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Abstract

Analysing transcriptomes of cell populations is a standard molecular biology

approach to understand how cells function. Recent methodological development has

allowed  performing  similar  experiments  on  single  cells.  This  has  opened  up  the

possibility  to  examine  samples  with  limited  cell  number,  such  as  cells  of  the  early

embryo, and to obtain an understanding of heterogeneity within populations such as

blood cell types or neurons. There are two major approaches for single cell

transcriptome analysis:  RT-qPCR on a  limited  number  of  genes  of  interest,  or  more

global approaches targeting entire transcriptomes using RNA sequencing. RT-qPCR

is sensitive, fast and the subsequent analysis is arguably more straightforward, while

whole transcriptome approaches offer an unbiased perspective on a cell’s expression

status.
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Key points

· Studies of cell population heterogeneity and cell transitions benefit from

single cell approaches

· Single cell qPCR allows study of gene expression heterogeneity in population

of cells

· Single cell RNA sequencing experimental approach can be chosen depending

on needed number of cell, gene detection efficiency, transcript coverage, cost,

etc.

· Technical biases and artefacts are determined using spike-ins and unique

molecular identifiers

· Spatial transcriptomics and combination of RNA quantification with other

measurements from a single cell are next steps in the field
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Why is single cell transcriptomics useful?

Transcriptomics, defined as high-throughput quantitative study of the total

complement of cellular RNA (or more narrowly mRNA) molecules, is a powerful and

widely used approach for describing states of cellular activity. This includes dynamic

changes in cell state during development and differentiation, and responses to

environmental or experimental perturbations. While the quantity of mRNA is not the

only determinant of expression and activity of the encoded protein, it provides a

highly usable proxy. Therefore, transcriptomics often represents the most efficient

means for defining cellular states and studying phenotypic changes and the underlying

signalling networks.

Transcriptomics techniques, such as microarrays and massively parallel sequencing

are  typically  applied  on  samples  consisting  of  thousands  or  millions  of  cells.  This

implies an assumption that phenotypically similar cells in a population are similar

also in terms of molecular composition, and are thus represented with reasonable

accuracy by the average values of the population. However, a growing body of data

contradicts this assumption [1-5]. In fact, the emerging view strongly suggests that

transcriptomes of even closely related cells exhibit considerable heterogeneity.

Conceptually, the biological heterogeneity can be divided into (1) heterogeneity

originating from stochastic nature of biochemical processes including gene

expression, (2) heterogeneity originating from slightly different molecular

microenvironments and different signalling histories of each cell, (3) and population

heterogeneity, which is deterministic and ‘hard-wired’ causing subsets of cells

intrinsically to express different properties (Figure 1A) [6].



Cell-intrinsic and environmental factors contributing to this heterogeneity are

incompletely understood, as are its full biological consequences. In an experimental

setting, such variation may arise from asynchronous stages of cell cycle [7-11],

uneven partitioning of molecules during cell divisions, and differences in cellular

signalling histories or epigenetic modifications prior to the experiment in question.

Moreover, transcription of both prokaryotic and eukaryotic genes has been

documented to frequently follow stochastic burst-like kinetic patterns, with relatively

short but intense bursts of transcription being followed by longer inactive periods

during which mRNA levels decay [4, 12-14]. Recent studies suggest that such

bursting is widespread, although the duration of the bursts and intervals can vary

considerably [15]. Mechanistically, expression bursts are dependent on the stochastic

processes of transcription factors and RNA polymerase binding [16]. In line with this

intrinsic stochasticity, single-cell gene expression data typically follows negative

binomial distribution [17]. An important implication of this is that the ubiquitously

used population-wide average values are not accurate representations of the typical

single cell. In terms of understanding the basic biology of gene expression and the

structure of a cell population, these reasons make a strong argument for performing

transcriptomics analyses at the single-cell level, and highlight the need for developing

robust system-wide methods.

