ and

F	(#, [ cd ] ,#) = [ dc ] ,

F	(#, [ cd ] , [ ef ]) = [ ec ] ,

F	([ ab ] , [ cd ] ,#) =
[
d
b

]
,

F	([ ab ] , [ cd ] , [ ef ]) = [ eb ]

for all a, b, c, d, e, f ∈ A. It is easy to see that F	 is also an endomorphism of
ΣZ, and xi = # ⇐⇒ F	(x)i = #.

Now, let Y ⊂ ΣZ be the set of points x where both the left tail x(−∞,−1] and
the right tail x[0,∞) contain infinitely many #-symbols, and consider any point
x ∈ Y . Then x splits uniquely into an infinite concatenation of words

x = . . . w−2#w−1#w0#w1#w2 . . .

where wi ∈ (A2)∗ for all i ∈ Z. If f is either f	 or one of the fa for a ∈ A5,
then the decomposition of f(x) contains #s in the same positions as that of x,
in the sense that (up to shifting indices)

f(x) = . . . u−2#u−1#u0#u1#u2 . . .

where |ui| = |wi| for all i and the words begin in the same coordinates. Thus
f(x) ∈ Y . It is easy to see that between two #s, the mapping wi 7→ ui performed
by f is precisely the one we defined for words in (A2)∗ described above for the
corresponding generator of A5 +2N Z.

It follows that a 7→ fa|Y , 	 7→ f	|Y extends uniquely to an embedding of
A5+2NZ into the group of self-homeomorphisms of Y . Since Y is dense in ΣZ and
fa and f	 are endomorphisms of ΣZ, a 7→ fa, 	 7→ f	 extends to an embedding
of A5 +2N Z into Aut(ΣZ).
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There are natural interpretations of the action on the limit points x ∈ ΣZ\Y .
On a configuration x ∈ ΣZ where xi = # and xj 6= # for all j > i, fa and f	
simulate the usual wreath product A5 oZ on the right tail x[i+1,∞), and a similar
claim holds for left tails. This yields the homomorphism to A5 o Z mentioned
in the previous section. On configurations where # does not appear at all, the
action is by shifting the top and bottom tracks, and gives the φ-homomorphism
used in Lemma 2.

5 Embedding results

In this section we list some embeddings from the literature. We start with
uncountable sofic shifts, where uncountable refers to the cardinality of the set
of points. Note that full shifts are uncountable sofic shifts (ΣN is uncountable,
and the empty language is regular).

The following is [48, Lemma 7].

Lemma 4. If X ⊂ ΣZ is an uncountable sofic shift, then Aut(AZ) ≤ Aut(X)
for any finite alphabet A.

Proposition 1. If X is an uncountable sofic shift, then A5 +N Z ≤ Aut(X).

Proof. By Lemma 4, we have Aut(ΣZ) ≤ Aut(X) where Σ is the alphabet of
Lemma 3. We have A5 +2N Z ≤ Aut(ΣZ) by Lemma 3, so it is enough to check
that A5 +N Z ≤ A5 +2N Z. One can check that such an embedding is induced by
a 7→ a for a ∈ A5, and 	 7→ 	2.

As for countable sofic shifts, we do not have a characterization of the situa-
tions when the automorphism group satisfies the Tits alternative. However, in
that setting, there are stronger methods for studying the three embeddability
questions listed in the introduction and we refer to [50].

The following is [36, Theorem 3].

Lemma 5. If X ⊂ ΣZd

is an SFT with positive entropy and dense minimal
points, then Aut(AZ) ≤ Aut(X) for any finite alphabet A.

Below, minimal points are points whose orbit-closure is minimal as a dy-
namical system.

Theorem 3. Let A,Σ be finite alphabets, |A| ≥ 2. Let G be an infinite finitely-
generated group, and X ⊂ ΣG a subshift. Then we have Aut(AZ) ≤ Aut(X),
and thus Aut(X) does not satisfy the Tits alternative, if one of the following
holds:

• G = Z and X is an uncountable sofic shift,

• G = Zd and X is a subshift of finite type with positive entropy and dense
minimal points.

• G is not periodic and X is a nontrivial full shift.

