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Abstract 

 

Deuteron NMR spectra and spin–lattice relaxation were studied experimentally in 

zeolite NaY(2.4) samples containing 100 % or 200% of CD3OH or  CD3OD molecules 

of the total coverage of Na atoms in the temperature range 20 K – 150 K. The activation 

energies describing the methyl and hydroxyl motions show broad distributions. The 

relaxation data were interpreted by improving a recent model [Solid State Nucl. Magn. 

Reson. 49−50, 33–41 (2013)], in which the nonexponential relaxation curves are at first 

described by a sum of three exponentials with adjustable relaxation rates and weights. 

Then a broad distribution of activation energies (the mean activation energy A0 and the 

width s) was assumed for each essentially different methyl and hydroxyl position. The 

correlation times were calculated from the Arrhenius equation (containing the pre-

exponential factor t0), individual relaxation rates computed and classified into three 

classes, and finally initial relaxation rates and weights for each class formed. These 

were compared with experimental data, motional parameters changed slightly and new 

improved rates and weights for each class calculated, etc. This method was improved 

by deriving for the deuterons of the A and E species methyl groups relaxation rates, 

which depend explicitly on the tunnel frequency wt. The temperature dependence of wt 

and of the low–temperature correlation time were obtained by using the solutions of the 

Mathieu equation for a threefold potential. These dependencies were included in the 

simulations and as the result sets of A0, s and t0 obtained, which describe the methyl 

and hydroxyl motions in different positions in zeolite.  
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1. Introduction 

 

   Deuteron NMR spectrum and spin–lattice relaxation are widely used for studying 

structural and motional properties of solids. Of special interest have been the samples 

containing deuteron tetrahedra or CD3 groups at low temperatures, where rotational 

tunnelling changes spectra and relaxation in a characteristic way [1−11]. The presented 

models agree usually well with experimental results for single crystals of such 

materials. 

   Spectra and relaxation become more complicated to analyse if the activation energy 

for the motion of CD3 or deuteron tetrahedron shows a broad distribution. Then the 

line-width transitions extend over a much larger temperature range than in the absence 

of the distribution. Similarly the normal maxima of the relaxation rate as a function of 

temperature, corresponding roughly to w0t = 1 (w0 is the deuteron resonance frequency 

and t the correlation time of the dominant motion), become nearly flat. Since there is 

practically no spin diffusion between deuterons in solids, the relaxation appears highly 

nonexponential so that in principle an enormous number of exponential functions 

exp(−Rt) is needed to describe the magnetization recovery accurately. Of course some 

nonexponentiality can be related to the orientation dependence of the involved 

transition rates, and in the case of weakly hindered methyl groups rotational tunnelling 

may complicate the relaxation additionally. In general the orientation dependence 

remains hidden under the influence of the activation energy distribution, and the effect 

of tunnelling is considered in detail later on in this study. There are several methods for 

analysing the deuteron spectra for such CD3 containing samples [12−15]. However, the 

analysis of relaxation results for broad distributions was not possible until recently 

because of a lack of reliable methods. Cereghetti et al. [13] introduced a method, which 

is valid for roughly equivalent methyl groups, which anyway show a significant 

distribution of activation energies. Recently Stoch et al. [16] presented a model, which 

can be applied in samples, where there are two or more distinctly different CD3 

positions. In such a case the methyl groups in one kind of position are roughly 

equivalent, but because of their different surroundings for example in zeolites they can 

anyway show a broad distribution of motional activation energies, while the mean 

activation energies for different positions may deviate from each other more than the 

distribution widths. The model was applied to methyl and hydroxyl groups of methanol 

molecules in zeolite NaX.  

   The mentioned method [16] is an experiment–based model, which needs a quite 

accurate description of the observed magnetization recovery. It was done by using a 

sum of three exponentials with adjustable weights and characteristic relaxation rates Rf, 

Rm and Rs for the fast, intermediate and slow components, respectively. Two 

exponentials cannot in general reproduce the observed recovery with sufficient 

accuracy. In principle the number of exponentials could be four or even five, but in 

practice such an increase is limited by the fact that for a growing number of 

exponentials the scatter in weights and characteristic rates becomes too large. The so-

called stretched-exponent function exp[−(t/Tc)
x
] would probably produce good fits, but 

so far there is no theoretical method for calculating the time constant Tc. Therefore we 

chose to use three exponentials. The success of such fits is demonstrated for example 

by Fig. 1 of Ref. [16].  

   For each distinctly different position of CD3 a Gaussian distribution was introduced 

with the mean activation energy A0 and the distribution width s. When the pre-

exponential factor t0 is defined, a numerical value Rj is calculated for each point j of the 
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relevant distribution from the well-known expression for the relaxation rate in 

polycrystalline samples [5, 16, 17] 

  

       (1) 

 

Here wQ = e
2
qQ/ħ = 2pnQ and tj is the correlation time of the 120

o
 jumps about the 

methyl axis for the activation energy A0 + DAj of the distribution. tj is obtained from the 

Arrhenius equation  

 

       (2) 

 

The spectral density functions are defined by . The calculated 

rates Rj are classified into three classes by comparing them to the limiting quantities 

 and . The distribution–related weight of the point j is  

. Then the initial relaxation rate for each 

class c (= f, m or s) is calculated from 

 

              (3) 

 

where the prime in the summation index j’ means that for example the relaxation rate of 

the intermediate class m depends only on those Rj’ values which obey 

 . The obtained quantities Rci are compared with the experimental rates Rf, Rm 

and Rs at each temperature and the parameters A0, s and t0 are then adjusted to obtain 

better values for Rci. This cycle is repeated many times to obtain the optimal fit. The 

initial relaxation rates Rci are used because they are easy to compute. It would be more 

correct to use the average relaxation rate for each class. According to our estimates Rci 

is larger than the corresponding average rate by a factor varying between 1.1 (the fast 

component) and 2.0 (the slow component) [16]. Since we are mainly interested in the 

temperature dependence of the rates and weights, the difference between the initial 

rates Rci and the average rates is not of critical importance.  

   The description above is valid when the methyl groups are located at one kind of 

position only. If there are two or more distinctly different position, then for each 

position another set of the parameters A0, s and t0 are needed and the iteration cycle 

has to take into account the corresponding relaxation rates. Furthermore, the sample 

may contain deuterons outside methyl groups, which can be taken into account 

similarly by replacing the expression (1) by a relevant one.  

   This model was used to explain the experimental data on deuteron spin–lattice 

relaxation in three samples of zeolite NaX(1.3), which contained 100 % or 200 % of 

CD3OH or CD3OD in comparison with the total Na
+
 concentration [16]. The obtained 

agreement between the model and experimental data was reasonable. These 

experiments covered the temperature range from 20 K to TS = 167 K. TS means the 

temperature, below which the methanol molecules are localized at certain equilibrium 

positions, numbered I, II, etc. in the following. Two such positions are significantly 

occupied in NaX [16], while a third position is also occupied in NaY (Section 3). 

Above TS methanols become free to move and the rotational motion becomes 

effectively isotropic. 
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   The deuteron relaxation of heavy methanol molecules was also studied in NaX and 

NaY above TS [15]. Actually the NaY sample was the same as Sample 3 of this study 

(Section 3) and for it TS = 154 K. In both these zeolites the deuteron relaxation between 

TS and 300 K was observed to be biexponential. The faster relaxation rate, related to the 

hydroxyl deuterons, is about 9 times the slower rate corresponding to the CD3 deuterons 

in the entire temperature range. Effectively isotropic reorientation (at higher 

temperatures translation) is the dominant motion for both the OD and CD3 groups, but 

its effectiveness in the CD3 relaxation is reduced by even faster rotation about the 

methyl axis. Just above TS there is a narrow transition region where the dominant 

motion of relaxation changes from effectively isotropic reorientation of methanols to 

the internal motion of localized molecules [16]. Below TS the methanol molecules 

remain localized and their reorientation becomes nonisotropic or stops practically 

completely. Still the methyl groups rotate about their threefold axis and the OD vectors 

undergo some restricted motion about their equilibrium orientation. These motions are 

responsible for the deuteron relaxation below TS in NaX [16] and in NaY samples of 

the present study. 

   Although the presented model explains reasonably well the NaX experiments [16], 

there are some deviations, which may at least partly originate from the fact that the 

model did not take into account two features: (i) In the case of very small activation 

energies the potential hindering the methyl rotations is so low that the rotational tunnel 

splitting wt can be equal or even larger than the deuteron resonance frequency w0 [18]. 

In such a case Eq. (1) is no more valid. (ii) It has been observed that at low 

temperatures the rotational correlation time cannot be obtained from the Arrhenius 

equation by using one constant activation energy but the apparent activation energy 

decreases [19, 20]. In carboxylic acid dimers the hydrogen correlation time becomes 

practically constant [21]. 

