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Abstract
Background: Deciphering the meaning of the human DNA is an outstanding goal which would revolutionize
medicine and our way for treating diseases. In recent years, non-coding RNAs have attracted much attention and
shown to be functional in part. Yet the importance of these RNAs especially for higher biological functions remains
under investigation.

Methods: In this paper, we analyze RNA-seq data, including non-coding and protein coding RNAs, from lung
adenocarcinoma patients, a histologic subtype of non-small-cell lung cancer, with deep learning neural networks and
other state-of-the-art classification methods. The purpose of our paper is three-fold. First, we compare the
classification performance of different versions of deep belief networks with SVMs, decision trees and random forests.
Second, we compare the classification capabilities of protein coding and non-coding RNAs. Third, we study the
influence of feature selection on the classification performance.

Results: As a result, we find that deep belief networks perform at least competitively to other state-of-the-art
classifiers. Second, data from non-coding RNAs perform better than coding RNAs across a number of different
classification methods. This demonstrates the equivalence of predictive information as captured by non-coding RNAs
compared to protein coding RNAs, conventionally used in computational diagnostics tasks. Third, we find that feature
selection has in general a negative effect on the classification performance which means that unfiltered data with all
features give the best classification results.

Conclusions: Our study is the first to use ncRNAs beyond miRNAs for the computational classification of cancer and
for performing a direct comparison of the classification capabilities of protein coding RNAs and non-coding RNAs.
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Background
Lung cancer is one of the most common cancers in
humans worldwide among both men and women, as well
as the leading cause of cancer-related deaths [1]. There
are two major types of lung cancer, non-small-cell lung
cancer (NSCLC) and small-cell lung cancer and adenocar-
cinoma is a subtype of NSCLC and themost common type
in patients who never smoked [1]. In recent years, next-
generation sequencing (NGS) technologies have opened
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an experimental door for the systematic study of complex
diseases, including lung cancer, by allowing the generation
of high-throughput data on all relevant molecular levels
[2, 3]. However, one problem we are facing in this context,
is that we are still discovering new variables that might be
of crucial importance in understanding the organizational
principles of the molecular machinery. For this reason is it
not surprising that molecular and genomic medicine are
still at its infancy [4–6]. One example for such players are
non-coding RNAs (ncRNAs) [7–9].
Non-coding RNAs (ncRNAs) is a broad class of tran-

scripts, consisting of well known transcripts with struc-
tural (rRNAs, tRNAs, snRNAs, snoRNAs, etc.) and
regulatory (miRMAs, siRNA, piRNAs, etc.) roles, and
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transcripts whose functions remain largely unknown
[10–12]. The latter includes sense/antisense transcripts,
ranging in length from 200 bp to 100 kb. Collectively
they are called long non-coding RNAs (lncRNAs) (Wang
et al., 2011) and sometimes referred to as genomic ’dark
matter’ [13, 14]. Large-scale evolutionary properties of
the bulk of lncRNAs [15] and the existence of hundreds
of experimentally characterized lncRNAs [16, 17] suggest
that many of them have a well-defined biological func-
tion [12, 13]. The catalogue of the functionally annotated
part of the non-coding transcriptome (70-90% of tran-
scribed matter [10, 18, 19] is constantly growing, however,
at the moment the total number of non-coding RNAs is
unknown. Recent estimates suggest that there are thou-
sands in the human genome [20, 21].
Among the many categories of ncRNAs the most well

understood aremiRNAs (also calledmicroRNAs), siRNAs
and piRNAs, which guide effector Argonaute proteins to
genomic loci or target RNAs in a sequence-specific man-
ner. lncRNAs, on the other hand, are implicated mostly in
the regulation of gene expression and many are function-
ally validated by now to be involved in different cellular
and developmental pathways [22, 23]. Dysregulation of
lncRNAs is observed in many human diseases, includ-
ing colon cancer, breast cancer, leukemia, ischaemic heart
disease, Alzheimer’s disease and some others (see [20]
for a review). The ever-growing experimental evidence
implicating ncRNAs regulatory roles in many biological
processes has led to the idea of using ncRNAs as disease
biomarkers, e.g., for diagnostic purposes [24].
Regarding the classification of disorders, lncRNAs have

been used to distinguish different subtypes in human
breast cancer and glioblastoma [25, 26]. However, all of
these studies used unsupervised hierarchical clustering or
similar methodology for obtaining the class predictions
rather than automized supervised methods [27].
Our paper contributes to these diagnostic investigations

by studying the classification capabilities of protein cod-
ing and non-coding RNAs from lung cancer. Specifically,
we are using RNA-seq data from lung adenocarcinoma
patients [28] generated with an Illumina HiSeq 2000 plat-
form containing information about patients with lung
cancer and matched control samples from adjacent nor-
mal tissue. The availability of RNA-seq data allows us to
obtain information about protein coding RNAs and non-
coding RNAs. We utilize this opportunity investigating
the predictive abilities of both data sources by studying the
classification of the lung cancer patients.
We perform this analysis for a number of different state-

