Redesigning an Object-Oriented Programming Course

ERKKI KAILA, University of Turku

EINARI KURVINEN, University of Turku
ERNO LOKKILA, university of Turku
MIKKO-JUSSI LAAKSOQO, university of Turku

Educational technology offers several potential benefits for programming education. Still, to facilitate the
technology properly, integration into a course must be carefully designed. In this article, we present a
redesign of an object-oriented university level programming course. In the redesign, a collaborative
education tool was utilized to enhance active learning, to facilitate communication between students and
teachers, and to remodel the evaluation procedure by utilizing automatically assessed tasks. The redesign
was based on the best practices found on the earlier research of ours and the research community, with focus
on facilitating active learning methods and student collaboration. The redesign was evaluated by comparing
two instances of the redesigned course against two instances using the old methodology. The drop-out rate
decreased statistically significantly in the redesigned course instances. Moreover, there was a trend towards
higher grade average in the redesigned instances. Based on the results, we can conclude that the utilization
of educational technology has a highly positive effect to student performance. Still, making major changes
to course methodology does not come without certain difficulties. Hence, we also present our experiences
and suggestions for the course redesign to help other educators and researchers perform similar design
changes.

Categories and Subject Descriptors: K.3.1 [Computers and Education]: Computer and Information
Science Education

General Terms: Design, Experimentation, Performance

Additional Key Words and Phrases: Object-oriented programming, course redesign, programming education,
course methodology

ACM Reference Format:

Erkki Kaila, Einari Kurvinen, Erno Lokkila and Mikko-Jussi Laakso. 2016. Redesigning an Object-Oriented
Programming Course. ACM Transactions on Computing Education.

1. INTRODUCTION

During recent years, an imminent need for redesigning teaching methods in
information technology education has become obvious. The students find the topics
difficult and seem to have problems with the abstract concepts [Dunican 2002]. The
problems are evident in programming courses, as typically the drop-out rates are high.
Though most of the research done on learning programming is about introductory
programming, the same difficulties are often present when advancing to topics such as
object oriented programming. The underlying reason is often the nature of learning
programming: students need to actively engage in programming to learn how to
program.

Traditional programming courses are often taught via lectures and assignments.
The assignments in a traditional setting are done in a computer lab or similar and
assessed by the teaching staff. Utilizing educational technology makes it possible to
increase the level of active learning: by facilitating features such as automatic

Authors’ address: Department of Information Technology, University of Turku. 20014-Turun yliopisto,
Finland.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

Copyright © ACM 2015 1946-6626/2015/MonthOfPublication - ArticleNumber $15.00

ACM Transactions on Computing Education Vol. xx, No. x, Article xx, Publication date: Month YYYY

E. Kaila et al.

assessment and immediate feedback, the number of active tasks in the course can be
increased significantly. This enables an active approach to programming, where
students learn by writing programs and completing other assignments instead of
sitting passively in lectures.

In this paper, we describe a comprehensive redesign of an object oriented
programming course. The approach chosen in the redesign was to facilitate active
learning by changing half of the lectures into active learning sessions. We also decided
to encourage student collaboration, as various earlier studies have proven that it has
a highly positive effect on learning. A third aspect in the redesign was to enhance
teacher-student communication by utilizing weekly surveys to collect students’
perceptions on the lectures and the active learning sessions. Finally, we decided that
the exam methodology needed to be adjusted as well: a traditional pen and paper
approach was deemed unsatisfactory in a course with a lot of programming tasks.
Hence, an automatically assessed electronic exam was utilized.

All elements in the redesign are based on the best practices of existing computing
education research conducted by ourselves or by the research community. We start by
evaluating these practices followed by a detailed description of the redesign. Then,
student performance in the old instances of the course is compared with that in the
redesigned instances. Next, the results are analyzed accompanied by our experiences
on implementing the redesign. Finally, we present suggestions for other educators who
are planning to adapt similar features in their courses.

2. RELATED WORK

Neither learning nor teaching programming is considered an easy task [Ben-Ari 2001],
[Jenkis 2002], [Pattis 1993], [Caspersen & Bennedsen 2004]. [McCracken et. al. 2001]
raise concerns whether university level introductory courses to programming achieve
the expected results. Students may, for example, believe that after assigning the value
from one variable to another, the first variable no longer holds a value, or that
variables may hold more than one value [Ben-Ari 2001]. Moreover, [Gomes & Mendes
2014] state that students lack intrinsic motivation due to natural difficulties
associated with programming. There obviously is room for improvement in the current
landscape of computer science education.

The difficulty in programming lies partly in the fact that programming is not merely
a single skill, but a composition of several processes. [Jenkins 2002] recognizes the
required skills to not form a simple set, but rather a hierarchy from which several
separate skills are utilized simultaneously. These skills have been classified in various
ways, for example Bloom’s taxonomy [Bloom 1954]. Hence, teaching programming as
a single skill is a futile attempt. However, good results can be achieved with a
combination of different teaching methods [McCracken 2001], [Carsten 2003], [Giraffa
et al. 2014].

Lectures, reading and other passive forms of learning are not useful in conveying
the skills or the thought processes required for programming [Jenkins 2002].
According to the constructivist theory of learning, the way teaching should be done is
to let students build upon their old experiences and knowledge [Wertsch 1985]. Thus,
active methods of learning are preferred. According to [Freeman 2014], active learning
can be thought of as any activity wherein the student actively partakes in the process
of forming a solution to a given problem. This sharply contrasts with traditional
behavioristic lecturing, where lecturers recite facts and students are expected to learn
these facts. A concrete example of utilizing active learning is the concept of flipped

ACM Transactions on Computing Education Vol. xx, No. x, Article x, Publication date: Month YYYY

Redesigning an Object-Oriented Programming Course

classroom, where lectures are served as video clips, and the time spent traditionally
on lectures is dedicated to active assignment sessions [Amresh et al. 2013], [Sarawagi
2013].

Instead of lectures, educators are encouraged to embrace new teaching methods
[Grissom 2013]. New technology provides new affordances for teaching and one such
affordance is the ability to give students feedback immediately after their answer. This
ability to automatically assess student’s answers is a key benefit gained from utilizing
educational technology [Laakso 2010]. Immediate feedback has also been found to
improve learning results in students [Epstein, Epstein & Brosvic 2001]. Immediate
feedback can, in the best case, provide students a cognitive conflict between what they
thought was correct and what actually is. Such a conflict forces the student to reassess
their beliefs and possibly seek out new information and finally assimilate all newly
gathered and re-evaluated information with their old knowledge to resolve the conflict
[Wertch 1985].

Recently, there has been an increasing interest in collaborative learning. This is
reflected partly in an increasing number of articles on collaborative learning in
computer science (CS). Collaboration has been found to be highly beneficial in
supporting the learning process of students [Rajala 2009], [Wang 2009], [Raitman et.
al. 2005], [Hwang et al. 2012]. This is expected in light of the constructivist learning
theories. When working together with other students, the participants will inevitably
form new knowledge from their interaction based on their old knowledge. [Damon 1984]
argues that different opinions and assumptions force students to argue and reassess
their beliefs. He also describes four aspects in peer collaboration that promote learning.
First, students are able to talk to each other on the same level and thus understand
each other. Second, they can talk directly to one another without feeling threatened.
Third, students are more likely to accept feedback from their peers which may cause
them to reassess their beliefs. Finally, the communication between students is more
equal than that between students and their instructor. As a result, the students are
more willing to challenge ideas from their peers than their instructor [Damon 1984].
Collaboration does not only benefit student learning: even teachers have been found to
benefit from teacher-to-teacher collaboration in their work [Johnson 2003].

[Beck & Chizhik 2014] utilized cooperative learning and instructional methods in a
CS1 level programming course. They divided students into small groups giving each
group member a specific task in the group. Students then worked in these groups on
exercises designed to be solved cooperatively. After the group session, the lecturer held
a debriefing session for the whole class. This debriefing was designed to work in
tandem with the group processing to promote the learning and understanding of the
material for the student. The cooperative learning students outperformed traditional
lecture students, although the improvement was partly instructor dependent.