   These two factors are taken into account in the present study. In Supplemental 

Material we derive coupled differential equations governing the deuteron 

magnetizations MA and ME, corresponding to the CD3 groups with the spin and 

rotational wave functions belonging to the irreducible representations A and E (= E
a
 

and E
b
) of the point group C3, respectively. For the initial relaxation rates of these 

magnetizations we derive expressions, which depend on the tunnel frequency wt and 

replace Eq. (1).  

   The rotational energies for a one-dimensional rotor like CD3 can be calculated from 

the so-called Mathieu equation as the function of the height of the potential hindering 

methyl rotation (Section 2). From the energy eigenvalues we can calculate the tunnel 

frequencies and the average rotational energies for the excited rotational states, which 

are then used to evaluate the temperature variation of the observed tunnel frequency, 

needed in the numerical calculations of the relaxation rates of MA and ME. For the other 

important factor, the temperature dependence of the rotational correlation time, we use 

a combination of the models by Stejskal and Gutowsky [22], Müller-Warmuth et al. 

[20] and Clough et al. [23]. 

   In Section 3 at first experimental details and the methanol containing NaY samples 

are presented. Then some experimental deuteron spectra are shown and discussed. 

These are important for the application of the described model on the deuteron 

relaxation. The results of relaxation experiments are shown and explained in detail in 

Section 4. The last section discusses the advantages and weaknesses of the used model.     

 

 

 



6 

 

 

2. Deuteron relaxation and correlation time 

 

2.1. CD3 tunnel splitting and correlation time at low temperatures 

 

   In Supplemental Material we show that the populations of the A and E species CD3 

groups can be reasonably well described by two spin temperatures TA and TE. We 

derived the initial relaxation rates for the corresponding magnetizations MA and ME 

after the saturation by a 90
o
 pulse (S12) (Supplemental Material). The rates depend on 

two coherence damping rates kK and kt. They are roughly equal at high temperatures but 

kt becomes increasingly larger than kK when temperature is lowered [24, 25]. Partly to 

reduce the number of parameters, partly to simplify numerical calculations in general, 

we use only one damping rate kK = kt = 1/t, which is equal to the inverse of the 

corresponding correlation time t. Then the spectral density functions S(k,w) in Eqs. 

(S5) and (S6) become equal to the functions J(t,w) in (1). For polycrystalline samples 

the initial relaxation rates (S12) simplify then to 

 

 

 

 

(4) 

If the tunnel frequency wt is much smaller than the resonance frequency w0, the rates 

RAin and REin both reduce to the well-known equation (1). Under such conditions the 

motion–dependent part of the secular quadrupole Hamiltonian tends to equalize the E
a
 

and E
b
 level populations and the spin temperatures TA and TE (Table SI) (Supplemental 

Material). Nevertheless, in the fast-motion limit w0t < 1 the magnetizations MA and ME 

are coupled to the so-called rotational polarization (= the population difference between 

the E
a
 and E

b
 levels). In the following we ignore this coupling and use still the 

relaxation rates (4). For weakly hindered methyl groups at low temperatures the tunnel 

frequency wt may exceed w0. Then the relaxation should be practically biexponential, 

the rates being nearly equal to REin and RAin [see Eqs. (S8) and (S9)]. When the tunnel 

and resonance frequencies are near each other, the couplings between MA and ME and 

to the tunnelling reservoir may make the true eigenrates differ more from the initial 

relaxation rates as described in Supplemental Material. This error is corrected 

qualitatively by requiring that when calculating RAin the differences |wt – w0| and  

|wt – 2w0| in the denominators of the resonant rates like Rta–1 and Rta–2 (S6) are never 

allowed to be smaller than w0/2.  In the case of broad activation energy distributions the 

relative number of CD3 groups with wt and w0 nearly equal is expected anyway to be 

rather small, therefore this replacement, which is only qualitatively right, should not 

cause significant errors in final fits. Simulations showed that the use of the corrected 

RAin instead of the uncorrected one caused only insignificant changes. Thus the 

nonexponential relaxation in the level-crossing region can be described by two 

exponential functions. But neither of these exponentials represents A nor E species 

deuterons, actually the exponentials represent a combination of them. Instead of saying 

that the deuterons of the A and E groups relax biexponentially we can say that a part of 



7 

 

the deuteron magnetization of these groups relaxes exponentially at the rate RAin and the 

remaining part at the rate REin. Consequently we are able to describe the deuteron 

relaxation in the entire experimental temperature range, before taking into account the 

activation energy distribution, by the initial rates (4). These represent a clear 

improvement relative to Eq. (1) used in our previous study [16] although they remain 

somewhat semiquantitative especially in the level-crossing region. 

   The rates (4) depend strongly on the tunnel frequency wt, which varies with 

temperature. To estimate its temperature dependence we solved the Mathieu equation 

[18] 

 

      (5) 

 

Here R(f) is a rotational eigenfunction, E the corresponding energy and B the rotational 

constant equal to 0.327 meV for CD3. We use the purely threefold potential V(f) = 

(V3/2)(1 – cos3f), where V3 is the height of the barrier. The rotational functions can be 

expressed as R(f) =  Sn gn e
i(d+3n)f

, where d = 0, 1 and 2 for the A, E
a
 and E

b
 states, 

respectively. A recursion formula is derived for the multipliers gn. Converging 

rotational functions are obtained only for discrete values of Ers, which are the desired 

energy eigenvalues. The subindex r defines the rotational state and s refers to A, E
a
 or 

E
b
. 

   All the energy eigenvalues, up to the sixth excited state, were calculated for evenly 

distributed potential heights, starting from V3/2B = 10 up to 180, the step being 5. For 

the r
th

 excited rotational state we use the mean energy Er = (ErA+ ErEa)/2 and the tunnel 

frequency wrt = (ErEa − ErA)/ħ. The conventional activation energy was taken equal to 

the difference A0 = V3 – E0. We call the corresponding differences Ar = Er – E0 for 

excited rotational states also activation energies. These make it possible to estimate the 

temperature dependence of the observed tunnel frequency wt. For this purpose the 

following somewhat semiquantitative expression is widely used  

 

    (6) 

 

wt is practically constant at low temperatures, starts to decrease when T is raised, then 

there is an inflexion point after which the rate of decrease slows down. The temperature 

dependence was calculated from (6) up to the inflexion point and then the function 

 fitted to the obtained points. This function has been observed to 

describe the experimentally observed points quite well [26]. Furthermore, it depends 

only on two parameters a and b and is therefore fast to compute in comparison with 

(6), which requires the inclusion of many excited states especially at high temperatures. 

The parameters a and b are shown as a function of the activation energy A0 in Fig. 1.  

     At relatively high temperatures most rotational jumps take place over the barrier. At 

lower temperatures jumps at excited rotational states become more significant and the 

activation energies Ar are used to describe them.  At each such level the jumps are 

assumed to occur at a rate proportional to   according to the 

Arrhenius equation. This proportionality was proposed already by Stejskal and 

Gutowsky [22]. Of course the relaxation rates should be related to the time-dependent 

phonon–rotation coupling and not to the time-independent potential V(f), therefore 

their model cannot be true in principle. Nevertheless, it leads to a quite good agreement 

with experiment as shown by numerical calculations by Clough et al. [23]. 
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Furthermore, by using it there is no need to introduce new parameters. Therefore we 

use it here to describe the temperature dependence of the correlation time at low 

temperatures. Similarly, the rate of the jumps over the barrier is taken proportional to 

, where  is the tunnel frequency for such an excited energy Er = 

(ErA+ ErEa)/2, which is equal to the barrier height V3. Finally we include in the 

calculations two parameters Kh and Kl and express the total rotational jump rate as 

 

   (7) 

 

   Fig. 2 presents the activation energies Ar = Er – E0 of the excited states and the normal 

high-temperature activation energy A0 = V3 – E0 (this is naturally a straight line) as the 

function of A0. The curve (nearly straight line) below the horizontal axis represents -E0 

and thus shows the bottom of the potential V(f). So the vertical distance between the 

straight line and the nearly straight line below the horizontal axis is always equal to V3. 

Fig. 3 describes the variation of the absolute values of the tunnel frequencies |wrt| for 

various excited states. For most of the curves in Figs. 2 and 3 the calculated values fall 

very exactly on the curves and are therefore not shown. The only exception is wbt, for 

which the calculated results show considerable scatter (Fig. 3). When calculating 

numerical estimates for the correlation time t from (7) the excited states were taken into 

account only when the rotational energy Er = (ErA+ ErEa)/2 is smaller than the potential 

height V3.    