Proof. The first two were proved above. The third item is true, because if
Z ≤ G by n 7→ gn and X = AG for A ⊂ Σ, then if K is a set of left cosets
representatives for 〈g〉 then f ∈ Aut(AZ) directly turns into an automorphism

of AG by f̂(x)kgn = f(y)n where yi = xkgi and k ∈ K.
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The first item generalizes to sofic H × Z-shifts where H is finite by [49],
and could presumably be generalized to virtually-cyclic groups with the same
idea. By symmetry-breaking arguments, we believe the third item generalizes to
SFTs with a nontrivial point of finite support, on any group which is not locally
finite, and also to cellular automata acting on sets of colorings of undirected
graphs, but this is beyond the scope of the present paper. A generalization of
the second item seems worth conjecturing more explicitly.

Conjecture 1. Let G be an amenable group which is not locally finite and X
a subshift of finite type with positive entropy and dense minimal points. Then
we have Aut(AZ) ≤ Aut(X) for any finite alphabet A.

Next, we deal with the mapping class group. By definition, the group 〈σ〉
is contained in the center of Aut(X) for any Z-subshift X, in particular it is a
normal subgroup.

Lemma 6. Let X be any uncountable sofic shift. Then Aut(AZ) ≤ Aut(X)/〈σ〉
for every finite alphabet A.

Proof. Let φ : Aut(AZ)→ Aut(X) be the embedding given by Lemma 4. From
its proof in [48], it is easy to see that there exists an infinite subshift Y ≤ X
such that φ(f) fixes every point in Y for every f ∈ Aut(AZ); namely the maps
φ(f) only act nontrivially at a bounded distance from an unbordered word w
which can be taken to be arbitrarily long.

We show that based on only this, φ is automatically also an embedding of
Aut(AZ) into Aut(X)/〈σ〉. Suppose not, and that φ(f) ◦ σk = φ(g) for some
f, g ∈ Aut(AZ). Then in particular φ(f) ◦ σk(y) = φ(g)(y) =⇒ σk(y) = y
for every y ∈ Y . If k 6= 0 this is a contradiction since Y is an infinite subshift.
If k = 0, then φ(f) = φ(g) implies f = g since φ : Aut(AZ) → Aut(X) is an
embedding.

The following is now a straightforward corollary of [9]. See [9] for the defi-
nition of the mapping class group MX of a subshift X (which is not needed in
the proof).

Lemma 7. Let X be any transitive SFT. Then Aut(AZ) ≤ MX for every
alphabet A.

Proof. In [9, Theorem 5.6], it is shown in particular that if X is a transitive
SFT, then its mapping class group contains an isomorphic copy of Aut(X)/〈σ〉,
which then contains a copy of Aut(AZ) by the above lemma.

In [30, Corollary 5.5], it is shown that the automorphism group of every
full shift embeds in the group Q that they define, sometimes called the ratio-
nal group. Thus we also obtain a new proof that Q does not satisfy the Tits
alternative.

6 One-sided automorphism groups

The automorphism group of the full shift {0, 1}N is isomorphic to Z/2Z. For
large enough alphabets, however, we show that Aut(ΣN) does not satisfy the
Tits alternative. This gives another proof of Theorem 1.
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The high-level idea of the proof is that we can associate to a subshift a
kind of action of it on a finite set, in a natural way. Mapping n 7→ (0n−11)Z,
the action of the subshift generated by the image of N ⊂ N corresponds to the
group A5 +N Z defined previously. It turns out that Lemma 2 generalizes to such
actions, and any infinite subshift can be used in place of this (almost) periodic
subshift. The generalization is based on a commutator trick from [4, 43, 1, 8, 3].
The trick to adapting the construction to cellular automata on N is to consider
‘actions of the trace of another cellular automaton’.

We only give the definitions in the special case of A5. Let X ⊂ AZ be a
subshift and let Y = {1, 2, 3, 4, 5}. For each g ∈ A5 and j ∈ A define a bijection
gj : Y × X → Y × X by gj(y, x) = (g · y, x) for x0 = j and gj(y, x) = (y, x)
for x0 6= j. Define a bijection 	 y Y ×X by 	(y, x) = (y, σ(x)). Denote the
group generated by these maps by A5 +X Z.

Lemma 8. Let X ⊂ AZ be infinite. Then the group A5 +X Z is not virtually
solvable, but satisfies a law and thus does not contain a free nonabelian group.

Proof. Observe that φ(g) = 0 for g ∈ A5 and φ(	) = 1 extends to a well-
defined homomorphism φ : A5 +X Z→ Z (since X is infinite). Suppose first that
g, h ∈ A5 +N Z are arbitrary. Then as in Lemma 2, we get φ([g, h]) = 0, and
again we have [g, h]30 · (y, x) = (y, x).