Pair programming has been found effective for student performance in
programming courses (see for example [Salleh et al. 2011] or [McDowell et al. 2002]).
Moreover, [Nagappan et al. 2003] found out, that pair programming can also improve
student experience in the course, as pair programmers were more self-sufficient and
more likely to complete the class than students working alone. In our research group’s
previous study, [Rajala et al. 2011] provided strong evidence that students benefit from
working in collaboration. We analyzed the screen captures and conversations of 112
CS students’ two hour lab work. The control group consisted of 50 students working
alone and the treatment group of 62 students working in pairs. We found out that
students working collaboratively spent more time on demanding tasks and were more
engaged than their individually working peers.

ACM Transactions on Computing Education, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

E. Kaila et al.

Collaborative learning has also been studied in lower- and upper-division computer
science. Several studies have been made on the effect of collaborative learning on
student performance and feedback received from students. The results show a marked
positive difference from the control group [Lee et al. 2013], [Simon et al., 2010].
Students, in general, seem to prefer collaborative learning methods over individual
learning. [Renaud and Cutts 2013] were able to improve student decision making in
security issues using Peer Instruction. In Peer Instruction students answer multiple
choice questions first individually but are allowed to change their answers after a
group discussion. The group discussion enables the students to reflect on what they
answered and solve potential cognitive conflicts. [Hundhausen et al. 2013] were able
to improve students’ critical thinking and code-analysis skills using an active learning
approach to code review, inspired by the same process used in the industry. In a
pedagogical code review session, the students present code they have written to an
experienced instructor as well as other students, who then offer suggestions on how to
improve the code. The aim in a pedagogical code review session is to merge the views
of the novice student and an expert programmer.

However, as [Grissom 2013] points out, it is not merely enough that educators know
about alternatives to passive lecturing, they should also adopt and utilize these new
methods in their teaching to realize any potential gains in learning. This is also
emphasized in a case study made by [Goode and Margolis 2011], in which they study
a school reform. However, they point out that instilling change in any educational
system is challenging. Regardless, their reform succeeded in, for instance, increasing
student perceptions of the usefulness of computer science and motivating students to
stick with difficult problems instead of giving up.

[Vihavainen et al. 2014] present a systematic review of redesign approaches and on
their quantitative effect on student performance in CS1 courses. They discuss several
methods of intervention (including for example collaboration, content change and peer
support), and discuss their effect on pass rates reported in different case studies by
other authors. The authors conclude that teaching interventions can improve the pass
rates by as much as one third, which can be seen as a remarkable result. Moreover,
they state that while no statistical differences between intervention methods can be
found, the courses with relatable content combined with cooperative elements were
most effective.

3. VILLE — COLLABORATIVE EDUCATION TOOL

This paper describes the refactoring of an object oriented programming course. The
refactoring was decided to be based on ViLLE, a collaborative education tool developed
at the Department of Information Technology, University of Turku. VIiLLE is a web-
based collaborative education tool that supports a variety of different exercise types.
Most of the exercises are automatically assessed and give immediate feedback when
submitted. Additionally, to support active learning, ViLLE does not limit the number
of submissions. VIiLLE is currently used by more than 2,000 teachers and 25,000
students around the world. A comprehensive description of the tool can be found in
[Laakso et al. 2016]. The VILLE exercise types selected for refactoring were
Coding exercise: automatically assesses the student solution against the model
solution written by the teacher. The exercise provides authentic compiler and run-
time exceptions, enabling students to fix the potential problems before resubmitting.
Quiz exercise: provides multiple choice and open questions. Quizzes are particularly
useful for lecture summaries and for testing code tracing and theoretical skills in the
exams.

ACM Transactions on Computing Education Vol. xx, No. x, Article x, Publication date: Month YYYY

Redesigning an Object-Oriented Programming Course

Visualization: a program visualization exercise where graphical tracing of code
execution is accompanied with different types of questions.

Program simulation: an exercise type where the students need to simulate the
program execution one code line at a time by creating and manipulating variables
and methods.

Sorting exercise: VIiLLE supports Parsons puzzles [Parsons & Haden 2006], where
shuffled code lines need to be ordered according to given tasks. Additionally, other
types of sorting tasks (such as connecting the variable definition and value) can be
created.

Survey: ViLLE also supports surveys with optional embedding of pictures, audio and
video.

VIiLLE can also be used to record student attendances with RFID readers. This
functionality can be extended to demonstrations, where students can use ViLLE to
record the assignments they have completed. This allows the course staff and the
students to see all obtained scores in real time.

4. REFACTORING THE COURSE

“The basic course of object-oriented programming” is a typical object-oriented
programming course taught in the University of Turku. The course is mandatory for
all computer science majors (and for some of the other students in the faculty, including
mathematics, physics and chemistry majors) and the students typically take it in their
first year. Before the course, all students attend the “Basic course for algorithms and
programming”, which is a typical CS1 course, containing the basics of programming in
Java. In the second course, the fundamental concepts of object oriented programming,
including (but not limited to) writing classes, inheritance and polymorphism, are
taught. Java is still used as the programming language, but the focus of the course is
more on the general concepts instead of features typical for any particular language.

In this section, we describe the changes made in the course between the instances
of 2011-12 (the old course) and 2013-2014 (the new course). The topics covered by the
course as well as the learning goals and the credits awarded remained the same
between all instances. The goal of the refactoring was to lower the drop-out rates by
facilitating active learning, student collaboration and communication between the
students and the teachers. By refactoring, we hence try to find the answers to two
research questions:

1) Does the refactoring lead to lower drop-out rate in the course, and

2) Does the refactoring lead to higher course grades?

The corresponding null hypotheses are that the refactoring has no effect on the
drop-out rates, and if it does, the grade average will drop accordingly. Before the steps
taken in the refactoring are described, the old instance is briefly summarized.

4.1 Old Version of the Course

The old version of the course (from now on C1) was taught until the spring of 2013. In
this paper, we use the instances of 2011 and 2012 for comparison. The old version of
the course consisted of lectures, demonstrations, a course project and an exam. The
course lasted for eight weeks, but the final week was reserved for the final exam. The
final project could be submitted after the final exam. Each week of the course consisted
of four hours of lectures (2 x 2h). Additionally, there were four weekly demonstrations,

ACM Transactions on Computing Education, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

E. Kaila et al.

starting from the third week. In these 2-hour sessions, the students provided their
answers to programming tasks given earlier. At least 50 percent of demonstrations
needed to be completed to attend the exam.

The old course structure is displayed in Table 1.

Table I. A summary of the old instance of the course

Component Amount Description
Lectures 7x2x2h=28h Traditional lectures in a lecture hall
Demonstrations 4x2h=8h Programming assignment presentation in front of
class; done in smaller groups (typically 20 to 30
students)
Final project 1 Programming project (typically a simple game or
similar)
Final exam 1 with two Two to three programming tasks or essays,
possibilities to completed using pen and paper
retake the exam

As seen in the table, the course follows a typical structure of most programming
courses.

4.2 Step 1: Enhancing Active Learning

In refactoring, the first step was to facilitate active learning. As proven by various
educational researchers, learning performance can be enhanced when students
perform tasks actively instead of passively listening to lectures. The first step in the
redesign was implemented by changing half of the lectures into tutorials. The tutorials,
created in VILLE, are a combination of study material (such as text, images, tables
and videos) and ViLLE exercises. An example of a tutorial is displayed in Figure 1.
The latter lecture of each week was replaced with a tutorial session, where the
students brought their computers with them. The session was organized in a lecture
hall and was supervised by course personnel aided by older students mentoring the
participants when needed. The attendance to tutorial sessions was made mandatory
(though one absence was allowed). The attendances were recorded by delivering an
RFID tag to each of the students in the course, and by utilizing RFID readers which
were directly connected to ViLLE server. This enabled an up-to-date view of the
attendances to both, teachers and students.