Single-cell efforts have also been further motivated by the innumerable potential

applications involved (Figure 1B). An obvious benefit is the possibility to study rare

types of cells, either too limited in number or too sparsely distributed for conventional

bulk transcriptomics [18]. Important examples include early stages of embryonic

development [19] and circulating cancer cells [20, 21]. Another important issue that



can be potentially addressed by single-cell analysis is tissue heterogeneity. Many

biological systems of high medical significance, such as hematopoietic lineages [22]

and neural cells [23], are composed of intermixed differentiated cell types acting in

coordination but employing different molecular pathways. The response of such a

population to a perturbation is likely to be profoundly mixed, and thus data obtained

from bulk methods most certainly blend true single cell transcriptomes and hence will

be challenging to interpret [24, 25]. For example, only selected subsets of blood cells

are likely to react to a vaccine, or cells of heterogeneous tumours can display widely

different responses to a drug. With single-cell transcriptomics, such complex

population structures can be dissected and cells of interest can be studied without the

confounding effects of population-level averaging. Importantly, resolving

heterogeneous populations potentially provides valuable information about transitions

between distinct developmental or activation states.  By identification of cells in

transitional intermediate states one can infer order of regulatory events leading to

cellular state transitions. Thus, while single-cell transcriptomics is still in many ways

a relatively immature field of research in a state of rapid development, it is already

proving its potential and a multitude of research and diagnostic applications are likely

to follow.

RT-qPCR is a sensitive method for targeted analysis of genes of interest

The initial and still widely used way of studying gene expression in single cells is by

quantitative reverse transcription PCR (RT-qPCR). Its sensitivity, precision,

reproducibility, and wide dynamic range has made it a tool of choice for studying

mRNA expression and validating findings from high-throughput studies, in particular

microarrays. In addition to widespread use in research, numerous diagnostic



applications of RT-qPCR have been developed [26]. The mainstream RT-qPCR

strategies are based on real-time optical monitoring of cDNA amplification using

either intercalating dyes [27] or fluorescing hydrolysis probes [28]. As the PCR

reaction is intrinsically scalable, in suitable conditions it allows amplification from

even single-cell quantities, which was demonstrated early for both DNA and cDNA

templates [29, 30]. Accordingly, the standard RT-qPCR workflow is conceptually

applicable to single-cell material without profound modifications.

A  key  consideration  in  these  single-cell  applications  is  prevention  of  loss  of  RNA,

leading to requirement for so-called single-tube protocols where cell lysis, reverse

transcription and PCR are performed without intervening purification steps. This is

made possible by low final concentrations of sample-derived RNase and potential

inhibitory molecules such as salts, urea, heparin, or immunoglobulins [31-33], which

in bulk studies typically require depletion by a dedicated purification, precipitation or

extraction process. The buffers of the subsequent reaction steps, including lysis, are

designed to be compatible and enzymes used in the previous step are inactivated by

heat treatment. The unforgivingly low amount of starting material also sets high

demands on RT efficiency, although absolute efficiency is also gene-dependent [34,

35].  Overall,  many  of  the  technical  considerations  and  pitfalls  are  in  common  with

bulk RT-qPCR assays and include template quality, standardization of the RT

reaction and assay design [31, 36]. The recently proposed MIQE guidelines serve to

draw attention to these critical and often neglected issues and should also be taken

into account in single-cell studies [37].



Unlike microarrays or RNA-seq, single-cell RT-qPCR has the potential for detecting

transcripts without a preamplification step (Table 1). Theoretically, single molecules

can be detected, although reproducible quantification has been reported to require ~20

or more copies per cell, thus limiting the analysis to intermediate to high copy number

mRNAs [32]. Furthermore, without preamplification only a few (≤~10) genes can be

measured simultaneously, as parallel assays require aliquoting of the sample [33].

Taniguchi et al. [35] have proposed a bead-based strategy for immobilizing and

reusing cDNA molecules, thus overcoming the need of aliquoting the sample.

However, the number of possible sequential assays from a single cDNA library

remains relatively small, theoretical output also being limited by instrument time.

The possibilities of single-cell RT-qPCR can be significantly extended by methods

allowing quantitative preamplification of mRNAs independent of gene sequence or

transcript size. These protocols are typically based on the use of poly-dT primers and

exploit either exponential PCR amplification or in vitro transcription-based linear

amplification [38]. Thus, a single cell can provide a virtually infinite supply of cDNA,

making the availability of suitable RT-qPCR assays and relatively high running costs

the limiting factors for sample throughput. However, amplification also leads to

increased noise and can introduce biases and should therefore not be used without

appropriate quality control. Allowing more extensive multiplexing and thus more

powerful experimental designs, preamplification has become a widely used routine

step in single-cell RT-qPCR studies [39-41]. Nevertheless, multiplexing approaches

are ultimately limited by the amount of manual work involved as well as assay costs.