 

2.2. Relaxation of OD deuterons  

 

   The spin−lattice relaxation of the OD deuterons is not so reliably understood, since 

the hydroxyl motion is not known in detail. In NaX the methanol molecules were 

assumed to be situated at the positions I and II in the zeolite framework [16]. In the 

former position (called horizontal) the methanol oxygens are bonded to the sodium 

ions, and in the latter (called vertical) the methanols are hydrogen−bonded to the 

oxygens in the zeolite framework [15, 27]. In NaY we assume also a third position (or 

structure) III, where additional methanols form hydrogen bonds via their oxygen to the 

OD group of methanols in position I (Fig. 4). This way a second (and third, etc.) 

adsorption layer is formed as proposed before (structure V in the Scheme I [27]).  

   In the previous study it was assumed that the O–D vector is more free to move in 

position I than in II, because in the latter position the hydrogen bonding restricts 

deuteron motion [16]. The O–D motion in position I was assumed to occur by small 

angles about the equilibrium orientation. The angle is expected to become larger with 

temperature. Thus both the motional angle and rate vary with temperature. These 

processes were described by a model called limited jumps, in which the O–D vector 

moves (with the temperature dependent rate 1/tlj) on the cone making the angle D with 

the equilibrium orientation at low temperatures. The corresponding relaxation rate for 

the point j of the activation energy distribution is [9, 16]  

 

     (8) 

 

This is formally identical to Eq. (1) describing the relaxation of methyl deuterons for 

methyl groups rotating about their axis, the only difference is the efficiency factor E. 

Because now the motional angle is smaller than the tetrahedral angle, the relaxation rate 

is reduced to E = (27/32)(4sin
2Dcos

2D + sin
4D). 
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   At higher temperatures it is possible that the O–D vector of the methanol molecule 

jumps to a totally different direction by a 120
o
 jump about the C–O vector. Such a jump 

is analogous to the motion of the C–D vectors when the methyl group rotates about its 

axis. This hydroxyl rotation modulates the quadrupole interaction of hydroxyl 

deuterons, and the corresponding relaxation is again analogous to Eq. (8), but with the 

different efficiency 1 – E instead of E, since a large part of the relaxing power of the 

quadrupole interaction is already used by limited jumps.  

    The limited–jump part (corresponding to Eq. (8)) is used to describe the relaxation of 

hydroxyl deuterons in position I roughly up to 80 K. However, we assume now that 

only the angle D grows with temperature while the correlation time tlj is practically 

constant (but still shows a reasonable distribution). The latter assumption is 

understandable, when we realize that limited jumps here means O–D vectors vibrating 

about the equilibrium orientation, similarly to lattice vibrations, which have frequencies 

practically independent of temperature. To describe the temperature dependence of E, 

we use here for it an alternative expression E = q exp(–Tlj/T). The parameters q and Tlj 

are defined later on. 

   When T approaches TS, the methanols start to move more isotropically. Then limited 

jumps is no more a dominant motion. Here this change is taken into account by 

ignoring the direct contribution of the limited–jumps to the relaxation when the 120
o
 

rotations of hydroxyl vectors start to dominate. This seems to happen near 80 K. The 

jumps are anyway assumed to reduce the relaxing efficiency of the hydroxyl rotation, 1 

– E. Thus the takeover temperature depends also to some extent on the limited–jump 

angle D. Since the hydroxyl rotation really contributes to the relaxation, 1 – E must 

always be larger than zero. Therefore E has to remain smaller than 1 even above 100 K. 

This is achieved by requiring that E increases with temperature up to a certain 

temperature TE and remains then constant. 

   Similarly to the previous study we assume the OD(II) deuterons to relax at 

temperature−independent rates, showing anyway a certain distribution [16]. This 

description is consistent with the limited jumps model (8) when both the jump rate and 

angle are constants. Because the hydroxyl in positions II are hydrogen–bonded to the 

framework oxygens, their vibration should be much more restricted than that of 

hydroxyls I, which makes the constant-angle assumption easier to understand. Most 

probably the relaxation rates of OD (II) are not exactly constant but start to grow when 

temperature is raised towards TS (Fig. 10). The relatively small effect of hydroxyl 

deuterons to the relaxation and the limited accuracy of the experimental points and of 

our analysing methods make useless any efforts to find better models.   

   Concerning the relaxation of the OD(III) deuterons, we do not find any clear 

experimental or theoretical information for the detailed description of their dominant 

motion. Therefore, we use Eq. (8) for the corresponding hydroxyl deuterons with the 

same parameters as for OD(I). This way no additional parameters are needed. Still the 

methyl motions in these positions are assumed to be different. 

 

 

3. Experimental details and deuteron spectra 

 

   Our samples of methanol containing zeolite NaY(2.4) were prepared in the same way 

as described in the previous study [15]. They contain 100 % and 200 % of CD3OH 

(Samples 1 and 2, respectively) and 200 % of CD3OD (Sample 3) of the total coverage 

of Na
+
 ions. All the samples were sealed in 24 mm long glass tubes

 
with the outside 
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diameter 5 mm. Experiments to be described were carried out mainly below the 

temperature TS = 154 K, where the methanols are localized [15]. 

   Experiments were carried out at the deuteron resonance frequency 46 MHz. The 

resonance signal was observed by the quadrupole echo, with a 200 ms delay between 

the two pulses [15]. The experimental signals were phase-corrected and Fourier–

transformed to obtain the deuteron spectra. In relaxation experiments the quadrupole 

echo sequence was preceded by a short burst of p/2 pulses, which saturated the 

magnetization. The delay between the saturation and echo sequences was varied to 

facilitate the observation of the recovery curve. 

   Just above TS there appears a narrow central component in the otherwise broad 

deuteron spectrum. Its intensity grows rapidly at higher temperatures at the expense of 

broader components, showing the ability of methanols to become free from the 

equilibrium positions, at first for short times. This is true when the sample temperature 

is lowered stepwise from high temperatures towards TS. If temperature is gradually 

raised through TS, the mentioned changes start to take place at a somewhat higher 

temperature. This shows that there is some hysteresis in the process of becoming free to 

move off from the bonding positions I−III. In the following we do not pay much 

attention to the spectra for T > TS because our main interest is the internal motions and 

related activation-energy distributions of localized molecules below TS.  

   Fig. 5a shows the deuteron spectrum at 5 K for Sample 1. Since this sample does not 

contain any hydroxyl deuterons, the entire spectrum is related to the methyl deuterons. 

The doublet dominating the spectrum is composed of (i) the doublet representing 

methyl groups, which rotate about the methyl axis faster than the quadrupole frequency 

wQ, and of (ii) the tunnelling–related spectrum arising from methyl groups with wt > wQ 

(but rotating at a frequency smaller than wQ). In the latter contribution the doublet is 

accompanied by the characteristic sideband [3, 4]. The theoretical spectra for both these 

components were calculated with the quadrupole frequency nQ = wQ/2p = 150 kHz and 

their respective contributions are 43 % and 30 %. The experimental spectrum contains 

also two  Pake doublets,  characterized by nQ = 94 and 175 kHz, with respective 

contributions 16% and 11 %,  related to immobile deuterons in methyl groups. The 

spectrum of Sample 2 (Fig.5b) is composed of similar subspectra: (i) rotating and (ii) 

tunnelling components, one Pake doublet (nQ = 175 kHz) and a Gaussian with the 

respective contributions 50 %, 10 %, 22 % and 18 %. We attribute the Gaussian 

component to deuterons undergoing large-scale oscillations in space leading finally to a 

narrow line for isotropic reorientations at high temperatures. 

   In zeolites NaX containing methanol molecules the spectral features were related to 

certain positions (also called structures) of adsorbed methanol molecules [16]. In NaY 

samples we adopt a similar approach, although we now need also the third structure III. 

Some support for this structure is provided by the differences between NaX and NaY. 

There are 86 sodium cations in the unit cell of NaX, 32 of them are located at positions 

SII in the supercage, 32 at SI’at the window of the hexagonal prism, and remaining 22 

at position SIII in the supercage [28, 29]. Thus 54 of all sodiums are available for 

methanols in supercages as structure I. Most, if not all methanol molecules are expected 

to be located in supercages. At 100% loading remaining 32 may be found as structure 

II. In zeolite NaY site SII is the preferred one and fully populated, close to the 

maximum of 32 from the total number of 56 for Si/Al = 2.4. The rest of cations, namely 

24, are distributed between positions SI and SI’, as position SIII is hardly populated. 

Positions of sodium cations are shown in Fig. 1 of Ref. 30. Many factors may perturb 

this situation, particularly the presence of adsorbed molecules. Their presence tends to 

transfer cations toward the supercage, even more effectively when the adsorbed 
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molecules are polar [31, 32]. 

   Furthermore, there are differences in the neutralization of the electric charge of 

sodium cations by oxygen framework atoms. The extent of neutralization is smaller in 

NaY and the electrical charge of Na
+
 is higher, leading to a stronger bonding of 

methanol molecules at position I. On the other hand, framework oxygen atoms are less 

negative in NaY than in NaX (due to a smaller number of AlO
-
4 tetrahedra in the unit 

cell), and the hydrogen bonding at position II is weaker. The unit cell of zeolite Y 

contains 384 oxygen atoms at four crystallographically inequivalent positions from O1 

to O4.  