ACM Transactions on Computing Education Vol. xx, No. x, Article x, Publication date: Month YYYY

Redesigning an Object-Oriented Programming Course

°® Turun yliopisto s e
v I3 L L € Collaborative education tool University of Turku ¥ VILLE Team =

[3] Test- Methods

byte = short 2 int 2 long = float = double

When casting to the other direction, the type casting must be done manually (an expiicit type cast).
An explicittype cast is done by writing the target type in parenthesis in front of the target:

double d

Round a number
Description

* Java's explicittype cast double > int doesnt always round correctly - in fact, when Score: 0/10
changing a value from double to int Java merely drops the decimal part Submissions: 0

Write a method public static int round(double number),which rounds W‘Wy (No ratings)
the double it receives as a parameter to its mathematically nearest integer and returns B R

this integer. For example, if the method is passed 1.5, it will return the integer 2 whereas

if passed 1.4, itwill return the integer 1.

2 submit H % Reset

Coding area

Fig. 1. Example of a tutorial in VIiLLE

Each tutorial was designed to underline the topics discussed in the lecture that week.
Hence, the lecture and the tutorial formed a holistic module each week, where the
theory was first offered, and then the topic could be rehearsed with relevant exercises.
For each tutorial, different kinds of exercises were prepared. While most of the
exercises were about writing and executing program code, some quizzes and sorting
exercises were also used to keep the task more varied and interesting. The tutorials
were opened when the session started, and kept open until the next tutorial. This way
the students were able to finish the tutorial after the session if necessary.

Moreover, a small set of additional ViLLE exercises were prepared for each week.
These exercises opened during the lecture and were meant to be used as a reminder
about the topics covered in the lecture. These additional exercises were designed to be
easier than the exercises in the tutorials. VIiLLE was also used to collect the lecture
and tutorial attendances. Lecture attendances were not made mandatory, but a small
bonus (less than 0.17 % of the grade) was offered to students who attended all lectures.

4.3 Step 2: Encouraging Collaboration

The second step was to facilitate student collaboration. As seen before in (Rajala et al.
2009, Rajala et al. 2011), learning performance can be significantly improved if the
students do the exercises in collaboration with other students. With this in mind, the
tutorials were built to support collaboration. In the tutorial sessions, the students
paired up with another student to work together using one computer. Discussion
during the sessions was encouraged and the controller (i.e. the student who used the
mouse and keyboard) was switched every fifteen minutes. The points collected from
the tutorial exercises were awarded to both students.

ACM Transactions on Computing Education, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

E. Kaila et al.

The demonstration sessions were kept in the redesigned model as well. The reason
for this is the possibility to offer more complex programming tasks as well as problems
that do not have straightforward solutions to them. Still, the demonstration sessions
were modified to facilitate collaboration and discussion. In the old course, the session
started with students writing down the assignments they completed, and the
demonstrator then picked the students to present their solutions. In the new model,
the students still started the session by registering the completed assignments, though
this time using VILLE. The demonstrator then used ViLLE to divide the students
randomly into groups (an algorithm was used to ensure that each group contained the
answers to each assignment). Next, the students had approximately 20 minutes to
discuss and compare their solutions before the presenters were chosen. The presenters
then displayed and discussed their solutions to the programming tasks, with
additional discussion encouraged. Moreover, an extra assignment was provided after
the previously given ones were presented. The remaining time in the session (usually
around 15 to 30 minutes) was spent in groups solving this additional task

4.4 Step 3: Facilitating Student-Teacher Communication

The third step was to facilitate communication between the course staff and the
students. This was thought to be especially important since several new features were
presented in the course. Hence, two surveys were conducted each week. The first one
was used to collect opinions about the lecture, and the second one from the tutorials.
The lecture survey contained the same three questions each week:

e What did you learn in this week’s lecture?
e Which things remain unclear after this week’s lecture?
e How would you improve the lecture?

Similarly, after each tutorial the students answered the same three questions:
e What did you learn in this tutorial?
¢ Which things remain unclear after the tutorial?
e How would you improve the tutorial?

The feedback was analyzed after each week and the topics that seemed to remain
unclear were re-addressed in the next lecture. Also, the tutorials were modified
between instances and the final tutorial (containing a summary of all topics in the
course) was built based on the issues the students reported on the surveys.

Also, after each of the demonstration sessions a short survey was conducted. In this
survey, the students could simply give feedback on the demonstrations. Again, the
answers were analyzed and the consecutive demonstrations were modified based on
the feedback. In practice, this meant for example giving more detailed instructions on
assignments if some of the previous ones were seen as too vague. Finally, after the
course exam a survey about it was conducted. This was deemed important since this
was the first time an electronic exam was used.

For additional assistance between lectures and tutorials, a group of more
experienced (typically second or third year) students were nominated as mentors. A
special mentoring session was arranged once a week. In this session the students
participating in the course could come by to ask assistance for tutorials,
demonstrations or the weekly assignments. At least two mentors were present to assist
the students in these sessions. These mentors were also present at the tutorial sessions
to assist the students with problems.

ACM Transactions on Computing Education Vol. xx, No. x, Article x, Publication date: Month YYYY

Redesigning an Object-Oriented Programming Course

4.5 Remodeling Evaluation Methodology

Since the students spent the entire course writing a great number of programs either
with an IDE or especially in VILLE, a normal paper exam was deemed to be
unsatisfactory. Instead, an electronic exam was implemented with ViLLE. This way
the students could actually write, compile and test their code and see the results as
well as any compiler error messages on screen. The main purpose for this was to create
an environment where writing code was as close to an authentic situation as possible
in an exam. Besides programming assignments, some other tasks — such as quizzes
and sorting exercises — were also included.

The typical programming task in the exam contained a task description and (in
some cases) a pre-defined set of code. The students were then asked to write the
required code using the code editor in VILLE. The code could be submitted (i.e.
compiled and executed) as many times as wanted. The exam score was based on the

final submission. An example of the exam task (translated into English) is displayed
in Figure 2.

CUBE IMPLEMENTS SHAPE | x Exit |

Description

Write a class Cube which implements the given Shape interface. The Cube should have
a constructor that gets the edge as a parameter.

X Submit H 7 Reset

¥ Codingarea

import java.util.Randem;

Fig. 2. Example of a task from the final exam, translated into English

The electronic exam was fully automatically assessed. Unlike in the tutorial exercises,
the students couldn’t see the feedback (except for the program output and possible
compiler and run-time errors) or the score when submitting their answers. Besides
providing the students the possibility for resubmitting their answers as many times as
wanted within the time limit, automatic assessment meant that the exam results could
be published immediately after the exam.

ACM Transactions on Computing Education, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

E. Kaila et al.

To confirm the comparability to earlier instances of the course, the exam was
designed to be more challenging. The exams of C1 typically consisted of two to three
guestions, where one or two were programming tasks. In the redesigned C2, the exam
consisted of seven to eight programming tasks with one or two additional questions.
To ensure that the exam in C2 was at least as difficult as in the previous instance, the
exam was audited by three non-affiliated university level teachers and researchers,
who all agreed respectively, that the new exam is at least as challenging as the old one.

4.6 Conclusion: Redesigned Course

The list of topics taught remained the same after the redesign. The method was
however changed significantly. The course structure is displayed in the Table I1.

Table Il. A summary of the redesigned course

Component Amount Description

Lectures 7x2=14h Traditional lectures in a lecture hall

Tutorials 7x2=14h Tutorial sessions done in collaboration in lecture
hall

Demonstrations 4x2=8h Programming assignment presentation in front of

class; done in smaller groups (typically 20 to 30
students). Enhanced with collaborative work at
the beginning and the end.

Additional VIiLLE 7 Simple tasks opened during the lecture to
exercises underline lecture topics
Final project 1 Programming project (typically a simple game or
similar)
Final exam 1 (but with 3 options 7 to 8 programming tasks with one or two
to take it) additional tasks, done electronically in VILLE.