To overcome these limitations, microfluidics-based multiplex assay platforms have

been developed. These include the BiomarkTM Dynamic Arrays (Fluidigm), using



which 96 samples can be interrogated with 96 parallel primer-probe assays [42]. A

key promise of such tools is the potential to uncover novel regulatory relationships

between the genes under investigation [43, 44].

A common pitfall in RT-qPCR workflows is presented by data processing and in

particular normalization. The purpose of normalization is to eliminate bias resulting

from differences in cDNA amounts between samples, associated with unequal loading

of starting material, or unequal losses during sample processing. In single-cell

experiments differences in cell size present an important additional consideration. The

functional activity of mRNAs is ultimately determined by their intracellular

concentration rather than absolute copy number [45]. Thus, including a normalization

step for cell size might improve the biological value of the analysis, especially if the

analysed cells are particularly heterogeneous in size. On the other hand, inappropriate

choice of normalization strategy, based on subjective or otherwise incorrect

assumptions, can lead to biased or downright erroneous results. These considerations

are therefore extremely important in single-cell analysis.

The  primary  output  of  an  RT-qPCR assay  is  the  number  of  PCR cycles  required  to

reach a predefined level of signal, herein referred as quantification cycle (Cq), other

commonly used synonyms, coined by various instrument manufacturers, being

threshold cycle (Ct), crossing point (Cp), and take-off point (TOP). In bulk RT-qPCR

studies normalization is most commonly performed by comparing the measured Cq

values to the corresponding values from so-called reference genes, the expression

level of which is assumed to be constant within the particular experimental model.

The selection of such genes should thus be well justified and preferentially validated



by statistical measures. If possible, multiple reference genes should be

used.  However, at the single cell level the usability of the reference gene approach is

limited by the ubiquitous cell-to-cell variability in gene expression, extending to

traditional reference genes such as Actb [46], Gapdh [45], and Tbp [35]. Nevertheless,

in both yeast and mice many housekeeping genes have been found to be constitutively

expressed at a high level with a less than average degree of variability [47-49].

Of note, single-cell experiments provide an intrinsic means for normalization as the

number of cells is  constant – i.e. one. While this strategy does not take into account

the variability related to differences in cell size, it theoretically allows the measured

Cq values to be transformed into mRNA copy numbers per cell.  However,  as this is

based  on  the  assumption  of  100%  efficiency  in  reverse  transcription  and  PCR

reactions, in practice the Cq data represents the lowest estimate of the possible true

copy number in the cell. Importantly, if the limit of detection for a given experiment

is known, for any assay with Cq values exceeding that limit, the copy number can be

confidently determined as zero. This is a significant conceptual difference to bulk RT-

qPCR studies, wherein such measurements are commonly dismissed as missing

values.  The  limit  of  detection  can  be  determined  by  addition  of  external  RNA  or

cDNA standards to each sample during the lysis step. As such, spike-in standards do

not control for pre-lysis variability, and even more rigorous normalization could

potentially be achieved by use of standards directly injected into the cells.

With  the  possibility  to  measure  absence  of  mRNA species,  and  in  keeping  with  the

model of stochastic burst-like gene expression, multiplexed single-cell RT-qPCR data

frequently contain a high proportion of cells with no mRNAs detected [50].



Importantly, the detection frequency of an mRNA correlates with the overall

population abundance of the transcript, and hence in such cases can be used as a

measure for population-level average expression [33]. Another consideration

following from the stochastic nature of gene expression is that at the single-cell level

biological variability (noise) is significantly greater than the technical variability of

the RT-qPCR methods. Thus, unlike with bulk RNA-seq, resources will in general be

better utilized by maximizing the number of analysed cells instead of performing

technical replicates. Altogether, single-cell RT-qPCR data processing can, in general,

still be considered straightforward compared to the other single-cell transcriptomics

tools. The processed data can often be further analysed by either univariate methods

(with necessary corrections for multiple testing), or multivariate analyses, such as

hierarchical clustering or principal component analysis. In addition, more specialized

probabilistic methods have been proposed

[51].