of-the-art classification methods, including deep learning
neural networks, decision trees, random forrests and sup-
port vector machines [29–34]. We study the dependency
of thesemethods on amultitude ofmodel parameters, e.g.,
the neural network architecture, the learning algorithms

or the kernels. In addition, we study the influence of fea-
ture selection on the results. Our results will shed light
on the discriminatory information content of ncRNAs in
comparison with coding RNAs.
For our classification task, we make use of recent

progress in deep learning models based on neural net-
works [31]. Despite the fact that neural network models
are known since many decades [35–40] recent advances
in the learning methodology revived them [31]. Specifi-
cally, in contrast to classic neural network models, deep
neural networks can have a large number of hidden lay-
ers. Each of these layers builds a complex representa-
tion of the previous layers as a result from nonlinear
transformations [41].
Deep learning models have been successfully used in

many application areas, most notably in image recogni-
tion [41, 42] and speech recognition [43]. In computa-
tional biology, deep learning is still at an early stage and
the studied data come mostly from the DNA-level. For
instance, alternative splicing and protein binding patterns
have been studied [44–46]. For analyzing gene expres-
sion data and especially for the classification of cancer
very little is know. One of the few studies in this area is
from [47]. They used data from DNAmicroarrays to clas-
sify lung adenocarcinoma and squamous cell carcinoma.
However, they used not only the classification data set but
additional data from further disease stages to train their
deep learning model in the unsupervised phase. This is
possible since during the unsupervised training phase no
labels are needed nor used. A more conventional anal-
ysis has been conducted by [30]. They used deep forest
models for the classification of various cancer types based
on gene expression data from both DNA microarray and
RNA-Seq. For this Stacked Denoising Autoencoders in
combination with ANNs and SVMs have been used. How-
ever, neither of these studies investigated ncRNAs, only
coding RNAs have been analyzed.
Our paper is organized as follows. In the next section we

present details about the lung cancer data and the meth-
ods for our analysis. Then we present our results and a
discussion of these. We finish the paper with concluding
remarks.

Methods
Lung cancer data
For our analysis, we are using RNA-seq data from lung
cancer in Koreans [28]. The data were generated with
Illumina HiSeq 2000 and contain matched information
about 62 subjects with lung adenocarcinoma and 62
subjects from adjacent normal tissues (control samples).
These samples are taken from cancer tissues whose driver
mutations were not detected by screening tests (Sanger
sequencing for EGFR and for KRAS point mutations and
fluorescence in situ hybridization for EML4-ALK fusion);
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see [28] for details. Access to the data is provided via
Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.
nih.gov/geo/), accession number GSE40419.
The processing pipeline for the data include the fol-

lowing steps [48]: The dataset [28] was extracted from
SRA archive [49]. The samples were aligned using Bowtie2
[50], with 1 mismatch to the hg38 human genome [51].
The reads were summarized to count vectors with sam-
ExploreR [48, 52] and normalized with RPKM (Reads Per
Kilobase Million - also used in [28]) . RefSeq annotation
was taken for reads mapping procedure. Then transcripts
that were not expressed or at a very low intensity were
removed. On a technical note, we would like to remark
that we repeated our analysis by using TPM (Transcripts
Per Kilobase Million) instead of RPKM but found no
noticeable differences in our results.
TopHat and STAR would be alternative choices instead

of Bowti2, which are quite commonly used in transcrip-
tomics studies. Their major difference from BowTie2 is
an opportunity to account for reads in splice-affected
regions. However, in [53] it was argued that these reads
make no impact on transcript abundance quantifica-
tion, and therefore, for the purpose of Differential Gene
Expression Bowtie2 alignment is an applicable procedure.
Using the human genome annotation databases Ref-

erence Sequence (hg38) as reference to map RNA
sequencing reads to protein coding RNAs, we find expres-
sion levels for 36,742 RefSeq genes. After filtering out
redundant entries this results in 22,427 gene transcripts.
Removing genes with low expression values (maximum
expression smaller than 3 RPKM) or genes with a small
standard variation results in 12,360 genes corresponding
to protein coding RNAs we used for our analysis.
For a similar analysis for non-coding transcripts we find

3124 non-coding RNAs (ncRNAs) for RPKM and 1398
ncRNAs for TPM (16828 before filtering). That means
the majority of ncRNAs is expressed at a very low level.
Among these the most important ncRNAs are [54]:

• microRNA: miRNA
• ribosomal RNA: rRNA
• small interfering RNA: siRNA
• long non-coding RNAs: long ncRNAs or lncRNAs
• small nuclear ribonucleic acid: snRNA

Error measures
For our analysis, we need to assess the performance of a
binary classification. The results form such a classifica-
tion can be summarized by a confusion matrix shown in
Table 1.
From the confusion matrix in Table 1 one can derive the

following three performance metrics [55, 56].