The comparison of old (C1) and new (C2) course methodologies is displayed in the Table
1.

Table Ill. Comparison of old (C1) and new (C2) course methodologies

Component C1 Cc2

Lectures 4h each week 2h each week

Tutorials - 2h each week

Demonstrations 4 x2h 4 x 2h, collaboration

Additional exercises None Approx. 3 each week

Final Project 1 1

Final exam Pen and paper Electronic

Feedback collected None 2-3 short surveys a week + one
after the exam

Mentoring None 2h each week

As seen in the table, active learning, collaboration and communication are enhanced
heavily in the new version of the course. In the next section, we present the earlier
studies which the redesign was based on, followed by the results on student
performance in old and new instances. In the section after that, the effects and our
experiences are discussed.

4.7 Earlier Studies on Methodology

The redesign was based on the best practices of the e-learning research community as
well as on our own previous research. We have previously shown in 2-hour controlled
tests [Rajala et al. 2008], [Kaila et al. 2009] that educational technology can be highly

ACM Transactions on Computing Education Vol. xx, No. x, Article x, Publication date: Month YYYY

Redesigning an Object-Oriented Programming Course

beneficial for learning, but only if used in the higher levels of engagement. This seems
to be in line with the engagement taxonomy represented by [Naps et al. 2001]. The
positive effects of engagement and immediate feedback were concluded in [Kaila et al.
2009]. We have also shown in [Rajala et al. 2009] and [Rajala et al. 2011] that
collaboration can have a significant effect on learning, and that the students doing
exercises in collaboration seem to be highly engaged in the task at hand. On [Laakso
et al. 2008] we found out that the cognitive load of learning to use a new tool has a
significant negative effect on learning. With this in mind, the redesign was based on a
single comprehensive learning environment. Some of our first studies on technology-
enhanced programming and computer science courses were published in [Kaila et al.
2014] and [Kaila et al. 2015].

5. RESULTS

To compare the learning performance between C1 and C2, the grades and pass rates
of all four instances were acquired from the university offices. The instances are
displayed in Table IV.

Table IV. Course instances

Instance Methodology N

2011 C1 186
2012 C1 201
2013 Cc2 191
2014 c2 158

The total number of students in the instances of the old methodology (C1) was 387,
and in the instances of redesigned methodology (C2) 349. Most of the students were
computer science majors, but some mathematics and physics majors also took the
course as part of their minor studies. The number of students attending the course
varies from year to year due to changes in the number of accepted students in the IT
and other departments. Also, the smaller amount of students taking the course in 2014
is likely due to higher pass rate in 2013 (and hence smaller number of students re-
taking the course the following year). The course is typically taken as part of the first
year studies and is the second programming course in the curriculum.

The course was graded in scale of 1 to 5, with 5 being the best grade, and 1 the
lowest passing grade. Some bonus points were awarded for completing the majority of
tutorials, attendances and ViLLE exercises, but the bonus points were only awarded
if the student passed the exam by collecting at least 50 % of the maximum points.
Similar method was used in the old instances of the course with the demonstrations.

Moreover, it was possible to pass the course without taking the exam by collecting
at least 90 % of all possible points in the course. However, almost all of the students
who collected this many points also took the exam. The grades from all course
instances are displayed in Table V.

ACM Transactions on Computing Education, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

E. Kaila et al.

Table V. Grades from all course instances, with 5 being the best grade

Fail 1 2 3 4 5
2011 (C1) 58.06 % 8.06 % 4.84 % 8.06 % 9.68 % 11.29 %
2012 (C1) 49.25 % 7.46 % 9.45 % 7.46 % 9.45 % 16.92 %
2013 (C2) 23.04 % 14.66 % 8.90 % 7.33% 11.52 % 34.55 %
2014 (C2) 25.95 % 570 % 8.23 % 570 % 10.76 % 43.67 %

As seen in the table, the number of failed students is significantly higher in the older
instances. The pass rates for all instances are visualized in Figure 3.

100%

80% 76,96 % 74,05 %

60% 50,75 %
41,94 %

40%
20%

0% : :
2011 (C1) 2012 (C1) 2013 (C2) 2014 (C2)

Fig. 3. Pass rates of all instances visualized

As seen in the figure, the pass rate was significantly higher in both instances of the
course using the new methodology. This also applies to total average of C2 (75,64 %)
compared with average of C1 (46.51 %).

For the statistical analysis of pass rates between the treatment and control groups
we used the Test of Equal or Given Proportions, implemented in R. For this, we merged
the two instances for both C1 and C2, respectively. This gave us 78 + 102 = 180 passes
in C1, versus 147 + 117 = 264 passes in the C2, with 186 + 201 = 387 and 191+158 =
349 total participants, respectively. The test showed that the pass rates have a clear,
statistically significant difference between each other (p-value < 0.001).

The grade averages of all instances of the course are visualized in Figure 4. Only
students who passed the course are included in the average.

ACM Transactions on Computing Education Vol. xx, No. x, Article x, Publication date: Month YYYY

Redesigning an Object-Oriented Programming Course

5

4,06

3,27 3,37

2011 (C1) 2012 (C1) 2013 (C2) 2014 (C2)

Fig. 4. Grade averages of all instances visualized

As seen in the figure, there seems to be a trend towards higher grade average in
individual instances of C2. The statistical differences between course instance grades
were calculated with the Chi-square test. The results are displayed in Table VI.

Table VI. The statistical differences of grade distributions between course instances

2012 (C1) 2013 (C2) 2014 (C2)
2011 (C1) 0.049 2.8084 x 107 4611 x 10733

2012 (C1) 4109 x 10718 2.767 x 107%
2013 (C2) 0.004

Notably, all differences are statistically significant (p < 0.05), though the difference
between instances of C1 is only barely significant. Moreover, the difference between

instances of C2 is a lot smaller than difference between instances of different
methodologies.

6. DISCUSSION

It seems that redesigning the course methodology had a highly positive effect on pass
rates and grade averages. Hence, we can reject the null hypotheses and answer the
research questions positively. Facilitating active learning methods seems to be highly
beneficial over passive lectures. Notably, there was also a significant difference
between the grade averages of course instances facilitating the new methodology. It is
possible, that this is due to some changes made to the course materials (such as
increasing or decreasing the number of tasks in the tutorials or modifying the lecture
slides) based on student feedback and our own experiences. However, there was also a
slight drop in pass rates between instances of C2 though the difference was not
statistically significant.

6.1 Enhancing Active Learning with Tutorials

The tutorials were carefully designed to supplement and train the topics taught in
the lectures. Still, it was somewhat difficult to come up with an appropriate number of
exercises and to determine a proper difficulty level for them. The goal was to make the
tutorials challenging enough for even the more experienced students, but still easy

ACM Transactions on Computing Education, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

E. Kaila et al.

enough so that the less experienced students can complete them within the given one
week time frame. As the aforementioned equation is close to impossible to solve, a more
practical goal was set to the time spent by students on tutorials: if the best students
took at least half the session (approximately 50 minutes) to complete the tutorial, and
the worst ones could still complete the tutorial within a week, the difficulty could be
seen as appropriate. In fact, most of the tutorials fell into this category. The tutorials
were slightly modified between the 2013 and 2014 instances if they seemed too difficult
or too easy.

The student feedback on the tutorials was also analyzed after each tutorial session.
This was then used to fine-tune the difficulty level of consecutive tutorials. Typically,
the feedback was quite heterogeneous about the difficulty: some students reported the
tutorial as too difficult and some too easy. Still, most of the feedback on the tutorials
was still positive. The feedback from tutorials could be roughly divided into seven
categories. Some students think that tutorial exercises are too hard or there are too
many exercises: “[l1 would like to have] easier exercises, as always. Also, bring back
‘puzzle exercises’; they are a nice change to writing.” On the other hand, some students
think that the exercises are too easy or that there should be more of them: “Tutorial
was short, it took only an hour to finish the exercises. Exercises were pretty
straightforward.”