Global measurements of gene expression in single cells

RT-qPCR has several advantages, but is limited to relatively small numbers of genes

and is impractical to scale above a certain level, even with advanced microfluidic

devices. To perform single cell transcriptome analysis on a global scale, one can use

microarray or RNA sequencing technologies (Table 1). So far, these methods have

mostly been used to screen for candidate genes that are subsequently validated with

other  methods  such  as  RT-qPCR,  flow  cytometry  or  single  molecule  FISH  [45,  47,

52-54]. Each single cell transcriptomic assay experiment, regardless whether is using

microarrays or sequencing, can be divided into the following steps: (1) isolation of



single cells, (2) cell lysis, (3) reverse transcription, (4) amplification of cDNA, (5)

preparation of sequencing libraries, (6) and eventually detection.

<single cell isolation>

The first and sometimes underappreciated step is to isolate single cells. Whereas

many immune cell types naturally exist as single cell suspensions, other cells have to

be dissociated from the tissue. Such treatment is far from trivial as it requires

enzymatic or mechanical approaches that may affect not only the intactness and

viability of cells, but also their transcriptomes.

Historically, in the first single cell mRNA experiments, single cells were manually

selected and picked from the early embryo using micro pipetting [17, 55, 56]. The

advantage of this approach is that particular cells of interest can be selected and cell

losses can be minimized in the process. Suspended single cells can be sorted into

wells of a microtiter plate using FACS [57], they can be separated using microfluidic

devices such as the Fluidigm C1TM [23, 47, 58-61] or they can be encapsulated in

nanoliter droplets (Table 2) [11, 62].

The key advantage of FACS is the possibility to sort for particular subpopulations

using molecular markers. In addition, the intensity of the fluorescence of several

fluorescent markers along with values of forward and side scatter can be recorded for

each cell. This provides useful phenotypic information about protein abundance, cell

size and granularity on top of the single cell transcriptomes [63]. When studying

known, rare cell  types (e.g. blood stem cells) FACS can capture essentially all cells

from the population of interest. The main disadvantage of using FACS to sort single

cells into microtiter plates are the microliter reagent volumes involved, which can be

prohibitively expensive in large-scale experiments as compared to nanoliter volumes



involved in microfluidics and droplet based methods [64]. The Fluidigm C1TM is  a

microfluidic platform that captures single cells (96 or 800 cells per chip) and performs

reverse  transcription  and  amplification  of  cDNA  by  PCR  on  chip.  Since  all  these

reactions are carried out in nanoliter volumes, this leads to lower reagent costs.

Importantly, this platform enables microscopic inspection of each cell upon capture,

which allows identification of positions where multiple cells or debris were captured.

A drawback of the C1TM workflow is the relatively low capture efficiency. To capture

96 cells on C1 TM, one typically requires a starting population of at least 1000 cells,

making the method impractical for rare populations. Another important limitation of

this method is that cells being captured have to be homogeneous in size and

compatible with one of the available capture site sizes (5–10, 10–17, and 17–25

microns in diameter). Nonspherical or sticky cells also do not capture well, but at the

same time, this capture method is much more gentle than FACS, and hence is suited

to delicate cell types such as neurons, megakaryocytes etc.

Recently, droplet-based microfluidics methods have been published, namely inDrop

[62], Drop-Seq [11] followed by launching of similar commercial protocols such as

the ChromiumTM from 10X Genomics [65]. These protocols encapsulate single cells,

or single cells and beads bearing barcodes, in aqueous droplets within a surrounding

oil phase. The droplets can be subsequently fused with other droplets to deliver

reagents to perform lysis, reverse transcription and PCR. Reagent can also be

delivered into droplets using picoinjection [66]. These methods will likely prove

especially useful for surveying cells from different tissues to identify new cell types

and  cell  functions,  as  they  allow  analysis  of  several  thousands  of  cells  in  one

experiment.

Less frequently used methods include laser capture microdissection (LCM), which is



useful for picking cells from a particular position in a tissue. It is low throughput and

does not necessarily guarantee that a single cell, rather than small group of cells is

captured [67, 68]. Finally, nanoliter plates can be used for capturing single cells.