• Accuracy (A) = TP+TN
TP+FP+FN+TN

Table 1 Confusion matrix summarizing the results for binary
classifications

True class

Positive Negative

Predicted class Positive True positives (TP) False positives (FP)

Negative False negatives (FN) True negatives (TN)

• True positive rate (TPR) (also called sensitivity)
= TP

TP+FN• True negative rate (TNR) (also called specificity)
= TN

TN+FP

For our analysis a true positive (TP) indicates a correctly
predicted lung adenocarcinoma sample and a true nega-
tive (TN) a correctly predicted control sample. Hence, the
true positive rate is with respect to lung adenocarcinoma
and the true negative rate for the control samples. The
true positive rate (TPR), also called sensitivity, evaluates
the proportion of all positives correctly identified and the
true negative rate (TNR), also called specificity, evaluates
the proportion of all negatives correctly identified. With
respect to the confusion matrix the TPR and the TNR
are symmetrically defined by exchanging the class labels.
Overall, the TPR has a focus on positive labels which
correspond in our case to lung adenocarcinoma patients
and the TNR has a focus on negative labels correspond-
ing to control patients. In contrast, the accuracy assesses
the overall classification performance for both classes in a
weighted manner. In addition, we evaluate the area under
the receiver operator characteristics (AUROC) curve [57].
For the construction of a ROC curve one needs pairs of
TPR and FPR values. These values are obtained for differ-
ent threshold parameters of the classifier. Practically, it is
sufficient to rank all values for the samples and use suc-
cessively different threshold values. Technical details are
described in [55].
Due to the fact that the number of samples in both

classes is exactly the same, none of our measures suffers
from negative consequences of imbalanced classes [58].
For assessing the variability of our results, we use a

10-fold cross validation (CV) in order to estimate the stan-
dard errors of the performance measures. CV splits the
data into 10-folds whereby one fold is used for training
(estimation of parameters of the models) and 9-folds are
used for testing. CV is a resampling method that is the
gold standard for error estimations in order to avoid a high
bias [59, 60].

Deep belief networks
For our analysis, we are using Deep Belief Networks
(DBNs) [31]. DBN models are trained in two sepa-
rate phases. In the first phase, a Restricted Boltzmann
Machine (RBM) is used to initialize the model, and in the
second phase a supervised method is used for tuning of

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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the parameters [61]. These steps are called pre-training
phase and fine-tuning phase. For the fine-tuning we are
using the stochastic gradient descent either in combination
with the basic backpropagation (Bprop) algorithm or the
resilient backpropagation (Rprop) algorithm, whereas the
resilient backpropagation (Rprop) algorithm is a more
efficient, faster variant of the Bprop.
In the following, we describe the pre-training and fine-

tuning steps briefly.

Unsupervised pre-training
In principle, it is possible to learn neural network models
solely by supervised learning methods skipping a pre-
training step entirely. However, it has been shown that
pre-training with a suitable initialization of the model
parameters, i.e., the weights of the network, can make
the supervised learning step much faster and improve
the overall performance [41]. The Restricted Boltzmann
Machine (RBM) has been introduced for this pre-training
step providing for this an unsupervised initialization of
the parameters [31, 62]. This allows the training of deep
architectures, i.e., networks with many hidden layers, that
can achieve better performances than shallow architec-
tures with only one hidden layer.
Technically, the pre-training step of DBNs consists in

stacking RBMs, so that the next RBM in a chain is trained
by using the previous hidden layer as its input layer, in
order to initialize parameters for each layer. In previ-
ous studies this approach has been found to be efficient
[63]. Furthermore, this allows the order of the layers to
be trained to be chosen freely. For example, one can
train the last layer first and after a certain number of
epochs the preceding layers can be trained [31]. For our
analysis, we are using a Restricted Boltzmann Machine
model with binary units and the contrastive divergence
(CD) algorithm for approximating the log-likelihood of
the RBM.

Supervised fine-tuning
In the supervised training step the parameters of the
model are optimized by fine-tuning the model. For this
step, the class labels of the training data are used, which
makes this step supervised. In contrast, the pre-training
step does not make use of these labels and for this reason
is unsupervised.
The resilient backpropagation (Rprop) algorithm is a

motified version of the backpropagation algorithm. The
purpose for introdicing this algorithmwas to speed-up the
backpropagation (Bprop) algorithm [64]. There are sev-
eral realizations of Rprop available [65]. However, for our
study, we are using the iRprop+ algorithm. iRprop+, as
well as all other realizations, are available in the darch
package [66]. In addition to iRprop+, we are using the
basic backpropagation algorithm (Bprop) for reasons of
comparison.