   As about assignment of spectral components to structures we propose the following 

picture. A relatively smaller fraction of the positions at sodium cations is available for 

methanol molecules in NaY than in NaX. Some may be not accessible and therefore we 

take into account also structure III. In Sample 1 (Fig.5a) the tunnelling component 

(contribution 30%) may be attributed to methanol molecules in the structure II. 

Contribution of rigid deuterons amounts to 27% and may be presumably related to the 

structure I. Some methyl groups at position I may still rotate and, together with the 

methyl groups of the structure III, produce the rotating component with the 43% 

contribution. In Sample 2 (Fig.5b) we may assume equal populations of methanol 

molecules (and of methyl groups) over the three structures I - III. This leads to the 

following assignments: Tunnelling component (with 10% contribution) corresponds to 

1/3 of the methanol molecules at positions II, Gaussian (18%) to practically 2/3 of the 

methanols II, and rigid (22%) to 2/3 of the methanols I. The rotating component 

consists of 1/3 of the methanols I and all the methanols III (experimental contribution 

50%, from the assignment above 44%). The differences between the experimental and 

model-based results may be related to motional perturbation of molecules in structures I 

and II due to a higher abundance of molecules in the second layer. 

   Representative spectra for Sample 3 are shown in Fig. 6 for low temperatures below 

TS. Spectra evolve from the existence of tunnelling at low temperatures to the 

appearance of a small narrow component due to effectively isotropic reorientation of 

some methyl groups near TS. More insight into the details of the temperature 

dependence of the spectra of Sample 3 is provided by Fig. 7, which shows the relative 

contributions of all the spectral components as a function of inverse temperature. The 

tunnelling–related component decreases above 20 K and is not observed above 40 K. 

The Pake doublets decrease above 40 K and reach a constant value at 63 K. 

Simultaneously the component assigned to rotating methyl groups grows and reaches a 

maximum at 91 K. At higher temperatures the rotating component starts decreasing due 

to the appearance of a new doublet with a smaller effective quadrupole coupling. It 

originates probably from hydroxyl groups performing rotation about a pseudo-threefold 

axis, making an angle smaller than tetrahedral with the O–D direction. The 

contributions of the various components are practically constant between TS and 200 K, 

and the narrow central component does not yet have a significant amplitude. This is 

understandable because these results were observed by increasing temperature stepwise 

from below TS. Because of the hysteresis the methanol molecules are still practically 

localized. When the number of methanol molecules in structure III is assumed to be 

equal to those of structures I and II, the methyl and hydroxyl deuterons at any one of 

these structures contribute 25 % and 8.33 % of the total spectral area, respectively. The 

variation with temperature of the spectral components and their relation to the three 

structures is described in Table I. The numerical contributions in the brackets, based on 

equal occupation of the positions I – III, agree well with the experimental values.  

   All this is consistent with a distribution of the potential strength due to subtle 
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differences in the bonding to supercage walls. There is also a marked difference to 

zeolites containing heavy methane instead of methanol molecules. CD4 molecules 

experience only negligible bonding to zeolite and between each other. Therefore they 

are practically free to move, what leads to a narrow spectrum even at low temperatures 

[33]. 

   Our results provide also some data on the value of the quadrupole coupling constant 

of deuterons in methanol molecules. The coupling constant for the methyl group may 

adopt slightly different values depending on the local electronic structure of a given 

molecular system. In aspirin single crystal it equals 160 kHz [4], while analysis of 

spectra for CD3CH2OH in nematic solvents provides 180.7 kHz [34]. We obtained 150 

kHz.  

   Let us consider a set of Pake doublets corresponding, in NMR terminology, to 

immobile deuterons, which are bonded to framework oxygens. The observed effective 

quadrupole coupling constant is the vector sum of internal and external electric field 

gradients at the deuteron. We find the following coupling constants at low temperature 

(relative contributions are given in brackets): 100 kHz (7%), 175 kHz (18%), 210 kHz 

(9%) and 240 kHz (11%). The first two values correspond well to Pake doublets in 

Fig.5a. Therefore, we can attribute these values to methyl group deuterons of the 

structure I. At high temperature we have Pake doublets characterized by the following 

parameters: 185 kHz (3%), 205 kHz (3%) and 232 kHz (3%) all related to the 

hydrogen–bonded deuterons of the methanol hydroxyl groups in the structure II. A 

similar set of quadrupole coupling constants was derived for methanol molecules in 

NaX at low temperature [15]. Comparable values were obtained for D2O molecules at 

100 % loading in NaY at low temperature [35]. Deuterons in bridging hydroxyl groups 

in DY zeolite provide the following values of the quadrupole coupling constant: 130, 

170 and 212 kHz and an assignment to framework oxygens was proposed [36]. 

 

 

 

 

  

     

4. Experimental relaxation data and simulations 
 

4.1. Deuteron relaxation in Sample 2  

 

   We show and discuss first the experimental relaxation data for Sample 2 containing 

200 % of CD3OH, since there are no hydroxyl deuterons in it and therefore the 

application of our model is easier. Furthermore, the relaxation results for Samples 1 and 

2 were nearly identical within the experimental scatter, so there is no need to discuss 

them separately. The function  was fitted to 

the magnetization recovery by varying the relaxation rates Ri and the amplitudes Mi by 

the least-squares method. The parameter c0 may have a nonzero value if the saturation 

is not perfect. The relative weights wi are calculated from the amplitudes Mi, for 

example w1 = M1/(M1+M2+M3). The obtained relaxation rates and weights are shown in 

Figures 8–11 for samples 2 and 3.  

   The relaxation rates of the three exponentials increase at first sharply when 

temperature is lowered below TS, show then a plateau or maximum, and finally start to 

decrease (Fig. 8). The weight of the fast-relaxing component decreases at first, then 

increases strongly to the maximum near 50 K, and finally decreases at still lower 
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temperatures. The weight of the intermediate component decreases steadily with 

temperature while that of the slow component shows a minimum near 50 K (Fig. 9). 

The relaxation rates for Sample 3 differ from those of Sample 2 by a minimum, which 

appears between 70 and 90 K in all the three components (Fig. 10). The weight of the 

fast component in Sample 3 behaves similarly to that of Sample 2, but the variations in 

the weights of the intermediate and slow components are larger than in Sample 2 (Fig. 

11).   

    For numerical simulations the limiting values  and  were 

calculated for each experimental temperature and the logarithms of the obtained values 

were fitted with polynomial functions. These functions are shown in Figs. 8 and 10 by 

dashed curves. Because Al atoms replace Si atoms in a random manner, and also 

methanols occupy different positions randomly, the activation energy for each of the 

three positions shows a certain distribution, centered around the mean activation energy 

A0, the distribution width being s. The pre-exponential factor is now , where the 

frequency wbt is obtained from the Mathieu equation. Its magnitude is such that Kh 

varies mainly between 1 and 10. The other activation energies Ar and the pre-

exponential frequencies wrt in Eq. (7) are also obtained from the Mathieu equation as 

the function of A0. (They are at first calculated as the function of the potential height V3 

but presented then as the function of A0 = V3 – E0 for numerical simulations). In the 

present simulations the parameter Kl was taken equal to 1. For the quadrupole 

frequency nQ of the methyl and hydroxyl groups we use 160 kHz and 205 kHz, 

respectively. 

   The simulations for Sample 2 proceed in the following way: For each position I–III 

we define the mean activation energy A0, the distribution width s and the parameter Kh. 

The spectral data discussed already show that the CD3 groups of the vertical methanols 

II reorientate fastest and those of the horizontal methanols I slowest. Therefore, the 

corresponding mean activation energies are expected to behave like A0(I) > A0(III) > 

A0(II). The distribution-dependent activation energy is then Aj = A0 + DAj with DAj 

equal to js/20, j = 0, ±1, ±2, … ±60. For each Aj we obtain the activation energies Ar 

and the frequencies wrt for the excited states (see Figs. 2 and 3), which are then used to 

calculate the correlation time from Eq. (7). Similarly, the tunnel frequency wt is 

obtained from  by using the a and b values from Fig. 1. Then the 

individual relaxation rates RAin and REin can be calculated from Eq. (4). The obtained 

values are compared to the limiting values Lfm and Lms to find out the right class. The 

contribution to the initial relaxation rate of this class is obtained from Eq. (3), when the 

relative weight  is replaced by (5/9)wpwj 

for A species and (4/9)wpwj  for E species methyl groups. The position dependent 

weight wp is a parameter, which describes the occupancy of each position. Their sum 

has to be equal to 1. Most relaxation simulations were carried out by using equal wp 

values as was done already in explaining the spectra of Sample 3. By repeating the 

described calculation for each j value of the three different distributions and as a 

function of temperature, we obtain the temperature dependence for the initial relaxation 

rates Rci (c = f, m, s). The corresponding weights are obtained by summing up 

(5/9)wpwj  and (4/9)wpwj for those rates RAin and REin, which belong to the considered 

class. The results are compared with the experimental rates and weights, the parameters 

changed slightly and new, hopefully better initial rates calculated. The procedure was 

repeated so many times that the best possible agreement was reached. The simulated 

relaxation rates with the best-fit parameters are shown in Fig. 8 and the corresponding 

relative weights in Fig. 9. It is important to note that the simulations were finally 
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calculated simultaneously for both our samples, thus Figs. 8−9 include also the effect of 

the hydroxyl deuterons on the fit.  The total number of parameters for Sample 2 (NaY 

with 200 % CD3OH) is 9 (when all three wp(i)’s were assumed equal) consisting of the 

three sets of A0, s and Kh. 