Simply by adjusting the concentration of the cells in suspension, cells can be

deposited and virtually every well will receive zero or one cell [69, 70].

<cell lysis>

Captured cells are lysed by addition of lysis buffer containing detergent to disrupt the

cell membrane. For plant or fungi cells, protoplasts must first be obtained by

enzymatic or mechanical removal of the cell wall. Efficient cell lysis is crucial for

efficient  release  of  RNAs  to  the  reaction  and  for  the  efficiency  of  subsequent

reactions.

<reverse transcription>

In the next step, RNAs are reverse transcribed, and this is a key step for achieving

high sensitivity. A major goal of this stage is to avoid reverse transcribing rRNAs,

which are high-abundance and would dominate any signal from the much lower

abundance mRNAs. Due to the low abundance of mRNAs, common mRNA

purification methods cannot be used. Most protocols for reverse transcription

(SmartSeq [53], STRT-Seq [54], QuartzSeq [71]) use polyT primers that bind to the

polyA  tail  of  mRNAs.  This  way  only  polyadenylated  RNA  species  are  reverse

transcribed.

Alternatively, primers that are specifically designed not to bind to rRNAs can be used

[72]. The disadvantage of this approach is that it may lead to amplification biases

against some mRNAs. Finally, it was shown recently that random hexamer primers



can be used [73, 74], provided reverse transcription is performed at low temperature.

In such conditions, most rRNAs are within folded ribosomes and are not transcribed.

Moving beyond polyA priming would be useful for analyses of non-coding RNAs,

such as circRNAs [74], and also bacterial RNAs, which are not polyadenylated [75].

Second strand cDNA synthesis can be done using the template switching properties of

the reverse transcriptase to minimize detection of partially transcribed species: this

approach is used in SmartSeq [53]. Alternatively, polyA tailing and subsequent

second strand synthesis priming from the polyA sequence can be used, but this leads

to stronger 3’ bias of read coverage over transcripts, meaning that there are more

reads mapping to the 3’ end of the transcript. This originates from incomplete reverse

transcription, as in the first single cell sequencing protocol by Tang and colleagues

and the QuartzSeq protocol [55, 71].

It is estimated that a single cell contains around 10pg of mRNA [53], which will not

produce sufficient cDNA for sequencing library preparation alone, thus the cDNA

must be amplified. There are two main methods of amplification: linear amplification

using in vitro transcription and exponential amplification using PCR. Most protocols

use  PCR  for  amplification:  SmartSeq  [53],  SmartSeq2  [76],  STRT  [54],  the  Tang

protocol  [55],  and  SC3-seq  [77].  The  main  caveat  of  PCR  is  the  fact  that  the

exponential amplification that occurs may distort the relative amounts mRNA

molecules. The alternative approach of in vitro transcription (IVT) was incorporated

into the CEL-Seq [78], CEL-seq2 [79] and MARS-Seq [64] protocols. Amplification

via IVT is linear but it was shown that subsequent in vitro transcription causes



significant  shortening  of  amplified  RNAs  and  thus  only  the  3’  ends  of  mRNAs  are

amplified [80].

The number of molecules in each cell is limited and it is estimated that only 10% of

them are transcribed to cDNA with current technologies [81]. The molecules that are

transcribed are selected stochastically. Due to Poisson sampling, the expression level

estimation may not represent the original set of molecules from the cell, especially for

lowly abundant mRNA species leading to so-called “drop outs”. Computational

approaches are being used to alleviate their effects [82, 83].

<library preparation and detection>

Microarrays were initially used for detection of amplified cDNA [71, 84-90], but as

they have lower robustness, low sensitivity, limited dynamic range and require large

amount of cDNA for hybridization they are now completely replaced by sequencing

for the single cell transcriptomic applications [91, 92].

Sequencing libraries are prepared from amplified cDNA using the same protocols as

for conventional bulk mRNA sequencing experiments and can be sequenced on any

sequencing platform. Both SOLID and standard Illumina library preparation

protocols, involving Covaris shearing, ligation of adapters and library amplification

were used, but the most common is the NexteraTM kit  from  Illumina  that  uses

enzymatic Tn5 mediated tagmentation as well as home-brew version of this kit [53].