Network architecture
The architecture of the neural network is a parameter of
the model that needs to be defined. From previous studies
it is known that there is not one type of network architec-
ture that is best under all conditions but the choice of the
architecture is data and problem dependent. For instance,
some studies use a decreasing architecture (the number of
neurons in the hidden layers decreases) [63], whereas oth-
ers use an increasing architecture [67] or even a constant
architecture [68]. This implies that there is no consensus
for deep learning networks about the shape of the archi-
tecture. For this reason, we were testing a vast number of
different network architectures to find the best one for our
problem. In the “Results” section, we provide information
about the architectures we were testing.

Results
In the following, we will analyze RNA-seq data from lung
cancer patients in two ways. First, we will only use gene
expression values from protein-coding RNAs correspond-
ing to mRNAs. Second, we will only use gene expression
values from non-coding RNAs (ncRNAs) including miR-
NAs.

Protein-coding genes
The RNA-seq data for our analysis consist of 62 samples
from lung adenocarcinoma and 62 samples from adja-
cent normal tissues corresponding to control samples. For
our first analysis will only use gene expression data from
protein-coding genes. For our data set this corresponds
to 12360 mRNAs (genes). We will use these data for a
binary classification separating adenocarcinoma samples
from control samples. The results of this classification are
summarized in Table 2.
Our results are interesting for several reasons. First,

the DBN classifier in combination with SVM or alone
outperform the SVM, decision tree (DT) and random for-
rest (RF) for almost all combinations. Second, Bprop and
Rprop perform similarly with only a slight advantage for
Rprop. This is somehow surprising because it is know that
Rprop performs in general better than Bprop. Third, the
deep learning classifiers outperform the SVM but only
slightly.
In Table 3 we show some examples for the further con-

figurations we studied for DBNs and SVMs. The best
results are color highlighted. Overall, the architecture of
the DBN seems to tolerate a large variability in the num-
ber of hidden layers as well as their sizes. This hold for
both algorithms Bprop and Rprop. Interestingly, repeat-
ing the above analysis by using various feature selection
mechanisms we did not find a beneficial effect for the deep
learning model, in contrast, the performance decreases.
Similar results hold also for the SVM. Only the deci-
sion tree and random forrest classifiers benefit somewhat
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Table 2 Summary of the best classification results for lung cancer

Classifier A % TPR % TNR % AUROC %

Task: AC vs N (protein-coding)

DBN + Bprop 95.65 ± 0.13 97.90 ± 0.25 93.39 ± 0.16 95.64 ± 0.19

DBN + Bprop + SVM 94.19 ± 0.11 95.16 ± 0.50 93.23 ± 0.22 94.19 ± 0.36

DBN + Rprop 95.73 ± 0.17 98.39 ± 0.50 93.06 ± 0.34 95.72 ± 0.42

DBN + Rprop + SVM 95.97 ± 0.50 98.39 ± 0.52 93.55 ± 0.50 95.97 ± 0.51

SVM 93.66 ± 0.81 92.66 ± 0.87 94.66 ± 0.91 93.66 ± 0.89

DT (100 genes) 89.33 ± 1.27 88.00 ± 1.31 88.16 ± 0.93 88.08 ± 1.12

RF (500 genes) 94.50 ± 0.62 92.33 ± 0.67 96.16 ± 0.59 94.24 ± 0.63

Literature A % features samples

SVM [69] 95.30 44 genes 445 AC & 19 N

SVM [70] 91.00 12 genes 73 AC & 80 N

Only RNA-seq data from protein-coding genes were used. The best classifier is highlighted in green. In addition, for comparison reference results from the literature are
shown, highlighted in blue

from a feature selection and we obtain for 100 genes the
best results for a decision tree and for 500 gene the best
results for a random forrest classifier. However, the bene-
fit for both methods is moderate because without feature
selection the accuracy of both classifiers drops by only
2.5%.
In order to compare our results with previous findings,

we performed a literature search. From this we found two
related studied, the results are shown in Table 3 color
highlighted in blue. Specifically, in [69] a SVM was used
to classify 445 adenocarcinoma (AC) and 19 normal (N)
samples from RNA-seq data using 44 gene features. Also
in [70] a SVM was used. In their case, 73 adenocarci-
noma (AC) and 80 normal (N) samples from RNA-seq

data were classified using 12 gene features. Overall, we
observe that our results are competitive and even provide
slightly better results.
There are further studies about the classification of

lung cancer, but they are less close to our setting. For
instance, in [71] lung adenocarcinoma with normal lung
tissue samples have been compared. However, the data
set they used contained only 5 normal samples in total.
This is from a statistical point of view highly problematic
because the number of normal samples in the training sets
seems far too small. The accuracy values they obtained
were 97.2% (SVM), 97.2% (Radial basis function Neu-
ral Nets), 97.2% (Multi-layer perceptron), 95.8% (Bayesian
network), 94.4% (J48 decision tree) and 95.8% (random

Table 3 A: DBN results for the RNA-Seq data set. B: SVM results for the RNA-Seq data set

A.