We now show that An
5 is a subgroup of A5 +X Z for arbitrarily large n, after

which the claim follows from Lemma 1.
Consider the cylinder sets [w]i = {x ∈ AZ | x[i,i+|w|−1] = w} and for g ∈ A5,

w ∈ {0, 1}∗ and i ∈ Z define

πg,i,w(y, x) = (gy, x) if x ∈ [w]i, and πg,i,w(y, x) = (y, x) otherwise.

We claim that πg,i,w ∈ A5 +X Z for all g, i, w. To see this, observe that by
the definition of how gj ∈ A5 acts on Y ×X for j ∈ A, and by conjugating with
a power of 	, we have πg,w,i ∈ A5 +X Z for all g ∈ A5, i ∈ Z and w ∈ A. We
proceed inductively on |w|: Let w = uv where u, v ∈ A+ are nonempty words,
and let a ∈ A5 be any commutator, that is, a = [b, c]. Then one sees easily that

[πb,i,u, πc,i+|u|,v] = π[b,c],i,w.

Because A5 is perfect (that is, A5 = [A5, A5]), we get that πg,i,w ∈ A5 +X Z for
every g ∈ A5. This proves the claim.

Now, let w be an unbordered word6 of length n [42] that occurs in some point
of X. Then the elements πg,i,w for 0 ≤ i < |w| generate a group isomorphic to
An

5 (because the fact w is unbordered implies the supports of their actions are
disjoint), and we conclude.

Theorem 4. Let |Σ| ≥ 8. Then Aut(ΣN) does not satisfy the Tits alternative.

Proof. Let Σ = Y tA where A is a finite set, |A| ≥ 3 and |Y | = 5.
Let f : ΣN → ΣN be any reversible cellular automaton of infinite order

such that xi ∈ A ⇐⇒ f(x)i ∈ A, xi /∈ A =⇒ f(x)i = xi, and the
values in Y do not affect the behavior of f , in the sense that if x, y ∈ ΣZ and
∀i : (xi /∈ A ∧ yi /∈ A) ∨ xi = yi, then ∀i : xi ∈ A =⇒ f(x)i = f(yi).

6Alternatively, one can use the Marker Lemma [41] for X.
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One construction is the following: for a, b ∈ A, a 6= b, define Fa,b : Σ2 → Σ
by

for all c /∈ {a, b} : Fa,b(a, c) = b and Fa,b(b, c) = a

and Fa,b(c, d) = c otherwise. Define fa,b ∈ Aut(ΣN) by fa,b(x)0 = Fa,b(x0, x1).
This is an involution, so it is an automorphism. Now it is easy to check that for
any distinct elements a, b, c ∈ A, fa,b ◦ fb,c is of infinite order, by considering its
action on any point that begins with the word bka.

The trace of f is the subshift of ΣZ consisting of y such that for some x ∈ ΣN,
fn(x)0 = yn for all n. Since f is of infinite order on ΣN and fixes all symbols
not in A, its trace Tf intersected with AZ is infinite. Write X = Tf ∩ AZ for
this infinite subshift.

For each permutation p ∈ A5 and j ∈ A, take the fp,j to be the automor-
phism defined by fp,j(x)0 = p(x0) if x0 ∈ Y , x1 ∈ A and π(x1) = j, and by
fp,j(x)0 = x0 otherwise. Let F denote the group generated by f and fp,j for
p ∈ A5, j ∈ A.

The group F is isomorphic to A5 +XZ by the isomorphism f 7→ 	, fp,j 7→ pj .
To see this, we show that the same identities are satisfied by the generators.
First, suppose some word w over the generators 	 and pi acts as the identity in
A5 +X Z, and consider any point x ∈ ΣZ. Since X is infinite, the total rotation
φ(w) is zero. Thus when w is evaluated in F , f is applied as many times as f−1,
so all coordinates xi ∈ A return to their original values (observe that values of
coordinates containing a symbol from Y do not affect coordinates with a symbol
from A). Coordinates i with xi ∈ Y , xi+1 ∈ Y are not affected by w. If xi ∈ Y ,
xi+1 ∈ A, then the action of f and fp,j exactly simulates the action of 	 and
pj on (xi, y) where y ∈ X is the configuration defined by yn = fn(x)i+1, since
shifting a configuration of the trace corresponds to applying f .