 

 

4.2. Sample 3 

 

   In the first simulations for sample 3 (containing 200 % of CD3OD) we kept the 

mentioned 9 parameters constant and concentrated to find out suitable parameters to 

describe the motion of OD deuterons in the three positions. To determine the 

parameters q and Tlj in the efficiency factor E = q exp(–Tlj/T) for the OD’s in position I 

(section 2.2.), we required that (i) E has to decrease by the factor 10 between the 

temperatures 60 K and 20 K similarly to the experimental relaxation rate of the 

intermediate component and (ii) the effective quadrupole frequency, equal to 

(1/2)(3cos
2D – 1)nQ, has to be practically equal to nQ = 205 kHz at 20 K and to 150 kHz 

at 60 K according to the experimental spectra. This leads to q = 1.694 and Tlj = 70.64 K. 

To guarantee that the OD(I) reorientation contributes significantly to the deuteron 

relaxation for T > 80 K, we defined the temperature TE, above which the efficiency 

factor 1 – E remains constant. In simulations TE = 87 K was the optimum choice. 

   Thus we have introduced one set of motional parameters for the rotation of hydroxyls 

I and III above 80 K, which means 3 parameters. In addition, there are 7 more 

parameters describing the distribution of the correlation time of the limited jumps of 

hydroxyls I and III, the distribution of the relaxation rate of hydroxyls II, and the 

temperature TE related to the efficiency factor E. These parameters describe 

temperature–independent behaviours and were not varied in the simulations. Thus the 

total number of real motional parameters for Samples 1 and 3 is 12. This is a large 

number, but also the number of independent results is large, altogether 10 curves, 

describing partly the temperature dependence of the relaxation rates (6 curves) and of 

the relative weights (4 curves, since the sum of relative weights equals 1). So on 

average there is clearly less than two parameters per curve. Two parameters per curve is 

the common case when the temperature dependence of an exponential relaxation rate is 

explained by the Arrhenius equation, which depends on two parameters. 

    Simulations for Sample 3 are carried out similarly to those for Sample 2, only the 

weights have to be modified because there are now four deuterons in a methanol 

molecule. For A and E species methyl groups the weight wj in (3) has to be replaced by 

(5/12)wpwj and (4/12)wpwj, respectively, while for the hydroxyl deuteron the corrected 

weight is (1/4) wpwj. At first the methyl parameters were kept constant and best-fit 

values for the hydroxyl parameters were searched. When the best fit was obtained, we 

varied mainly the parameters for methyl groups and hydroxyls in positions I (and III) to 

find out how much individual parameters can be varied without appreciable changes in 

the overall fit. Also different wp values were tried. Best fits were as good as those in 

Figs. 8–11 but were not considered possible because the spectra seem to require equal 

wp values. The best fit by eye, based on equal wp values, was obtained with the 

parameters given in Table II and is shown in Figs. 10–11 by continuous curves. These 

parameters constitute the main result of our relaxation simulations.  

   Let us consider in more detail the small maximum in the experimentally observed rate 

of the fast relaxing component of Sample 3 near 100 K (Fig. 10). For Sample 2 the 

corresponding rate (no maximum in it) is clearly larger than for Sample 3.  Therefore, 

the hydroxyl deuterons of Sample 3 have an important role. Because they relax rather 
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slowly, the limiting values Lfm and Lms for this sample are clearly smaller than for 

Sample 2. Consequently, some methyl deuterons, which in Sample 2 contribute to the 

intermediate component, contribute to the fast component in Sample 3. Therefore, the 

fast-component relaxation rate of samples 2 and 3 differ from each other although they 

are both related, almost exclusively, to the methyl deuterons. The hydroxyl deuterons 

contribute to the intermediate and slow components according to our simulations.    

 

 

 

   5. Discussion 

 

   The main aim of the present study was to improve the recently presented method for 

describing the deuteron relaxation in the presence of wide activation energy 

distributions [16]. We introduced two features, the temperature dependent tunnel 

splitting and a special temperature dependence for the correlation time of the methyl 

motion, not describable by a constant activation energy. Both these new features were 

derived from the Mathieu equation by using somewhat semiquantitative although well 

established methods. They modify the theoretically calculated rates and weights at 

lowest temperatures. The inclusion of the tunnel frequency wt in the relaxation rates of 

Eqs. (4) tends to increase the rate and weight of the fast relaxing component. This 

causes a small shift of the corresponding mean activation energy towards larger values. 

Best fits to experimental data were obtained with such distributions, for which wt can 

be equal to w0 only at the low-energy wing of the distribution. The use of Eq. (7) for the 

methyl correlation time shortens it at low temperatures. This decreases the weight of the 

slow component and increases its relaxation rate, leading to a better agreement with 

experiment. Furthermore, nearly all the calculated relaxation rates are in the 

experimentally observed range (that is the considered deuterons relax faster than the 

longest waiting time). The combined effect of these two improvements is demonstrated 

in Figs. 9 and 11 by the calculated weights of the three components. The continuous 

curves take into account both these improvements, while the dashed curves exclude 

them. Above 40 K the curves practically agree with each other but deviate increasingly 

at lower temperatures. We took into account even those deuterons for which the 

calculation gives relaxation rates slower than the rate of the slow component. Their 

number is practically negligible when the improvements are taken into account but 

quite large when the improvements are excluded. The former curves agree clearly better 

with the experimental results especially for Sample 3. 

   In general the agreement between the experimental values and simulated curves is 

reasonable and also consistent with the temperature dependence of spectral 

components. The biggest deviation is found in the calculated relaxation rate of the 

intermediate component, which exceeds the observed value.  Of course a part (though 

not all) of the deviation is related to the fact that the experimental relaxation rates for 

each of the three components are average rates trying to describe the nonexponential 

relaxation of a certain component with one exponential, while the calculated rates 

represent the initial rates. Therefore, the calculated rates can be somewhat larger than 

the observed rates. This difference should not be important as far as the main interest is 

in the temperature dependence of the rates and weights, not so much in single values for 

fixed temperatures. Naturally, the use of average relaxation rates instead of initial ones 

could be one improvement in future simulations, but the most difficult problem 

presently is the very vague knowledge of the motion of the hydroxyl deuterons.   
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   There are also other features which might improve the present model if they could be 

taken properly into account. One could use four exponentials to describe the 

experimentally observed signal recovery, if the individual relaxation rates span four or 

more orders of magnitude. Of course this would require very accurate experiments with 

very little scatter. As described in Introduction, the choice of using three exponentials 

instead of four or five is a consequence of the limited experimental accuracy, it does not 

derive from any theoretical reasons. Another point is the coupling of the tunnelling 

reservoir to the relaxation of the magnetizations MA and ME, which may have some 

effect when the tunnel and resonance frequencies are practically equal. In the present 

study this was taken into account only qualitatively, which was considered sufficient 

because the relevant activation energy distributions extend only very marginally to 

values consistent with wt > w0. Still another possibility is the different coherence 

damping rates kK and kt. Their effect on the relaxation rates of the magnetisations MA 

and ME was already calculated and presented in Supplemental Material, but their 

introduction to simulations would introduce additional parameters for each methanol 

position I–III. 
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Table I 

Contribution of methyl and hydroxyl deuterons of methanol molecules in positions I, II 

and III to respective spectral components for Sample 3  

 

Spectral 

components 

160 K  100 K 90K ÷ 60 K  25 ÷ 20K 

Rotation CD3 

nQ = 150 kHz 
CD3 I  

+CD3 III 

50 % 

(50 %) 

 

↓ 

CD3 I  

+ CD3 III 

+ OD III                          

62 % 

(58.3 %) 

CD3 I + OD I 

+ CD3 III 

+ OD III                          

68 % 

(66.7 %) 

 

↑ 

CD3 III 

 

 24 %  

(25 %) 

Tunnelling CD3 

nQ = 150 kHz 
    ↓ 1/2 CD3 II 

14 %  

(12.5 %) 
Rotation OD 

nQ = 120 kHz 
OD I  

+ OD III 

18 % 

(16.7 %) 

 

↑ 

OD I  

6 %  

(8.3 %) 

 

 

 

 

 

 

Gauss CD3 II 

23 % 

(25 %) 

 
constant 

CD3 II 

23 %  

(25 %)  

CD3 II 

23 % 

(25 %) 

 

↑ 

 1/2 CD3 II 

+1/2 OD III 

17 %  

(16.7 %) 

 
Rigid  OD II 

9 %  

(8.3 %) 

 
constant 

OD II 

9 %  

(8.3 %)  

OD II 

9 % 

(8.3 %) 

 

↓ 

OD I  

+ OD II  

+ 1/2 OD III 

+ CD3 I  

45 %  

(45.8 %) 
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Table II 

Motional parameters for methyl and hydroxyl groups of methanols in NaY(2.4) 

 

 

 

 CD3(I) CD3(II) CD3(III) OD(I, III)(rot) 

A0 (kJ/mol)    5.3 4.2 4.6 8.0 

s (kJ/mol)    1.7 0.9 0.7 0.8 

t0 (10
-14

 s)    0.2 

Kh 2.0 2.0 2.0  
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Figure captions 

 

FIG. 1. The calculated values for the parameters a (open circles) and b (filled circles) 

as the function of the activation energy A0, together with the fitting curves. The vertical 

scales for a (right) and  b (left) are different. 