DBN DBN and SVM

Model Architecture A % TPR % TNR % A % TPR % TNR %

DBN + Bprop A-500-250-100-1 95.48 ± 0.25 98.06 ± 0.40 92.90 ± 0.36 94.13 ± 0.27 97.58 ± 0.27 91.94 ± 0.34

DBN + Bprop A-100-1 95.65 ± 0.13 97.90 ± 0.25 93.39 ± 0.16 94.19 ± 0.11 95.16 ± 0.50 93.23 ± 0.22

DBN + Rprop A-5-10-1 95.73 ± 0.17 98.39 ± 0.50 93.06 ± 0.34 95.89 ± 0.08 98.39 ± 0.50 93.39 ± 0.16

DBN + Rprop A-50-1 95.16 ± 0.50 98.39 ± 0.50 91.94 ± 0.50 95.97 ± 0.50 98.39 ± 0.50 93.55 ± 0.50

Task: AC vs N; non-coding, A = 3124

DBN + Bprop A-2000-1000-500-1 96.77 ± 0.50 100 ± 0.50 93.55 ± 0.50 95.16 ± 0.50 96.94 ± 0.16 93.39 ± 0.16

DBN + Bprop A-100-1 95.97 ± 0.50 100 ± 0.50 91.94 ± 0.50 95.48 ± 0.13 97.42 ± 0.26 93.55 ± 0.50

DBN + Rprop A-5-10-1 96.05 ± 0.22 98.39 ± 0.50 93.71 ± 0.45 96.45 ± 0.13 98.06 ± 0.22 94.84 ± 0.22

DBN + Rprop A-50-1 94.35 ± 0.50 100 ± 0.50 88.71 ± 0.50 95.48 ± 0.13 98.39 ± 0.50 92.58 ± 0.26

B.

Radial Linear

Data Features A % TPR % TNR % A % TPR % TNR %

Protein-coding 12360 93.66 ± 0.81 92.66 ± 0.87 94.66 ± 0.91 93.00 ± 0.89 90.00 ± 0.89 96.00 ± 0.85

Non-coding 3124 91.41 ± 0.97 88.00 ± 0.99 94.83 ± 0.56 93.91 ± 0.89 90.50 ± 0.73 97.33 ± 0.72

The best results are shown in bold
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forest). These results were obtained for 917 features. By
using features selection mechanism reducing the dimen-
sion to 50 they were able to further improve the results
for some methods. However, also these improvements are
only very moderate.
Another study by [72] used 86 lung adenocarcinomas

samples and 10 non-neoplastic samples, but no controls.
They tested two different methods and achieved for both
100% accuracy using 813 and 9 features respectively. Also
the study by [73] did not use normal samples, but com-
pared 150 lung adenocarcinomas samples with 31 malig-
nant pleural mesothelioma for expression data from DNA
microarrays. Comparing seven different methods they
found accuracy values between 96.13% (decision tree) and
99.45% (SVM). For the decision tree 3 features have been
used and for the SVM12533 (no feature selection has been
applied). The same data set has been used in several other
studies, e.g., in [74] in comparison with 9 different classi-
fiers and they found a SVM with linear kernel to perform
best with an accuracy of 98.13% for 20 feature genes and
in [75] with a two-gene classifier (TGC) based on finding
optimal cuts they reached 93% with 2 genes as features.
We want to highlight that in addition to the differences

mentioned above, all of these less close studies used DNA
microarray data but no RNA-seq data.
Regarding the application of deep learning classifiers,

in [47] samples from adenocarcinoma and squamous cell
carcinoma were compared with various deep learning
methods. They obtained accuracy values ranging from
87.5 to 93.33%. The best performing method utilized a
PCA for dimension reduction as input for an one or
multi-layered sparse autoencoder connected to a SVM
(Gaussian kernel) as classifier. It is important to highlight
that in addition to the data mentioned, they used further
gene expression data from lung cancer patients for their
unsupervised learning phase to improve the general learn-
ing behavior. This included also lung cancer patients with
other tumor types than adenocarcinoma or squamous cell
carcinoma. Such data could be used because in the unsu-
pervised phase for learning the autoencoder the labels are
ignored. We found only one further study that applied
deep learning to gene expression data fromDNAmicroar-
ray [76], but not from lung cancer. However, also in [76]
a feature selection mechanism was used (Infinite Feature
Selection [77]) selecting 500 genes as input for the deep
learning models.
As a result from this literature overview its seems that

our study is the first to investigate the classification of
deep learning classifiers without feature selection.