All RNA sequencing methods allow multiplexing with barcoded adapters at the stage

of library preparation. This means that barcoded adaptors can be ligated to the cDNA

that results from preamplification. Both the standard library preparation kit and the



NexteraTM kit  from  Illumina  and  library  preparation  kits  for  SOLIDTM system have

barcoding options. Barcoding before the stage of library preparation allows pooling

samples to cut down costs of reagents and dramatically reduces sample handling. The

STRT method, as well as droplet methods depend on self-designed primers, and cell-

specific barcodes are already introduced at accordingly, the preamplification and

reverse transcription step of the protocol [78]. Similarly in CEL-Seq and CEL-Seq2

barcodes are introduced during in vitro transcription stage [79].

Single cell experiments require internal controls

Single cell RNA sequencing presents challenges that are absent in conventional

population level approaches. Distinguishing biological from technical variation in

situation where technical replications are difficult to perform, as there are no two

identical cells, is challenging. Furthermore, the sensitivity of the protocols is limited,

which leads to so called “drop-outs”, i.e. false negatives values for mRNAs that are

present in low amounts but are not being detected. Thus, it is important to measure

technical variation to understand which genes can be quantified accurately, and to

minimize the rate of false positives in differential expression analysis.

First, technical noise arises at all stages of the protocol, it originates from insufficient

lysis, different efficiencies of the reverse transcription and there may be a higher

chance for some species of mRNA to be transcribed than others depending on their

sequence and length of their polyA tails. These biases have not yet been sufficiently

systematically investigated. Secondly, there is variation in the measurement from

batch to batch. This may be due to differences between operators, batches of reagents

or other factors. Thirdly, single cell RNA sequencing data has the same biases as



conventional RNA sequencing, such as PCR amplification bias, sequence bias during

fragmentation and coverage biases. Importantly, more rounds of amplification are

required than in bulk RNA sequencing providing more opportunities for the

introduction of base substitutions. If amplification is performed using PCR, then PCR

amplification biases are also present. It was also reported that reverse transcription

with poly-dT priming leads to 3’ bias in read coverage [53, 93]. This is also the case

in bulk-level experiment that uses poly-dT priming.

Technical variation between cells can be estimated using mRNA spike-ins that

undergo all the steps of the protocol together with the sample. In early microarray

experiments, a set of four B. subtilis mRNAs  (Lys,  Dap,  Phe,  Thr)  spiked-in  at

different copy numbers have been used to measure detection limits. ERCC (External

RNA Control Consortium) Spike-In is the most commonly used, commercially

available set of control molecules and it consists of 92 synthetic polyadenylated

mRNA species of different known concentrations [94]. These were designed so as to

lack sequence similarity to any known eukaryotic genome. It allows one to measure

the sensitivity and accuracy of each experiment, as well as perform correction of

some batch effects. It is also used for estimation of the extent of technical noise [95].

ERCC spike ins can be used to produce a calibration curve to estimate the absolute

number of molecules in each cell [85, 86, 96]. It should be noted that ERCC

molecules do not go through cell  lysis and are not associated with proteins,  thus are

not subjected to all the processes that cellular mRNAs are. Furthermore, they are not

capped, and they have very short polyA tails in comparison to endogenous mRNAs

and due to their easy degradation during normal handling they it is difficult to ensure

accurate input concentrations [97]. SIRVs (Spike-In RNA Variant Mixes, Lexogen)



are an alternative or complementary to ERCCs spike-in mix. They are designed to in

addition to abundance control splicing patterns of RNAs, i.e. the spike in consists of

69 different transcripts that mimic splice variants of 7 genes.

Interestingly, one can also use minute amounts of total RNA coming from a species

alien  to  the  species  of  interest  as  a  spike-in.  This  approach  provides  thousands  of

technical data points across the whole dynamic range of expression- thereby ensuring

that technical noise levels can be well quantified across the whole dynamic range

[95]. The drawback of this approach is that a substantial number of reads goes to

technical noise control, entailing significant costs. Technical variability within an

experiment can be also estimated by performing pool and split experiments [98, 99].