 

FIG. 2. The excited-state activation energies Ar = Er – E0 and A0 (straight line) as the 

function of A0. The curve below the horizontal axis describes –E0. 

 

FIG. 3. The tunnel frequencies |nrt| and |nbt| as the function of A0. 

 

FIG. 4. Representative positions of methanol molecules at a segment of NaY(2.4) 

supercage wall. The methanol at position I (called horizontal) is bonded to the sodium 

cation SII, at position II (called vertical) is hydrogen−bonded to a framework oxygen, 

and at position III is hydrogen−bonded to the hydroxyl deuteron of the methanol at 

position I (representing a second adsorption layer or the first molecule of a possible 

chain). 

 

FIG. 5. The deuteron spectra of Samples 1 (100 % of CD3OH) at 5 K (a) and 2 (200 % 

of CD3OH) at 10 K (b). Contributions of the rotating (i) and tunnelling (ii) methyl 

groups, as well as of rigid (Pake doublet) and Gaussian spectral components are shown 

separately. 

 

 

FIG. 6. The deuteron spectrum of Sample 3 (200 % of CD3OD) at different 

temperatures.  

 

FIG. 7. The relative contributions of various spectral components of Sample 3 as the 

function of temperature. 

 

FIG. 8. The observed relaxation rates Rf, Rm and Rs as the function of temperature for 

Sample 2 (200 % of CD3OH). The continuous curves represent the best-fit simulated 

results. The dashed curves describe the limiting values Lfm and Lms. 

 

FIG. 9. The experimental weights of the fast, intermediate and slow components of 

Sample 2 (200 % of CD3OH), together with the simulated weights (continuous curves). 

The dashed curves show the simulated weights when ωt = 0 and the effect of the 

excited rotational levels on the correlation time [Eq. (7)] was excluded. 

 

FIG. 10. The same as Fig. 8 but for Sample 3 (200 % of CD3OD). 

 

FIG. 11. The same as Fig. 9 but for Sample 3 (200 % of CD3OD).  
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highlights 

 

Non-exponential deuteron spin−lattice relaxation and activation energy distributions 

· The effect of a large tunnel splitting and decreasing activation energy on relaxation 

· Simulation of temperature-dependent relaxation rates 

· Application to zeolite NaY(2.4) containing methanol molecules 

· Interpretation of deuteron spectra 
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Supplementary Material to the article: 

 

The effect of a broad activation energy distribution on 

deuteron spin–lattice relaxation 
 

E.E. Ylinen, M. Punkkinen, A. Birczyński, Z.T. Lalowicz  
 

 

 

Deuteron spinlattice relaxation in CD3 containing compounds with a large tunnel 

splitting  

 

S1. Spin and rotational functions 

 

   There are some theoretical models for deuteron relaxation in CD3 compounds when 

the tunnelling frequency t is much smaller than the deuteron resonance frequency 0 

[5, 17] and also two which should be valid in the case of large tunnelling frequencies  

t >> 0 [10, 11]. Ref. 10 discusses the relaxation of the deuteron magnetization  

Mz = MA + ME without any coupling to other relatively slowly relaxing quantities, for 

example the tunnelling reservoir. The work [11] considers also these couplings. 

Unfortunately, neither of them takes into account the fact that the magnetizations MA 

and ME can relax at different rates, especially in the slow-motion regime for t >> 0. 

Because this fact is crucially important for the present study, we derive the required 

expressions in detail below by using an approach somewhat different from [10, 11]. 

    The three deuterons are denoted by u, v and w. Their spin quantum numbers m are 

defined by a row symbol, for example (10–1) means that the m values of these 

deuterons are 1, 0 and –1, respectively. In the derivation we use the symmetrised spin 

functions 

 

SA3 = (111) 

SA2 = (1/√3)[(110) + (011) + (101)] 

SA1 = (1/√3)[(111) + (111) + (111)] 

𝑆A1
′ = (1/√3)[(001) + (100) + (010)] 

SA0 = (1/√6)[(110) + (110) + (011) + (011) + (101) + (101)] 

SA0
′ = (1/√6)[(110) − (110) + (011) − (011) + (101) − (101)] 

𝑆A0
′′ = (000) 

SEa2 = (1/√3)[(110) + ε(011) + ε∗(101)]      

SEa1 = (1/√3)[(111) + ε(111) + ε∗(111)]    (S1) 

SEa1
′ = (1/√3)[(001) + ε(100) + ε∗(010)] 

SEa0 = (1/√6){(110) + (110) + ε[(011) + (011)] + ε∗[(101) + (101)]} 

SEa0
′ = (1/√6){(110) − (110) + ε[(011) − (011)] + ε∗[(101) − (101)]}      

 

where ε=exp(i2π/3). The spin functions SEbm and SEbm
′  are obtained from the 

corresponding SEam and SEam
′  functions by interchanging  and*. The functions for the 

negative values of m are analogous to those with positive m values when only 1 and –1 

are interchanged. 
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   It is worth realising that only some of the above spin functions are also eigenfunctions 

of the total spin, namely those with m = ±3, ±2 and SA0
′ , SEa0, SEa0

′ , SEb0, and SEb0
′ , the 

others are not. However, they are simultaneous eigenfunctions of the rotational, 

Zeeman and the secular quadrupole Hamiltonians as far as Q < 1. Furthermore, they 

are simple combinations and thus easy to use. At lower temperatures Q > 1 the 

nonsecular quadrupole coupling mixes some of these functions. However, the spin 

functions (S1) can be still used, if all the A level populations can be described by one 

spin temperature TA and the E level populations by another temperature TE. Of course 

this is not exactly true because of the very slow spin diffusion. Nevertheless, it is 

approximately true, since all the A level polulations relax by practically identical rates, 

only the numerical factors vary somewhat (cf. Table SI). The same holds also for the E 

level populations.  

    The rotational wave functions for the rotational ground state are denoted R0A, R0Ea 

and R0Eb.The products of the spin and rotational wave functions have to remain 

unchanged in the ±120 o rotations of the methyl group about its axis. Therefore the 

spin–rotational wave functions  are such products, where a spin function of the 

species A, Ea and Eb is multiplied by a A, Eb and Ea species rotational function, 

respectively. Thus the spin–rotational functions are m = R0ASAm, Eam = R0Eb SEam 

and Ebm = R0Ea SEbm, where the spin function shows the irreducible index of the total 

spin–rotational function. 

 

S2. Transition rates 

 

   The deuteron spin–lattice relaxation of CD3 groups is dominated by the quadrupole 

interaction. When the largest value of the electric field gradient is assumed to be 

parallel to the C–D bond and the asymmetry parameter is taken equal to zero, the 

quadrupole interaction of the methyl deuteron u corresponds to the Hamiltonian (in 

angular frequency units) 

 

HQu =
1

4
𝜔Q ∑ Bu

(μ)
Su

(μ)
μ        (S2) 

 

The lattice- and spin-dependent operators are defined by 

 

Bu
(0)

= 3cos2θu − 1 

Bu
(1)

= sinθucosθuexp(−iφu) 

Bu
(2)

= sin2θuexp(−i2φu) 

Su
(0)

= (1/2)(3Iuz
2 − I2) 

Su
(1)

= (3/2)(IuzIu+ + Iu+Iuz) 

Su
(2)

= (3/4)Iu+
2          (S3) 

 

The operators with the negative index – are Bu
(−μ)

= Bu
(μ)∗

and Su
(−μ)

= Su
(μ)∗

. The polar 

angles u and u define the orientation of the electric field gradient (now parallel to the 

C–D vector) in the laboratory frame, where the z axis shows the direction of the 

external magnetic field. 