Non-coding RNAs
In this section we are repeating a similar analysis as in
the previous section, however, with one important differ-
ence. Instead of using RNA-seq data from genes coding

for proteins we will use RNA-seq data from genes that
do not code for proteins (non-coding genes) leading to
non-coding RNAs. In our data set, we have in total 3124
non-coding RNAs.
Our results are summarized in Table 4. This time all

configurations of the DBNs outperform the SVM, decision
tree and random forrest classifier clearly. Interestingly,
learning with Bprop is more beneficial than using Rprop.
A possible explanation for this is that the non-coding data
set has distinctly less features than the data set for cod-
ing RNAs. The difference is about a factor of 4 (3.96 =
12360/3124). Hence, one can use more complex network
architectures that are learnable.
In Table 4, we included also three results from the

literature (highlighted in blue) that performed a com-
parable analysis. In [78] a K-nearest neighbors (KNN)
classifier was used for 19 miRNAs to classify 12 adeno-
carcinoma (AC) patients from 10 controls (N). In [79]
a nearest shrunken centroids (NSC) classifier has been
used for 38 miRNAs. For their analysis they use 123 carci-
noma (C) samples and 123 controls (N). The carcinomas
class included adenocarcinoma, squamous-cell carcinoma
and small-cell carcinoma. Similarly, in [24] a compound
covariate predictor (CCP) has been applied to 43 miR-
NAs found to be differentially expressed. However, as one
can see from Table 4 all of their classification results were
worse than ours.
Recently, it was shown that information about the pres-

ence and absence of miRNA isoforms (isomiRs) can be
used to discriminate between 32 cancer subtypes [80]. The
average sensitivity of a SVM classifier trained on RNAs-
seq data was 90%, and between 80-100% for data sets
from diverse platforms (Affimetrix miRNA Array, AVI
SOLID sequencing) [81]. Of note, the classifier differen-
tiated between lung adenocarcinoma and lung squamous
cell carcinoma [80].
All of the results from the literature have in common

that they all used feature selection and they all performed
worse than our best results. Also to the best of our knowl-
edge there is no study that included ncRNAs beyond
miRNAs in their analysis.

Comparison and feature selection
Next, we are comparing the results we obtained for dif-
ferent classification methods (here RF: random forest,
DT: decision tree). In Fig. 1a-c we show a summary of
results for the coding RNAs (red lines) and non-coding
RNAs (green lines) for accuracy, true positive rate and
true negative rate.
Overall, the accuracy values for data from non-coding

RNAs are for all compared classification methods higher
than for data from coding RNAs (Fig. 1a). The differences
are not large but sufficient to demonstrate that the pre-
dictive abilities of non-coding RNAs are at least as good
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Table 4 Summary of the best classification results for lung cancer

Classifier A % TPR % TNR % AUROC %

Task: AC vs N (non-coding)

DBN + Bprop 96.77 ± 0.50 100 ± 0.50 93.55 ± 0.52 96.77 ± 0.51

DBN + Bprop + SVM 95.16 ± 0.12 96.94 ± 0.16 93.39 ± 0.16 95.15 ± 0.16

DBN + Rprop 96.05 ± 0.22 98.39 ± 0.50 93.71 ± 0.45 96.05 ± 0.48

DBN + Rprop + SVM 96.45 ± 0.13 98.06 ± 0.22 94.84 ± 0.22 96.45 ± 0.22

SVM 93.91 ± 0.89 90.50 ± 0.73 97.33 ± 0.72 93.91 ± 0.73

DT 85.83 ± 0.97 84.66 ± 0.93 87.00 ± 0.91 85.83 ± 0.93

RF (500 genes) 89.03 ± 0.77 86.16 ± 0.72 91.83 ± 0.89 88.99 ± 0.81

Literature A % Features Samples

KNN [78] 85.00 19 miRNAs 12 AC & 10 N

NSC [79] 69.00 38 miRNAs 123 C & 123 N

CCP [24] 91.00 43 miRNAs 104 C & 104 N

Only RNA-seq data from non-coding RNAs were used. The best classifier is highlighted in green. In addition, for comparison reference results from the literature are shown,
highlighted in blue

as for coding RNAs for the diagnostics of lung adeno-
carcinoma. The fact that this holds independently of the
used classification method is an indicator for the robust-
ness of this finding irrespectively of the specific statistical
methodology.
Due to the fact that deep learning networks do not

require a feature selection mechanisms for reducing the
dimension of the input data we did not use such a mecha-
nism as a preprocessing step for our analysis so far. How-
ever, now we want to study the effect of feature selection
[82, 83] in a systematic way.
In Figs. 2, 3, 4, and 5 we show results for the effect of dif-

ferent feature selection mechanisms. Specifically, we used
three different feature selection mechanisms producing
gene-scores that can be used for rank ordering the genes.
We used the variance (A), JIM (joint impurity filter) (B)
and JMI (joint mutual information) (C).
The joint impurity filter (JIM) is defined as,