While the use of spike-in RNA is relatively commonplace with protocols based on

cell sorting or microfluidic cell capture devices, this strategy is less frequently used in

droplet-based workflows. One limitation is that the spike-in molecules will be

deposited also in partitions that do not contain cells, and therefore unnecessarily

consume sequencing capacity. In addition, reads from such empty droplets might

hinder detection of true single cells from the data. Instead of spike-in RNA, droplet-

based workflows typically incorporate unique molecular identifiers (UMIs), which are

highly diverse, random, unique barcodes for tagging each cDNA molecule generated

during reverse transcription [54, 81, 100, 101]. They enable one to count molecules

by counting the number of unique UMI sequences associated with each transcript

instead of counting the number of sequencing reads that map to a particular transcript

(Figure 2). This can ameliorate PCR biases [96]. The main disadvantage of UMIs is

that until now they have only been used for methods that count the 3’ end of



molecules. In addition, to estimate the number of molecules one has to sequence

deeply.

Choosing the right protocol depends on the biological system under investigation

The optimal single cell RNA sequencing application depends upon the desired

application. Each of the single cell methods described above has advantages and

disadvantages as summarized in Table 1. Factors to be considered include throughput,

sensitivity and robustness, transcript coverage, cost and handling (comprehensive

sensitivity and robustness comparison of methods was performed by [97]). For

example, for discovery of new cell types, tag-counting droplet methods with high

throughput are most advisable, while for analysis of allelic expression or splicing one

must use a protocol that provides sequencing coverage of the entire length of mRNA

molecules.

Future outlook

Single cell transcriptomics brings both new opportunities and new challenges.

Measuring gene expression at the single cell level provides a huge amount of

information, which requires adequate data analysis methods. In last couple of years

several different approaches for analysis of single cell sequencing data emerged and

still new computational methods are being developed to access even more information

from single cell data [102, 103].

The current efforts of many groups are focused on approaches for ordering cells along

a process in so-called ‘pseudotime’ to describe transitions between cell states and

cellular decision points where cells commit on one of available states [104-110]. As



single cell data have and even with improvement of technology will inevitably suffer

from false negatives due to drop out effect, computational approaches to include this

effect into models and analysis are crucial [83].

Furthermore, there is room for improvement of experimental side of single cell

methods. One issue that should be addressed is sensitivity and robustness, with more

efficient chemistry and RNAse-free reagents we may be able to detect more genes and

limit the drop-outs. Secondly, sample size, i.e. the number of single cells sequenced is

crucial to obtain statistical power and to observe rare cell types. Further developments

are needed to increase throughput [111, 112], simultaneously allowing multiplexing

different biological samples in one run [113]. Thirdly, further developments are

needed to streamline single cell sequencing of non-polyadenylated RNA species, to

detect bacterial RNA as well as eukaryotic ncRNAs and combine it with other

measurements in the same cell, such as imaging, genome and epigenome analysis or

protein abundance quantification [114].

Finally, it is important to bear in mind that single cell experiments, though very

informative and can help elucidate many crucial biological problems, are only part of

the equation. Localization of mRNA is as important as its abundance, hence there is a

lot of effort to develop protocols that retain spatial information about the transcripts

(TIVA [115], FISSEQ [116, 117] or padlock probe-based methods [118]. Cells are

part of complex tissues and interact with each other both physically and by using

different chemical signals, thus understanding single cells in the context of complex

tissues will be the next challenge for single cell research.



Figure legends

Figure 1. Single cell methods provide insight into the nature of a population, its

subpopulation structure and heterogeneity.

A) A  conceptual  example  is  the  switch  of  cells  from  state  1  to  state  2  in  this

schematic diagram. This process could be either a binary or gradual switch in

transcriptomic state. While population methods cannot distinguish between the

two states, single cell methods can discriminate between these two transitions.

B) Examples of biological questions addressed with scRNA-seq.

Figure 2. Molecular counting with Unique Molecular Identifiers (UMIs). UMIs are

random n-mer oligonucleotide sequences included in the reverse transcription

primers. As the number of different UMI sequences exceeds the number of copies for

any single transcript species, the UMI sequences can be used for quantifying the

number of molecules that were successfully captured and amplified, and thus control

for amplification biases associated with PCR-based sample preparation.

Table 1. Comparison of approaches for single-cell transcriptome characterisation.

Table 2. Comparison of scRNA-seq platforms.
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