   For the calculation of the transition rates between various spin–rotational wave 

functions the total quadrupole Hamiltonian is written in the symmetrised form 
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HQ = HQu + HQv + HQw =
1

4
𝜔Q ∑ (BA

(μ)
SA

(μ)
+ BEb

(μ)
SEa

(μ)
+ BEa

(μ)
SEb

(μ)
)μ=0,±1,±2  

           (S4) 

 

where for example BEb
(μ)

= (1/3) (Bu
(μ)

+ εBv
(μ)

+ ε∗Bw
(μ)

)BEa
(μ)
is otherwise identical to 

BEb
(μ)
but  and * are interchanged.The operators SEa

(μ)
 and SEb

(μ)
are defined similarly but 

without the multiplier 1/3. The operators BA
(μ)

SA
(μ)

 are not modulated by the methyl 

rotation about its axis and are thus time-independent.  

   We calculated at first all the relevant matrix elements. The corresponding transition 

rates were then calculated from the time-dependent perturbation theory, for example 

 

REbm′↔Eam =
1

8
𝜔Q

2 |〈Eb𝑚′ |SEa
(μ)

| Eam〉|
2

|BEb
(μ)

|
2

S(𝑘K,μ𝜔0)                            (S5) 

 

 with m’ = m + , and the spectral density function defined by S(k,) = k/[k2 + 2]. 

Actually the function J(j,) used in Eq. (1) is identical to S(k,) when j is replaced by 

1/k. The quantity kK is the damping rate of the so-called Kramers coherence, which is 

related to pairs of spin–rotational E levels at ground and excited rotational states  

[24, 25]. Similarly, kt is the damping rate of the tunnelling coherence, which involves 

pairwise an A level and an Ea (or Eb ) level. It is important in the relaxation transitions 

between the A and E levels, which involve a change also in the tunnelling energy. The 

rates kK and kt were shown to be equal to the broadening of the quasielastic Ea  Eb 

and inelastic A  E tunnelling lines in inelastic neutron scattering experiments, 

respectively [11, 37]. There are altogether 14 basically different transition rates. Eight 

of them are defined by  

 

𝑅K0 =
9

2
𝜔Q

2|BEa
(0)

|
2

S(𝑘K, Δ𝜔Q)   

𝑅Ka1 =
9

32
𝜔Q

2|BEa
(−1)

|
2

S(𝑘K, 𝜔0)  

𝑅Ka2 =
9

64
𝜔Q

2|BEa
(−2)

|
2

S(𝑘K, 2𝜔0)  

𝑅t0 =
9

2
𝜔Q

2|BEa
(0)

|
2

S(𝑘t, 𝜔t)   

𝑅ta±1 =
9

32
𝜔Q

2|BEa
(−1)

|
2

S(𝑘t, 𝜔t ± 𝜔0)  

𝑅ta±2 =
9

64
𝜔Q

2|BEa
(−2)

|
2

S(𝑘t, 𝜔t ± 2𝜔0)      (S6) 

 

The subindex K or t defines the damping rate kK or kt appearing in the spectral density 

function. In addition t means that the tunnel frequency t is included. The index a 

defines the symmetry of the lattice–dependent function BEa
(−μ)

, while the last index, 

equal to ±1 or ±2, shows the multiplier of 0. The remaining rates RKb1, RKb2, etc. are 

obtained from (S6) by replacing BEa
(−μ)

 by BEb
(−μ)

. Since BEa
(0)*

= BEb
(0)

, the subindex a or b 

is not needed in RK0 and Rt0. The frequency Q is roughly equal to |BEa
(0)

|. All the 

transition rates between the spin–rotational levels can be expressed in terms of these 

basic rates as shown in Table SI.  

   The angular dependence of the rates can be obtained from Ref. 26. That study 

considered 13C relaxation related to the magnetic dipolar interaction between 13C and H 

nuclei in 13CH3 compounds. Since the angles between the 13C–H vectors are the same 
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tetrahedral angles as those between C–D vectors (each parallel to the principal axis of 

the deuteron quadrupole interaction), the results presented in Table 3 of Ref. 26 give the 

angular dependence of |BEa
(−1)

|
2

 and |BEa
(−2)

|
2

 in (S6). 

   It should be noticed that we do not make any difference between the upwards and 

downwards transitions. This is justified as far as deviations from thermal equilibrium 

are considered and the tunnelling frequency t is much smaller than the thermal energy. 

That requirement is well fulfilled in the present study, where the experiments were 

conducted above 5 K. 

 

Table SI. The transition rates from the states Ea (called initial) to A and Eb (called final 

states). The opposite rates are the same when kT >> t. In addition to the shown rates, 

there are transition rates between Eb and A states, which are otherwise identical to those 

in the lower part of the table but with the subindices a and b interchanged. 

 

 

 

  

 

Final state 

  Initial state    

Ea2 Ea1 Ea 0 Ea −1 Ea −2 Ea1’ Ea 0’ Ea −1’ 

         

Eb2 RK0 2RKa1 RKa2 − − 8RKa1 3RKa2 − 

Eb1 2RKb1 − RKa1 8RKa2 − − 3RKa1 − 

Eb 0 RKb2 RKb1 RK0 RKa1 RKa2 4RKb1 − 4RKa1 

Eb −1 − 8RKb2 RKb1 − 2RKa1 − 3RKb1 − 

Eb −2 − − RKb2 2RKb1 RK0 − 3RKb2 8RKb1 

         

Eb1’ 8RKb1 − 4RKa1 − − RK0 − 2RKa2 

Eb 0’ 3RKb2 3RKb1 − 3RKa1 3RKa2 − RK0 − 

Eb −1’ − − 4RKb1 − 8RKa1 2RKb2 − RK0 

         

A3 6Rtb1 6Rtb2 − − − − − − 

A2 Rt0 2Rtb1 Rtb2 − − 2Rtb1 3Rtb2 − 

A1 2Rta −1 − 4Rtb1 2Rtb2 − − − − 

A0 Rta −2 Rta −1 Rt0 Rtb1 Rtb2 Rta −1 − Rtb1 

A −1 − 2Rta2 4Rta1 − 2Rtb1 − − − 

A −2 − − Rta −2 2Rta −1 Rt0 − 3Rta −2 2Rta −1 

A −3 − − − 6Rta −2 6Rta −1 − − − 

         

A1’ 2Rta −1 − Rtb1 − − Rt0 3Rtb1 2Rtb2 

A0’ 3Rta −2 3Rta −1 − 3Rtb1 3Rtb2 3Rta −1 Rt0 3Rtb1 

A −1’ − − Rta −1 − 2Rtb1 2Rta −2 3Rta −1 Rt0 

A0” − − − − − 6Rta −1 − 6Rtb1 
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S3. Relaxation rate of the deuteron magnetisation 

 

   The deuteron magnetisation, without the multiplier ħ, is equal to 

 

𝑀 = 3(NA3 − NA−3) + 2(NA2 − NA−2) + 2(NEa2 − NEa−2) + 2(NEb2 − NEb−2)
+ (NA1 − NA−1) + (NA1

′ − NA−1
′ ) + (NEa1 − NEa−1) + (NEa1

′ − NEa−1
′ )

+ (NEb1 − NEb−1) + (NEb1
′ − NEb−1

′ ) 

(S7) 

 

where the level populations are indexed according to the spin states (1). Usually the 

magnetisations  

𝑀A = 3(NA3 − NA−3) + 2(NA2 − NA−2) + (NA1 − NA−1) + (NA1
′ − NA−1

′ ) and ME 

(containing the remaining terms of (S7)) are expected to relax at different rates and 

therefore we consider them separately. There are altogether 26 independent 

populations. Therefore, in addition to the magnetisations MA and ME there are 24 other 

independent population combinations [11]. The number of remaining combinations is 

greatly reduced, if we can assume two spin temperatures, TA for the A species 

populations and TE for the E species combinations. Of course this is most likely not 

exactly true because of the slow spin diffusion between deuterons of neighbouring 

methyl groups. However, a closer look at the transition rates in Table SI reveals that all 

the A species populations relax by practically identical transition rates, only the 

numerical multipliers are somewhat different. The same holds for the E species 

populations. Therefore, the assumption of the two spin temperatures should be anyway 

a reasonable one. Most of the remaining independent combinations relax much faster 

than MA and ME since the dominant transition rates do not depend on 0 or t. Also the 

quadrupole order belongs to them. After that we are left with two, the tunnelling 

reservoir and the rotational polarization, which can influence the magnetization 

relaxation. The tunnelling reservoir relaxes rather slowly while the rotational 

polarization relaxes often faster than MA and ME, only in the fast-motion regime  

0 < 1 the latter relaxes roughly at the same rate as the two magnetizations [11]. 