Most students have a very positive attitude towards learning via tutorials: “A lot of
work (there is still a lot to do — which is not usual for me) but I'm sure I'll learn a lot
and it's worth the effort....” And then there are students who are not seeing the benefits
of having to work hard: “There are too many tutorial exercises. We made it barely half
way through with my partner.” Still, nobody seemed to argue against tutorials as a
method in the feedback. Students think that tutorials fit well together with lectures:
“Tutorials are an amazing invention; you couldn't learn these things otherwise. Lectures
are sometimes really boring and you don't really learn from them, that's why it's really
great that we have an opportunity to work together and learn.” T

From a technical perspective, the tutorials worked quite well. The sessions were
organized in a 250-seat lecture hall where the major concern was the network
connectivity. The wireless router in the hall wasn't powerful enough to handle enough
simultaneous connections. Luckily, the lecture hall was equipped with enough LAN
ports to provide a connection for all the pairs and the only thing needed was to supply
the LAN cables. This also meant that the network traffic from the hall was routed
through a single switch and firewall, so blocking all sites besides ViLLE and the Java
APl in exam situation was effortless. Some of the students’ laptops did not contain
LAN connectors, but since there were only a few cases like this, they were allowed to
use the wireless network.

The student collaboration in tutorials seemed to work really well. The discussion in
the lecture hall was continuous, and for the most part the students seemed to discuss
the topic at hand. We have previously analyzed discussion in student collaboration
[Rajala et al. 2011] during controlled tests. In the analysis it seemed that almost all of
the discussion was about the topic. The students also seemed to ask for assistance quite
actively when needed. While approximately 150 students attended the tutorial, we
quickly found out that four mentors (some from course staff and some older students)
were enough to provide assistance. A minor issue we realized after the first session
was that the mentors could not reach those sitting in the middle of the rows. To solve
the issue, the students were seated on every other row in consequent tutorials.

ACM Transactions on Computing Education Vol. xx, No. x, Article x, Publication date: Month YYYY

Redesigning an Object-Oriented Programming Course

6.2 Demonstrations and Lecture Attendance

In the demonstration sessions, the collaboration seemed to work equally well. Again,
there was a lot of discussion among the groups before the students presented their
solutions. In the feedback, the students wished that the groups would remain the same
when completing the additional assignment after the presentations, as “forming new
groups is too much of a hassle”. One issue the students pointed out in the first two
sessions was that “the tasks are sometimes too vague”. This was addressed in two
latter sessions by trying to write the assignments as clearly as possible. Another issue
was on demonstration number three, where one of the tasks was to write a comparison
method for a class modeling a player's hand in a game of poker. Though completing
this task awarded the students half of the points available from that session, many
students reported the task as too laborious. Still, most of the feedback from the
demonstrations was highly positive.

The students had a chance to attend the mentoring sessions, if the tutorial or the
demonstration tasks seemed too difficult. Approximately 30 to 40 students were
present in each of the sessions. The mentors reported that a significant part of students
attending the sessions actually had no specific questions about the tasks, but instead
utilized the session to work collaboratively on the tasks — a practice that was highly
encouraged by the course personnel. The mentoring offered during the tutorial sessions
probably decreased the number of students needing additional tutoring as well.

The feedback collected from the lectures proved to be extremely useful. After each
lecture the feedback was briefly observed, and the issues that were raised addressed
at the beginning of the next lecture. Typical issues collected from the feedback were
either general, like “more examples should be shown”, or highly specific, such as “the
difference between interfaces and abstract classes should be underlined”. Again, most
of the feedback was positive and the students seemed to be especially happy about the
fact that the problems reported were actually addressed in the next lecture. The
students participated in the lectures quite actively, as seen on Figure 5.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

m2013
m 2014

All students Students with atleast one
attendance

Fig. 5. The average number of lectures the students attended in instances of C2

In the figure, the average of all students as well as the average of students who had at
least one attendance is calculated. The latter likely depicts the average of students
who passed the course more accurately. Notably, the lecture average was a little lower
in the 2014 instance, as was the pass rate. Still, finding actual correlation between two
variables would require analyzing more instances. The overall high level of
participations in both instances is probably partially due to bonus points that could be

ACM Transactions on Computing Education, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

E. Kaila et al.

collected on lecture attendances. Still, the bonus at maximum was less than 0.17 %
percent of the course final grade, so a procedure like this can definitely be
recommended.

6.3 Electronic Exam

The exam was also well perceived. There were practically no technical issues, but
then again, the students had used ViLLE extensively in the course before the exam, so
they were familiar with the features by the exam time. Since all students did not own
a laptop (and the department couldn’t provide enough spare ones), two computer labs
were also reserved for taking the exam. The most beneficial feature in an electronic
exam compared with a traditional pen and paper approach is the possibility to test and
refine the program code as many times as needed. The submission numbers for all
exam exercises are displayed in Figure 6.

16
14
12
10
8
6
4
;] [l []
0 i _- T T - T T T T T T T
o 5 N o o e) > .
RO & & & & & BN
& & N & NG 2N < &8 & 5
o N & < & % e o &
> oS > N L & QO D o
© S & & 5 e ° & et
2 < ($ & <& [X
X G o S S N o 2 2
X2 & o % " N < DY &
o & 2 & & < >
N Q& & < NG <& N d
59 X e N d © ¢
¢ ¥ & ¢ N\ <° &
‘é\) X, $ﬂ N ,(\'b A\
& & Q\e e} \@Q
& N

Fig. 6. Average number of submission made to exam questions in instances of C2 (combined)

All exercises except for 1 and 3 were coding exercises. As seen in the figure, there is a
lot of variation in the submission numbers. For non-coding exercise types, the average
was close to one, but for all coding exercises the students submitted (i.e. translated and
executed) their code at least three times on average. For the most difficult questions,
the average number was more than ten. The average exam scores for individual tasks
are displayed in Figure 7.

ACM Transactions on Computing Education Vol. xx, No. x, Article x, Publication date: Month YYYY

Redesigning an Object-Oriented Programming Course

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Fig. 7. Average scores for each question in exams of C2. Maximum points are displayed in parentheses.

The students also answered a survey after the exam. There were eleven questions
answered in the Likert scale of 1 to 5 (1 = completely disagree, 5 = completely agree).
There were three exam instances each year. The results obtained after the first exam
instance are displayed in Table VII. Averages and standard deviations (in parentheses)
are displayed.

Table VII. Students' perceptions after the first exam on both instances of C2.

2013 2014

(N=104) (N=83)
There was enough time to finish the exam 4.52 (0.75) 4.58 (0.70)
It was easy to do the exam 4.00 (1.01) 3.92 (0.95)
VILLE was easy to use 4.40 (0.65) 4.29 (0.85)
1 would rather do the exam on paper than in ViLLE 1.37 (0.89) 1.23 (0.65)
VILLE suits well for this courses exam 4.80 (0.45) 4.66 (0.65)
| would do this test as an online-exam at home, if it was possible 3.74 (1.12) 3.65(1.10)
I would recommend VIiLLE to other students 4.52 (0.61) 4.35(0.82)
From a technical point of view, VILLE is an excellent solution 4.18 (0.73) 3.95 (0.90)
Which grade would you give to VIiLLE as an exam system (1-5) 4.27 (0.59) 4.11 (0.75)
1 got enough training to ViLLE before the exam 4.78 (0.50) 4.51 (0.83)
Evaluate the difficulty level of the exam (1=easy, 3=suitable, 5=hard) 2.97 (0.84) 2.88 (0.85)

As seen in the table, the students had very little technical issues, thought that ViLLE
was easy to use, and had sufficient training to use the system before the exam. Most
importantly, the students seemed to think that the exam on a programming course
should be taken in an electronic form instead of pen and paper.