Now, suppose w does not represent the identity in A5 +X Z, and suppose
w does not fix (a, z) ∈ Y × X. By the assumption that X is the trace of f
intersected with AZ, we can find a configuration x ∈ ΣZ where for some i,
fn(x)i = zn for all n. By shift-commutation we may assume i = 1 and since f
and its inverse are one-sided we can assume x0 = a. Then clearly w does not
act as identity on x.

By the previous lemma, A5 +X Z does not satisfy the Tits alternative. Since
Aut(ΣN) contains F ∼= A5+XZ it does not satisfy the Tits alternative either.

Question 4. For which one-sided transitive SFTs does the Tits alternative
hold? Is it always false when the automorphism group is infinite?

Unlike in the two-sided case, automorphism groups of one-sided full shifts
do not in general embed into each other, due to restrictions on finite subgroups,
see [11].

7 Tits alternative for linear cellular automata

We show that linear cellular automata, with a suitable definition, satisfy the
assumptions of Tits’ theorem directly.

Let K be a finite field7 and let V be a finite-dimensional vector space over
K. Then the full shift V Z is also a vector space over K with cellwise addition

7Finiteness is not really needed – the arguments go through with any field, with any T1
topology on K and induced topology on V , and the product topology on V Z.
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(x+y)i = xi +yi and cellwise scalar multiplication (a ·x)i = a ·xi. Consider the
semigroup LEnd(V Z) of endomorphisms f of the full shift V Z which are also
linear maps, i.e. f(x + y) = f(x) + f(y), a · f(x) = f(a · x), and the group
LAut(V Z) ≤ LEnd(V Z) of such maps which are also automorphisms (in which
case the automorphism is automatically linear as well).

The (formal) Laurent series
∑

i∈Z cix
i, where ci ∈ K for all i and ci = 0 for

all small enough i, form a field that we denote by K((x)). By GL(n,K((x)))
we denote the group of linear automorphisms of the vector space K((x))n over
K((x)). A Laurent polynomial is a Laurent series with finitely many nonzero
coefficients ci, and we write K[x,x−1] for this subring of K((x)).

It is standard that the semigroups LEnd(V Z) and Mn(K[x,x−1]) are iso-
morphic (by collecting the images of points with support of cardinality 1 into
a matrix) and this isomorphism maps LAut(V Z) onto the set of invertible ma-
trices. Since K[x,x−1] is a subring of K((x)), it follows that LAut(V Z) ≤
GL(n,K((x))) where n is the dimension of V , and we get the following.

Theorem 5. Let V be an n-dimensional vector space over a finite field K.
Then the group LAut(V Z) embeds in GL(n,K((x))), and thus satisfies the Tits
alternative.

Question 5. Let X ⊂ ΣZ be a group shift [14, 40] (that is, X supports a
shift-commuting continuous group structure). Does the group LAut(X) of auto-
morphisms respecting the group structure satisfy the Tits alternative?

8 Tits alternative for some known subgroups

As mentioned in the introduction, as far as the author knows, there are no
previously published finitely-generated subgroups of Aut(ΣZ) which cannot be
built by graph products and finite extensions from the trivial group (note that
this family contains all finite groups, all f.g. free groups, all f.g. abelian groups
and all graph groups). Let us show that all groups generated by these closure
properties satisfy the Tits alternative (in the sense of the present paper). This
is a direct corollary of results of [2].

Proposition 2. Let G be the family of finitely-generated groups satisfying the
Tits alternative. Then G is closed under subgroups, finite graph products and
finite group extensions.

Proof. The case of subgroups is trivial. Theorem A of [2] directly implies that
a finite graph product of groups satisfies the Tits alternative (in our sense)
whenever the vertex groups do: our Tits alternative is “Tits Alternative relative
to (If , Cvsol)” in their terminology, and (If , Cvsol) satisfies their assumptions.

Now suppose H ≤ G is of finite index and H satisfies the Tits alternative.
Let K ≤ G be a finitely-generated subgroup. Since H is of finite index, K∩H is
finitely-generated. Since H satisfies the Tits alternative, either the group K∩H
contains a (nonabelian) free subgroup, or it is virtually solvable. If it contains a
free group, so does K. If it is virtually solvable, then there is a solvable subgroup
F ≤ K ∩H of finite index. Then we have

[K : F ] ≤ [K : K ∩H][K ∩H : F ] ≤ [G : H][K ∩H : F ] <∞

so K is virtually solvable.
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