J(Xj) =
∑

Wk∈S
G(Xj,Wk ;Yj). (1)

Here Xj is the expression value of feature j, Yj is its the out-
come variable (class label), S is the set of already selected
features and G(Xj,Wk ;Yj) is the Gini impurity gain,

G(X;Y ) =
∑

xy

p2xy
px

−
∑

y
p2y . (2)

The method starts with the feature that maximizes the
impurity gain and then greedily adds new features that
maximize J(Xj).
The joint mutual information (JMI) is defined as [84],

J(Xj) =
∑

Wi∈S
I(Xj,Wi;Yj). (3)

Here S is again the set of already selected features and
I is the joint mutual information between Xj, Wi and Yj.
The method adds new features Xj �∈ S in a greedy way by
maximizing J(Xj).
In Fig. 2 we show results for coding RNAs and in

Fig. 3 for non-coding RNAs. The label ’all’ corresponds
to 12360 coding RNAs (Fig. 2) and 3124 non-coding
RNAs (Fig. 3) respectively and FS indicates the applied
feature selection mechanism. As one can see, regardless
of the chosen feature selection mechanism or the ker-
nel of the SVM reducing the number of features/RNAs
is not beneficial for the performance of the classification.
In Fig. 5 we show also results for combined data, i.e., we
used the coding and non-coding RNAs together. In this
case ’all’ corresponds to 15484 RNAs. Also for this, no
benefit is gained from reducing the number of features
(only results for JIM are shown). All of these results have
been obtained for RPKM normalized data. In order to
demonstrate that the normalization has no effect on our
results we show in Fig. 4 results for TPM normalized data.
Results for other feature selection mechanisms are similar
(not shown).
Overall, these investigations demonstrate that a feature

selection does not have a positive effect on the classifiers.

Discussion
From analyzing the classification of lung adenocarcinoma
patients by using a number of different state-of-the-art
classification methods, we found that data from non-
coding RNAs have a comparable classification perfor-
mance as data from coding RNAs, whereas for DBN we
found an even better performance. This demonstrates
that (I) both data sources (coding and non-coding RNAs)
contain a comparable amount of information regarding
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a

b

c

Fig. 1 Comparison of the results for different classification methods (see x-axis) and data from coding RNAs (red) and non-coding RNAs (green) for
RPKM normalization. a Accuracy of the classification. b True positive rate. c True negative rate

the underlying disease and (II) the results are robust
and do not depend on a particular classification method.
From this we conclude the equivalence of predictive

information as captured by non-coding RNAs and protein
coding RNAs and their utility for computational diagnos-
tics tasks in lung adenocarcinoma.
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c

Fig. 2 Comparison of classification results for SVMs with a linear (red) and radial (green) basis kernel in dependence on the number of input
features/RNAs (x-axis). Data are from coding RNAs for RPKM normalization and the label ’all’ corresponds to 12360 RNAs. Feature selection methods
used are a Variance, b JIM and c JMI

An intuitive biological explanation for this observa-
tion is given by the idea underlying the epigenetic land-
scape [85] or the model for transcription regulation by
[86]. In both studies it has been realized that molecular

mechanisms are organized by networks and these are
containing feedback loops [87–89] connecting all system
variables. Despite the fact that ncRNAs do not code for
proteins, their activity is concerted alongside ordinary cell
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Fig. 3 Comparison of classification results for SVMs with a linear (red) and radial (green) basis kernel in dependence on the number of input
features/RNAs (x-axis). Data are from non-coding RNAs for RPKM normalization and the label ’all’ corresponds to 3124 RNAs. Feature selection
methods used are a Variance, b JIM and c JMI

activities and, hence, their expression levels reflect ordi-
nary cell functioning. What is more interesting is the fact
that the signal captured by the ncRNAs is equally strong
for diagnostic purposes as of coding RNAs.

In our study, we showed that for the classification of
lung adenocarcinoma patients a feature selection is not
beneficial, but reduces the prediction accuracy for the
DNN and SVM (see Figs. 2, 3, 4, and 5). In contrast, the
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Fig. 4 Comparison of classification results for SVMs with a linear (red) and radial (green) basis kernel in dependence on the number of input
features/RNAs (x-axis). Data are from non-coding RNAs for TPM normalization and the label ’all’ corresponds to 1398 ncRNAs. Feature selection
methods used are a Variance, b JIM and c JMI

best classifications were obtained without using feature
selection. We demonstrated this for different feature
selection methods. In this respect, we want to clarify
the difference between a feature filtering and a feature
selection. A filtering of features is used to remove variables