6.4 Results in Relation to Related Work

How do the results relate to previous studies in the field of computer science education
research? In [Vihavainen et al. 2014] the authors quantitatively analyze several
approaches for teaching introductory programming courses. Of analyzed methods, at

ACM Transactions on Computing Education, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

E. Kaila et al.

least collaboration, content change, group work and (peer) support were also applied in
our redesign. Moreover, the authors conclude, that on average the redesign can
improve the pass rate by one third, which seems to be in line with our results (the
combined pass rate of C2 courses was 75,64 % in comparison to 46,51 % in C1). The
authors also found out, that pair-programming as an only intervention method seems
to have a worse effect, which underlines the importance of holistic redesign.

Collaborative learning has been found useful in various studies beforehand. The
positive effect of adapting collaboration into tutorials and demonstrations in our
redesign seems to confirm the findings of [Lee et al. 2013], [Simon et al . 2010] and
[Hundhausen et al. 2013], to name a few. Though the redesign described in this article
cannot be categorized as flipped learning (see for example [Sarawagi 2013], some
similarities (such as emphasizing active learning) can be found. Though electronic
exams in programming courses have not been studied widely, [Barros et al. 2003] and
[Navrat & Tvarozek 2013] have had similarly encouraging experiences when they have
replaced traditional pen-and-paper approach with more authentic approach. Finally,
the results obtained seem to confirm the results of our research group from
introductory programming courses (see for example [Rajala et al. 2009] and [Rajala et
al. 2011)).

The experiences of [Haatainen et al . 2013] for providing additional support to
students in the CS1 course seem to support the inclusion of mentoring in our course
redesign. They found out, that the additional support received positive feedback from
the students and the student mentors, but found no significant difference in learning
results. This seems to indicate that mentoring is an important addition in redesign,
but might not have an effect on the student performance if not accompanied with other
methods. However, the positive effect might lead to better motivation, which [Nikula
et al. 2011] found to be crucial in the programming courses: they state, that the lack of
motivation leads to high drop-out rates. The decrease in drop-out rates was the single
most important outcome of our redesign. [Keijonen et al. 2013] present an approach
called Extreme Apprenticeship, which emphasizes active learning combined with
personal advising. The authors found out that (similarly to our experiences) applying
the approach lead to higher student performance in the introductory programming
course. Moreover, the authors state that the method leads to a carry-on effect with
more credits gained during the 13 month period after the course. In the future, we are
curious to find out whether the positive effect reported in this research will carry on
similarly.

7. SUGGESTIONS ON COURSE REDESIGN

Finally, we would like to readdress the factors considered in the redesign process based
on the results and experiences presented in the previous sections. Though the changes
made in the course method seemed to be highly effective in increasing student
performance (and were generally well perceived by the students) we found some issues
that need to be addressed when making changes in the methodology.

First, enhancing active learning with tutorials and other ViLLE exercises seemed
to have a positive effect on the outcome of the course. This was somewhat expected, as
various other studies have already proven that active learning methods are more
effective than passive listening in the lectures. For example, the whole concept of
flipped classrooms (though not utilized in our setup) relies on this fact. All in all, we
faced only a few issues when implementing the tutorial sessions, partly because we
were quite well prepared. Still, the factors that should be considered by other educators

ACM Transactions on Computing Education Vol. xx, No. x, Article x, Publication date: Month YYYY

Redesigning an Object-Oriented Programming Course

are the technical implementation (electricity, LAN or WLAN connectivity, access to
participants for guidance) and the proper difficulty of the tutorials. Unfortunately,
there is no strict advice on the difficulty level, as the only way to properly evaluate the
difficulty is to test the tutorials with a large enough, heterogeneous group of students.

Second, enhancing collaboration seemed to work as we intended. As we found out
in [Rajala et al. 2011], when students work collaboratively the discussion is almost
completely about the topic in hand. Naturally, some students were not happy about
the idea of needing to communicate with anyone, but mostly the collaboration was
quite well received. Still, a suggestion we need to make to fellow educators is to actively
monitor the switching of the controller role once every fifteen minutes in the sessions.
Quite a few students were very keen to be the ones using the mouse and the keyboard,
while some seemed to be quite happy in the passive role. The collaboration was also
utilized in our demonstration sessions. We found out that the tasks prepared for this
need to be very carefully planned beforehand, as too difficult or too easy tasks can
frustrate students and will bring no additional value.

Facilitating communication was very well perceived by the students. Our
suggestion is to keep the weekly surveys brief (we came up with three simple questions
per survey), and offer a small reward on filling them (in our case a couple of ViLLE
points). Still, the most important suggestion we can make is that the results collected
via surveys need to be analyzed and utilized during the course. The students are likely
to be more motivated to report proper issues with the surveys if they think that this
has an actual effect. Even more importantly, the surveys are extremely useful for
making small adjustments in the course method and materials during the course.
Hence, our suggestion is to reserve some man-hours for such adjustments (though we
do realize that most lecturers have their hands full with teaching and course
administration during the course).

The remodeling of the evaluation was one of the most important factors considered
by us. In our opinion, answering exam questions using pen and paper is not a proper
way to measure programming skill. When refactoring an exam, there are three
suggestions we feel we should make. First, use a proper tool: the students should be
able to compile and execute their programs with proper feedback and error messages,
and the possibility of technical errors needs to be minimized. Also, if possible, a tool
that supports automatic assessment makes life a lot easier for teachers. Second, the
difficulty level of the exam needs to be properly evaluated by non-affiliated teachers
and/or researchers. When the exam methodology is changed, it is possible (or even
likely), that the difficulty level may not remain the same. Fortunately, there is a lot of
good quality research done on how to design exams for programming courses, for
example [Sheard et al. 2011], [Simon et al. 2015]. Finally, it is a good idea to prepare
for cheating: if the exam is taken with a computer, it is important to block unwanted
sites and communication as well as possible, preferably by whitelisting only the sites
necessary for the exam. Also, supervision in the classroom where the exam is organized
should be provided, just like in any exam.

The refactoring can of course be a huge mountain to climb for educators who
traditionally have their hands full already. We do not necessarily suggest making the
complete refactoring at once, as the individual steps can be utilized separately as well.
In our experience, the redesign was worth the effort: the course total pass rate
increased significantly, and the number of drop outs during the course decreased
likewise. The student perception was also enthusiastic, as the students thought that
the methods of active learning were useful, and the feedback they gave was properly
addressed. Also, most of the work needed for refactoring the course is done before the

ACM Transactions on Computing Education, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

E. Kaila et al.

first instance. Forthcoming instances are a lot easier to organize. Still, it is wise to
prepare for adjustments after the first instance, as it is likely that there will be a need
for some.

8. STUDY’'S LIMITATIONS

There are naturally some limitations in the study, mainly due to nature of the holistic
redesign. First, there are the external concerns: the data from the earlier instances of
C1 is not conclusive: for example, the lecture attendances were not recorded, and the
detailed statistics or feedback about the exam is not available. Hence, the
corresponding statistics from C2 in this article cannot be compared to earlier instances,
but are merely provided to illustrate students’ active participation and general
contentment in the redesigned course. Similarly, the effect of the previous course in
the curriculum cannot be measured validly. The CS1 course which most students take
before this course was also redesigned during 2013 and 2014 (see [Kaila et al. 2015]).
However, the contents of the courses are very different, and especially in the 2013
instance of the redesigned course there were numerous (48 to be precise) students who
had taken the earlier instances of CS1. Still, it is possible that the redesign of the
previous course has an effect on the results, although it is difficult to measure. Finally,
the statistics from the consecutive programming courses in the curriculum are not
detailed enough to observe the effect of redesign on them.

There are also internal concerns. First limitation is the number of factors in the
redesign: since the changes were made into various aspects of the course, the effect of
individual changes cannot be isolated. Hence, it is difficult to say whether some
modifications are more useful than others or whether some of them had no effect at all.
Also, the evaluation method was different. Although external experts evaluated the
exam at least as difficult as the exam in the old course, there are still differences
between an electronic exam and a pen and paper one. Still, it is really unlikely that
passing the electronic version would be easier, as the evaluation was stricter (for
example no points were awarded if the code did not compile) and there were a lot more
exercises to complete.