Therefore it can alter the magnetization relaxation only at such temperatures. Since all 

the rates (S6) are of the same magnitude under such conditions, the relaxation rates of 

MA and ME cannot be significantly altered. Therefore, we consider only the coupling to 

the tunnelling reservoir in the following. The tunnelling reservoir means the excess of 

A level populations relative to the E level populations. This reservoir is not affected by 

a saturation of one 90o rf pulse (or a short burst of 90o pulses). Therefore, it does not 

affect the initial relaxation of MA and ME although it can modify these magnetisations 

during later stages of relaxation especially near level crossings t = 0 and t = 20. 

Below we show that the initial relaxation rates of MA and ME after a short saturating 

sequence describe also the later relaxation with reasonable accuracy. In the level-

crossing region of t roughly equal to 0 the initial relaxation rates will be somewhat 

modified. 

   The various terms of the time derivatives dMA/dt and dME/dt can be calculated by 

using the transition rates of Table SI and the method explained for example in Ref. 26. 

The results turn out to be 

 

dΔ𝑀A/d𝑡 = −𝑅AΔ𝑀A + 𝑅AEΔ𝑀E  
 

dΔ𝑀E/d𝑡 = 𝑅EAΔ𝑀A − 𝑅EΔ𝑀E      (S8) 
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with  

 

𝑅A = (1/15)[10𝑅t0 + 41(𝑅ta1 + 𝑅ta−1 + 𝑅tb1 + 𝑅tb−1)
+ 37(𝑅ta2 + 𝑅ta−2 + 𝑅tb2 + 𝑅tb−2)] 

 

𝑅E = (1/12)[10𝑅t0 + 18(𝑅Ka1 + 𝑅Kb1) + 36(𝑅Ka2 + 𝑅Kb2)
+ 29(𝑅ta1 + 𝑅ta−1 + 𝑅tb1 + 𝑅tb−1) + 13(𝑅ta2 + 𝑅ta−2 + 𝑅tb2 + 𝑅tb−2)] 

 

12𝑅AE = 15𝑅EA

= 10𝑅t0 + 26(𝑅ta1 + 𝑅ta−1 + 𝑅tb1 + 𝑅tb−1) + 7(𝑅ta2 + 𝑅ta−2 + 𝑅tb2 + 𝑅tb−2) 
 

(S9) 

  

It should be noticed that MA and ME are generally coupled to the tunnelling reservoir 

although the coupling terms are not shown in (S8). The difference magnetisations are 

deviations from the thermal equilibrium value, for example MA = MA − MA(eq). In 

thermal equilibrium the spin temperatures are equal and MA(eq) = (5/9)M(eq) and 

ME(eq) = (4/9)M(eq), where M(eq) is the total magnetisation of the methyl deuterons. 

   Eqs. (S8) lead to a biexponential relaxation, the magnetisations MA and ME relaxing at 

different rates. Our calculations show that for large tunnel splittings t > 0 not only 

the coupling of the total magnetization MA + ME to the tunnelling reservoir vanishes 

[11] but also MA and ME become separately uncoupled from it. Since RE is much larger 

than the other rates in (S9) in the slow motion region, the deuterons of the E species 

methyl groups relax quite accurately at the rate RE, which is practically equal to the 

initial relaxation rate REin (S10). Then ME is vanishingly small during the relaxation of 

the magnetization MA and therefore MA will relax exponentially at the rate RA, which is 

roughly equal to RAin. Since the equilibrium magnetizations obey  

MA(eq) = (5/4)ME(eq), the initial relaxation rates, after the saturation of the deuteron 

magnetization, are  

 

𝑅Ain = 𝑅A − (4/5)𝑅AE

= 𝑅ta1 + 𝑅ta−1 + 𝑅tb1 + 𝑅tb−1 + 2𝑅ta2 + 2𝑅ta−2 + 2𝑅tb2 + 𝑅tb−2 
 

𝑅Ein = 𝑅E − (5/4)𝑅EA

= (1/4)[6(𝑅Ka1 + 𝑅Kb1) + 12(𝑅Ka2 + 𝑅Kb2) + 𝑅ta1 + 𝑅ta−1 + 𝑅tb1 + 𝑅tb−1

+ 2𝑅ta2 + 2𝑅ta−2 + 2𝑅tb2 + 2𝑅tb−2] 
(S10) 

                                     

   If t < 0, the rates coupling MA and ME to the tunnelling reservoir are much smaller 

than the rates (S9) and the relaxation seems to be biexponential. However, the terms 

BEa
(0)

SEb
(0)

 and BEb
(0)

SEa
(0)

 of the quadrupole Hamiltonian (S4) cause transitions at a 

relatively large rate Rt0 from Am to Em
a  and Em

b  levels  and backwards (Table SI). 

Furthermore, they cause transitions between Em
a  and Em

b  at the rate RK0, which exceeds 

the other rates (S6) except in the fast-motion regime. Thus the difference between the 

Ea and Eb level populations may have a small effect in this region, but considering the 

accuracy of the present method it can be rather safely ignored. Then the relaxation rates 

of MA and ME approach each other and the common initial relaxation rate. The rates 

RAin and REin are indeed equal, if the damping rates kK and kt are equal and t < 0. 
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   When the tunnel and resonance frequencies are of the same magnitude, then the 

coupling between MA and ME and to the tunnel reservoir becomes important. This leads 

to 3x3 determinants for eigenrates and corresponding weights. It is known that the 

smallest eigenrate does not show any maxima at the level crossings t = 0 and  

t = 20 but varies smoothly through them [11]. Both RAin and REin show strong 

maxima at the level crossings although one of them should vary smoothly. To remove 

this discrepancy we require that whenever the differences |𝜔t − 𝜔0| and |𝜔t − 2𝜔0| are 

smaller than 0/2 we replace them by 0/2 in the denominators of Rta1, Rtb1, Rta2 and 

Rtb2 when calculating the rate RAin. [Such a replacement is not done in the calculations 

of REin; there the lower limit for the differences |𝜔t − 𝜔0| and |𝜔t − 2𝜔0| is taken 

equal to 160 kHz, because the quadrupole coupling makes the smallest distance 

between the apparently crossing levels roughly equal to the strength of the coupling.] 

The described method is only qualitatively true, but because the number of methyl 

groups having t between 0/2 and 50/2 is relatively small in the case of a broad 

distribution of activation energies and potential strengths, the accuracy of the obtained 

results should not be significantly degraded. Of course one could in principle continue 

according to Ref. [11], take into account the couplings to the tunnelling reservoir and 

the rotational polarization and include their effect in numerical calculations, at the 

expense of remarkably increased computing work. Unfortunately even this would not 

necessarily lead to more accurate results, because the lack of spin diffusion invalidates 

the underlying implicit assumptions concerning the population relations also in [11]. 

   The angular dependence of (S10) is obtained from Table 3 of Ref. 26 or Table 1 of 

Ref. 38, the latter table including also the averaging effect of fast torsional oscillations. 

By neglecting the torsional averaging we obtain [26] 

 

|BEa
(−1)

|
2

+ |BEb
(−1)

|
2

=
4

81
[3 − 3c2 + 2c4 + 4√2ac(a2 − 3b2)] =

4

81
Ang1  

 

|BEa
(−2)

|
2

+ |BEb
(−2)

|
2

=
8

81
[3 + 6c2 − c4 − 2√2ac(a2 − 3b2)] =

8

81
Ang2   (S11) 

  

Here  a = sinmcosm, b = sinmsinm and c = cosm are the direction cosines of the 

methyl axis relative to the laboratory frame (with the z axis parallel to the external 

magnetic field) and m and m are the corresponding polar and phase angles. When Eqs. 

(S11) and (S6) are inserted into (S9), the initial relaxation rates become 

 

𝑅Ain = (1/72)𝜔Q
2{Ang1[𝑆(𝑘t, 𝜔t + 𝜔0) + S(𝑘t, 𝜔t − 𝜔0)]

+ 2Ang2[S(𝑘t, 𝜔t + 2𝜔0) + S(𝑘t, 𝜔t − 2𝜔0)]} 
  

𝑅Ein = (1/288)𝜔Q
2{Ang1[6S(𝑘K, 𝜔0) + S(𝑘t, 𝜔t + 𝜔0) + S(𝑘t, 𝜔t − 𝜔0)]

+ Ang2[12S(𝑘K, 2𝜔0) + 2S(𝑘t, 𝜔t + 2𝜔0) + 2S(𝑘t, 𝜔t − 2𝜔0)]} 
(S12) 

 

It is worth realising that if the coherence damping rates kt and kK are equal and  

t << 0, then the rates RAin and REin become equal. These also agree with the results of 

Diezemann et al. [10, 11]. The result of Pratt and co-workers [5, 17] does not contain 

the orientation–dependent term ac(a2–3b2), which takes into account the threefold 

symmetry of the methyl group. Its average value vanishes for polycrystalline samples 

and thus removes the discrepancy between their result and the present study for 

powders.  