(in our case either mRNAs or ncRNAs) from the analysis
that do not carry any information. For instance, for bio-
logical cells it is know that not all genes are expressed in
all cell types. For this reason, the corresponding mRNAs
are not present in such cell types and anymeasured counts
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Fig. 5 Comparison of classification results for SVMs with a linear (red) and radial (green) basis kernel in dependence on the number of input
features/RNAs (x-axis). Data combine coding and non-coding RNAs and the label ’all’ corresponds to 15484 RNAs. Feature selection method used is
JIM. Data were RPKM normalized

are due to pure noise of the high-throughput device. In
order to remove such features we filtered inactive RNAs.
In contrast, a feature selection operates on valid features,
which are all supposed to carry information, and select
from these a small subset to which the analysis is limited.
Even for the data sets we analyzed without using any fea-
ture selection mechanism we applied a feature filtering to
remove noise from the data.
For general deep learning networks one could state that

these models perform also feature selection, but in an
implicit manner. This is certainly true but the key point
is this is part of the model itself and, hence, the feature
selection and the classifier are merged with each other.
Furthermore, such higher order features, corresponding to
representations in deeper layers, are non-linear combina-
tions of the original input features and for this reason they
lost their biological interpretability. In other words, even if
one would dissect such low dimensional features from the
model, they would no longer correspond to a few genes
or RNAs because information from all of these would be
present to a certain extend. For SVMs such an implicit
feature selection mechanism is less obvious.
The RNA world population is constantly expanding,

e.g., new types of ncRNAs with tissue-, disease-, sex-, pop-
ulation origin- and race- specific expression rates were
recently described [90]. These miRNAs isoform (isomiRs)
were able to discriminate between 32 TCGA cancer types,
probably because of the high expression specificity. It is
well understood by now that ncRNAs are key regulators
of physiological programs in developmental and disease
states and are particularly relevant in cancer, identified
as oncogenic drivers and tumor supressors for all major
cancer types [91]. ncRNAs link associated genes into reg-
ulatory networks, as well as regulate each other [92].

Therefore it is plausible that ncRNAs have at least the
same predictive capabilities as mRNAs.
To the best of our knowledge, we are the first to use

ncRNAs beyond miRNAs for the computational classifi-
cation of cancer. All previous studies limited their focus
on miRNAs when classifying disease stages, e.g., [24, 78,
79]. Furthermore, we are also the first to perform a direct
comparison of the classification capabilities of coding and
non-coding RNAs.
Despite the popularity of general deep learning meth-

ods in the last years in many fields [41, 42], the analysis
of gene expression data is so far understudied. Our results
show that different variations of deep belief networks,
using either Bprop or Rprop for the fine-tuning phase, lead
to competitive results compared to SVMs. Also the com-
bination of deep belief networks with SVMs is fruitful,
which even showed for the coding RNAs the best results.
These results are encouraging and demonstrate that, at
least for large data sets, as used in our study, deep learn-
ing classifiers are capable of dealing with gene expression
data.
Finally, we think it is important to emphasize that our

analysis was only possible due to the general capability
of DBNs and LIBSVMs [33] to deal efficiently with high-
dimensional input data as a result from omitting feature
selection mechanisms. This is certainly not the case for
every classification method.

Conclusion
In our study, we assessed the entire information content of
coding RNAs (mRNAs) and non-coding RNAs provided
in RNA-seq data by studying the data with and without
feature selection. Overall, from analyzing a large-scale
data set from lung adenocarcinoma patients we found:
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1 For the diagnostic classification, ncRNAs have as
much predictive abilities as coding RNAs. These
results hold for different state-of-the-art classification
methods, including deep learning methods (deep
belief networks), SVMs and combinations.
⇒ This may point to a new application area for
ncRNAs in the computational diagnostics of lung
cancer and potentially other disorders.

2 Feature selection reduces this predictive ability in
both cases and the best prediction accuracy is
obtained without feature selection.
⇒ This eliminates a general problem all biomarker
studies suffering from, which is the definition of the
optimal biomarker set [93].

3 Deep belief networks perform competitively to SVMs.
⇒ Despite this positive finding, compared to the
overwhelming success of DBN for image analysis, the
result differences are not large enough to claim a
dominating performance.

From reviewing the literature it seems our study is the
first to use ncRNAs beyond miRNAs for the computa-
tional classification of cancer. All previous studies limited
their focus on miRNAs when classifying disease stages,
e.g., [24, 78, 79]. Furthermore, we are also the first to per-
form a direct comparison of the classification capabilities
of protein coding RNAs and non-coding RNAs.
For future studies, it would be interesting to expand our

analysis to other cancer types and general complex disor-
ders. It would be interesting to see if also other diseases
exhibit the same behavior as we observed for lung cancer.
We expect similar results to hold for other cancers but for
general complex disorders predictions are more difficult.
In summary, our investigations underline the impor-

tance of general ncRNAs in understanding the complex
etiology of lung cancer and suggest to conduct similar
studies for other cancer types and possibly other complex
disorders.
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