Finally, one could question the novelty value of the methodology used in the
redesign. As seen in Sections 2 and 6.4 for example, most of the interventions used for
redesign have been tried out and studied before. However, the same argument could
be applied to a lot of research in the field of computer science education. The novelty
of this study comes from the implementation of the tool used as well as the complete
design, application and (most importantly) validation of the methodology in an object
oriented programming course. After all, teaching interventions that are proven to be
effective are what most educators should be looking for — hence validating research
should never be underrated.

9. CONCLUSIONS AND FUTURE WORK

We redesigned a programming course based on the best practices obtained from the
research of ours and the research community. The redesign was done in four areas: by
enhancing active learning, collaboration, student communication and by refactoring
the evaluation procedure. All in all, the course redesign proved to be successful. The
pass rate increased by more than 20 percent units in both instances of the redesigned
course. While the increase in grade average was smaller, the overall trend was still
positive, especially since the exam was likely more challenging. The feedback collected
from the students was also mainly positive.

ACM Transactions on Computing Education Vol. xx, No. x, Article x, Publication date: Month YYYY

Redesigning an Object-Oriented Programming Course

From a researcher’s point of view, some critique on the setup should be given. The
changes made to the course were holistic, since almost all elements in the teaching
method were somehow addressed. While the change in whole appears to be really
effective, it is impossible to isolate the effects of individual factors. After all, when
course long performances are measured, there are of course various variables affecting
them. Still, as the content of the course remained the same, and the number of
participants was high enough, we feel confident about the significance of the results.

In future, we are planning to investigate the possibilities of tutorial-based learning
in other types of courses, starting with an introductory database course and a course
for algorithms and data structures. We are also planning to keep on fine tuning the
methodology and the materials used in this course. Some comprehensive surveys will
be conducted over the course instances (and over different courses) to collect holistic
data on student perceptions. When this is joined with performance data (as well as
data collected automatically by ViLLE) it will be possible to come up with more general
suggestions on redesigning course methodology.

REFERENCES

Ashish Amresh, Adam R. Carberry, and John Femiani. 2013. Evaluating the effectiveness of flipped
classrooms for teaching CS1. In Frontiers in Education Conference, 2013 IEEE, pp. 733-735. IEEE, 2013.

Joao Paulo Barros, Luis Estevens, Rui Dias, Rui Pais, and Elisabete Soeiro. 2003. Using lab exams to ensure
programming practice in an introductory programming course. In Proceedings of the 8th annual
conference on Innovation and technology in computer science education (ITiCSE '03), David Finkel (Ed.).
ACM, New York, NY, USA, 16-20. DOI=http://dx.doi.org/10.1145/961511.961519

Leland Beck and Alexander Chizhik. 2013. Cooperative learning instructional methods for CS1: Design,
implementation, and evaluation. ACM Transactions on Computing Education (TOCE), 13(3), 10.

Mordechai Ben-Ari. 2001. "Constructivism in computer science education." Journal of Computers in
Mathematics and Science Teaching 20.1, 45-73.

Jens Bennedsen and Michael E. Caspersen. 2004. Teaching object-oriented programming-Towards teaching
a systematic programming process. Eighth Workshop on Pedagogies and Tools for the Teaching and
Learning of Object Oriented Concepts. Affiliated with 18th European Conference on Object-Oriented
Programming (ECOOP 2004).

Benjamin S. Bloom. 1956. Taxonomy of educational objectives. Vol. 1: Cognitive domain. New York: McKay.

Enda Dunican, 2002. Making The Analogy: Alternative Delivery Techniques for First Year Programming
Courses. In J. Kuljis, L. Baldwin, & R. Scoble (Ed.), PPIG 2002: Proceedings of the 14th Annual
Workshop of the Psychology of Programming Interest Group (Brunel University, London, UK, June 18-
-21, 2002). PP1G'02, 89--99.

Michael L. Epstein, Beth B. Epstein, and Gary M. Brosvic. 2001. Immediate feedback during academic
testing. Psychological Reports 88(3), 889-894.

Scott Freeman, Sarah L. Eddy, Miles McDonough, Michelle K. Smith, Nnadozie Okoroafor, Hannah Jordt,
and Mary Pat Wenderoth. 2014. Active learning increases student performance in science, engineering,
and mathematics. Proceedings of the National Academy of Sciences, 201319030.

Lucia MM Giraffa, Marcia Cristina Moraes, and Lorna Uden. 2014. Teaching Object-Oriented Programming
in First-Year Undergraduate Courses Supported By Virtual Classrooms. The 2nd International
Workshop on Learning Technology for Education in Cloud. Springer Netherlands.

Anabela Gomes and Antonio Mendes. 2014. A teacher's view about introductory programming teaching and
learning: Difficulties, strategies and motivations. Frontiers in Education Conference (FIE), 2014 IEEE.
IEEE, 2014.

Scott Grissom. 2013. Introduction to special issue on alternatives to lecture in the computer science
classroom. ACM Transactions on Computing Education (TOCE) 13.3, 9.

Jan Herrington and Peter Standen. 1999. Moving from an instructivist to a constructivist multimedia
learning environment. In: World Conference on Educational Multimedia, Hypermedia and
Telecommunications (EDMEDIA) 1999, 19 - 24 June 1999, Seattle, U.S.A.

Simo Haatainen, Antti-Jussi Lakanen, Ville Isomottonen, and Vesa Lappalainen. 2013. A practice for
providing additional support in CS1. In Learning and Teaching in Computing and Engineering (LaTiCE),
2013, pp. 178-183. IEEE, 2013.

Christopher D. Hundhausen, Anukrati Agrawal and Pawan Agarwal. 2013. Talking about code: Integrating
pedagogical code reviews into early computing courses. ACM Transactions on Computing Education
(TOCE) 13.3, 14.

Wu-Yuin Hwang, Rustam Shadiev, Chin-Yu Wang, and Zhi-Hua Huang. 2012. A pilot study of cooperative

ACM Transactions on Computing Education, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

E. Kaila et al.

programming learning behavior and its relationship with students' learning performance. Computers &
education 58, no. 4 (2012): 1267-1281.

Tony Jenkins. 2002. On the difficulty of learning to program. Proceedings of the 3rd Annual Conference of
the LTSN Centre for Information and Computer Sciences. Vol. 4.

Bruce Johnson. 2003. Teacher collaboration: good for some, not so good for others. Educational Studies 29(4),
337-350.

Erkki Kaila, Mikko-Jussi Laakso, Teemu Rajala and Tapio Salakoski. 2009. Evaluation of Learner
Engagement in Program Visualization. 12th IASTED International Conference on Computers and
Advanced Technology in Education (CATE 2009), November 22 - 24, 2009, St. Thomas, US Virgin Islands

Erkki Kaila, Teemu Rajala, Mikko-Jussi Laakso, Rolf Lindén, Einari Kurvinen and Tapio Salakoski. 2014.
Utilizing an Exercise-based Learning Tool Effectively in Computer Science Courses. Olympiads in
Informatics, Volume 8.

Erkki Kaila, Teemu Rajala, Mikko-Jussi Laakso, Rolf Lindén, Einari Kurvinen, Ville Karavirta and Tapio
Salakoski. 2015. Comparing student performance between traditional and technologically enhanced
programming course. Proceedings of the Seventeenth Australasian Computing Education Conference
(ACE2015), Sydney, Australia.

Hansi Keijonen, Jaakko Kurhila, and Arto Vihavainen. 2013. Carry-on effect in extreme apprenticeship. In
Frontiers in Education Conference, 2013 IEEE, pp. 1150-1155. IEEE, 2013.

Mikko-Jussi Laakso, Teemu Rajala, Erkki Kaila and Tapio Salakoski. 2008. The Impact of Prior Experience
in Using a Visualization Tool on Learning to Program. Proceedings of CELDA 2008, Freiburg, Germany:
129-136.

Mikko-Jussi Laakso. 2010. Promoting Programming Learning. Engagement, Automatic Assessment with
Immediate Feedback in Visualizations. TUCS Dissertations no 131.

Mikko-Jussi Laakso, Erkki Kaila and Teemu Rajala. 2016. ViLLE — Designing and Utilizing a Collaborative
Education Tool. Submitted for publication into British Journal of Educational Technology.

Cynthia Bailey Lee, Saturnino Garcia and Leo Porter. 2013. Can peer instruction be effective in upper-
division computer science courses?. ACM Transactions on Computing Education (TOCE), 13(3), 12.
Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan, Yifat Ben-David Kolikant,
Cary Laxer, Lynda Thomas, lan Utting, and Tadeusz Wilusz. 2001. A multi-national, multi-institutional
study of assessment of programming skills of first-year CS students. ACM SIGCSE Bulletin 33, no. 4

(2001): 125-180.

Charlie McDowell, Linda Werner, Heather Bullock, and Julian Fernald. 2002. The effects of pair-
programming on performance in an introductory programming course. In ACM SIGCSE Bulletin, vol.
34, no. 1, pp. 38-42. ACM, 2

Nachiappan Nagappan, Laurie Williams, Miriam Ferzli, Eric Wiebe, Kai Yang, Carol Miller, and Suzanne
Balik. 2003. Improving the CS1 experience with pair programming. In Proceedings of the 34th SIGCSE
technical symposium on Computer science education (SIGCSE '03). ACM, New York, NY, USA, 359-362.
DOIl=http://dx.doi.org/10.1145/611892.612006

Thomas L. Naps, Guido RéRling, Vicki Almstrum, Wanda Dann, Rudolf Fleischer, Chris Hundhausen, Ari
Korhonen, Lauri Malmi, Myles McNally, Susan Rodger and J. Angel Velazquez-lturbide. 2002.
Exploring the Role of Visualization and Engagement in Computer Science Education. In Working Group
Reports from ITiCSE on Innovation and Technology in Computer Science Education, 35, 2, 131-152.

Pavol Navrat and Jozef Tvarozek. 2014. Online programming exercises for summative assessment in
university courses. In Proceedings of the 15th International Conference on Computer Systems and
Technologies (CompSysTech '14), Boris Rachev and Angel Smrikarov (Eds.). ACM, New York, NY, USA,
341-348. DOI=http://dx.doi.org/10.1145/2659532.2659628

Uolevi Nikula, Orlena Gotel, and Jussi Kasurinen. 2011. A Motivation Guided Holistic Rehabilitation of the
First Programming Course. Trans. Comput. Educ. 11, 4, Article 24 (November 2011), 38 pages.
DOIl=http://dx.doi.org/10.1145/2048931.2048935

Dale Parsons and Patricia Haden. 2006. Parson's programming puzzles: a fun and effective learning tool for
first programming courses. In Proceedings of the 8th Australasian Conference on Computing Education-
Volume 52 (pp. 157-163). Australian Computer Society, Inc..

Richard E. Pattis. 1993. The “procedures early” approach in CS 1: a heresy. ACM SIGCSE Bulletin 25.1
(1993): 122-126.

Ruth Raitman, Naomi Augar and Wanlei Zhou. 2005. Employing Wikis for Online Collaboration in the E-
Learning Environment: Case Study. Proceedings of the Third International Conference on Information
Technology and Applications (ICITA'05), Sydney, Australia.

Teemu Rajala, Mikko-Jussi Laakso, Erkki Kaila and Tapio Salakoski. 2008. Effectiveness of Program
Visualization: A Case Study with the VIiLLE Tool. Journal of Information Technology Education:
Innovations in Practice, 1P, Volume 7: 15-32.

Teemu Rajala, Erkki Kaila, Mikko-Jussi Laakso and Tapio Salakoski. 2009. Effects of Collaboration in
Program Visualization. Appeared in the Technology Enhanced Learning Conference 2009 (TELearn
2009), October 6 to 8, 2009, Academia Sinica, Taipei, Taiwan

ACM Transactions on Computing Education Vol. xx, No. x, Article x, Publication date: Month YYYY

Redesigning an Object-Oriented Programming Course

Teemu Rajala, Erkki Kaila, Johannes Holvitie, Riku Haavisto, Mikko-Jussi Laakso and Tapio Salakoski.
2011. Comparing the collaborative and independent viewing of program visualizations. Frontiers in
Education 2011 conference, October 12-15, Rapid City, South Dakota, USA.

Karen Renaud and Quintin Cutts. 2013. Teaching human-centered security using nontraditional techniques.
ACM Transactions on Computing Education (TOCE) 13.3 (2013): 11.

Norsaremah Salleh, Emilia Mendes, and John Grundy. 2011. Empirical studies of pair programming for
CS/SE teaching in higher education: A systematic literature review. Software Engineering, IEEE
Transactions on 37.4 (2011): 509-525.

Namita Sarawagi. 2013. "Flipping an introductory programming course: yes you can!." Journal of Computing
Sciences in Colleges 28.6 (2013): 186-188.

Carsten Schulte, Johannes Magenheim, Jérg Niere and Wilhelm Schéfer. 2003. Thinking in Objects and
their Collaboration: Introducing Object-Oriented Technology, Computer Science Education, 13(4), 269-
288

Judy Sheard, Simon, Angela Carbone, Donald Chinn, Mikko-Jussi Laakso, Tony Clear, Michael de Raadt,
Daryl D'Souza, James Harland, Raymond Lister, Anne Philpott and Geoff Warburton. 2011. Exploring
programming assessment instruments: a classification scheme for examination questions. In
Proceedings of the seventh international workshop on Computing education research (pp. 33-38). ACM.

Simon, Judy Sheard, Daryl D'Souza, Mike Lopez, Andrew Luxton-Reilly, lIwan Handoyo Putro, Phil Robbins,
Donna Teague, and Jacqueline Whalley. 2015. How (not) to write an introductory programming exam.
In proceedings of the Seventeenth Australasian Computing Education Conference (ACE2015), Sydney,
Australia.

Beth Simon, Michael Kohanfars, Jeff Lee, Karen Tamayo and Quintin Cutts. 2010. Experience report: peer
instruction in introductory computing. In Proceedings of the 41st ACM technical symposium on
Computer science education (pp. 341-345). ACM.

Arto Vihavainen, Jonne Airaksinen, and Christopher Watson. 2014. A systematic review of approaches for
teaching introductory programming and their influence on success. In Proceedings of the tenth annual
conference on International computing education research (ICER '14). ACM, New York, NY, USA, 19-
26. DOI=http://dx.doi.org/10.1145/2632320.2632349

James V. Wertsch, 1985. Vygotsky and the social formation of mind. Harvard University Press.

Qiyun Wang. 2009. Design and evaluation of a collaborative learning environment. Computers & Education
53(4), 1138-1146.

ACM Transactions on Computing Education, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

	1. INTRODUCTION
	2. RELATED WORK
	3. VILLE – COLLABORATIVE EDUCATION TOOL
	4. REFACTORING THE COURSE
	4.1 Old Version of the Course
	4.2 Step 1: Enhancing Active Learning
	4.3 Step 2: Encouraging Collaboration
	4.4 Step 3: Facilitating Student-Teacher Communication
	4.5 Remodeling Evaluation Methodology
	4.6 Conclusion: Redesigned Course
	4.7 Earlier Studies on Methodology

	5. RESULTS
	6. DISCUSSION
	6.1 Enhancing Active Learning with Tutorials
	6.2 Demonstrations and Lecture Attendance
	6.3 Electronic Exam
	6.4 Results in Relation to Related Work

	7. SUGGESTIONS ON COURSE REDESIGN
	8. STUDY’S LIMITATIONS
	9. CONCLUSIONS AND FUTURE WORK

