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Abstract

Osteopontin (OPN), encoded by SPP1, is a phosphorylated glycoprotein predominantly

synthesized in kidney tissue. Increased OPN mRNA and protein expression correlates with

proteinuria, reduced creatinine clearance, and kidney fibrosis in animal models of kidney

disease. But its genetic underpinnings are incompletely understood. We therefore con-

ducted a genome-wide association study (GWAS) of OPN in a European chronic kidney dis-

ease (CKD) population. Using data from participants of the German Chronic Kidney

Disease (GCKD) study (N = 4,897), a GWAS (minor allele frequency [MAF]�1%) and

aggregated variant testing (AVT, MAF<1%) of ELISA-quantified serum OPN, adjusted for

age, sex, estimated glomerular filtration rate (eGFR), and urinary albumin-to-creatinine ratio

(UACR) was conducted. In the project, GCKD participants had a mean age of 60 years (SD

12), median eGFR of 46 mL/min/1.73m2 (p25: 37, p75: 57) and median UACR of 50 mg/g

(p25: 9, p75: 383). GWAS revealed 3 loci (p<5.0E-08), two of which replicated in the popula-

tion-based Young Finns Study (YFS) cohort (p<1.67E-03): rs10011284, upstream of SPP1

encoding the OPN protein and related to OPN production, and rs4253311, mapping into

KLKB1 encoding prekallikrein (PK), which is processed to kallikrein (KAL) implicated

through the kinin-kallikrein system (KKS) in blood pressure control, inflammation, blood

coagulation, cancer, and cardiovascular disease. The SPP1 gene was also identified by
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AVT (p = 2.5E-8), comprising 7 splice-site and missense variants. Among others, down-

stream analyses revealed colocalization of the OPN association signal at SPP1 with expres-

sion in pancreas tissue, and at KLKB1 with various plasma proteins in trans, and with

phenotypes (bone disorder, deep venous thrombosis) in human tissue. In summary, this

GWAS of OPN levels revealed two replicated associations. The KLKB1 locus connects the

function of OPN with PK, suggestive of possible further post-translation processing of OPN.

Further studies are needed to elucidate the complex role of OPN within human (patho)

physiology.

Author summary

Osteopontin (OPN) is involved in many (patho)physiological processes of the human

body. Among others, it is known to be associated with adverse kidney outcomes. Since its

genetic underpinnings are incompletely understood, we conducted a genome-wide associ-

ation study of OPN in a European chronic kidney disease (CKD) population (N = 4,897).

Of the three detected signals, two could be replicated within a population-based study of

Finns. One locus is located upstream of SPP1 which encodes the OPN protein and is

related to OPN production. This gene was also disclosed by an analysis of rare variants, all

presumably effecting the gene product. Another locus maps into KLKB1 encoding prekal-

likrein (PK) that after processing to kallikrein (KAL) is implicated in blood pressure con-

trol and inflammation among others. Overall, our results highlight the multi-functional

role of OPN and its possible pathological role in CKD. Further studies are needed to eluci-

date the complex role of OPN in humans.

Introduction

Osteopontin (OPN) encoded by the SPP1 gene was first described as a glycoprotein belonging

to the SIBLING (Small Integrin-Binding LIgand N-linked Glycoprotein) family in 1985 [1].

OPN is expressed in a multitude of tissues like osteoblasts, osteocytes, odontoblasts (playing a

role in mineralization and bone resorption [2,3]) macrophages, smooth muscle cells, and

endothelial cells, but can also be found in the inner ear, the central nervous system, and the

placenta [1,2]. Although, OPN can be detected in many cell types it is predominantly synthe-

sized and expressed in kidney tissue. OPN production is stimulated by many factors including

parathyroid hormone, calcitriol, calcium, phosphate, and cytokines. The protein is able to

bind integrins through a specific peptide sequence, the arginine-glycine-aspartic acid (RGD)

motif, making interaction with various cell types possible (via the nuclear factor kappa B path-

way, [4,5]). In the kidney, integrins can be found in the Bowman’s capsule, glomerular epithe-

lium, and vascular epithelium [6,7]. OPN is synthesized in the thick ascending limb of Henle’s

loop and in the distal tubule [1,8].

In a review by Kaleta (2019), known (patho)physiological roles of OPN have been discussed

[1]. Based on this review, the physiological role of OPN in the kidney is not fully understood

yet, but it has been suggested as being essential for tubulogenesis [1]. SPP1 mRNA as well as

OPN protein expression were elevated in mostly rat models of kidney diseases and high OPN

expression correlated with proteinuria, reduced kidney function, and fibrosis [1]. One study

identified various polymorphisms in the SPP1 promoter region affecting its transcriptional

activity [9]. In the past several specific SPP1 gene variants have been associated with the
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pathogenesis and progression of different kidney diseases. Other case-control studies reported

on specific variants in the SPP1 gene being associated with different kidney disease patients in

comparison to a (healthy) control group: For example, rs1126616 was repeatedly reported as a

marker for lupus nephritis and immunoglobulin A nephropathy [10–14]. In connection with

diabetic nephropathy, the two SNPs in SPP1, rs11730582 and rs17524488, have been reported

[15,16]. We therefore reasoned that the presence of reduced kidney function may represent a

good study setting to further establish our understanding of the genetic underpinnings of

OPN levels in kidney disease, as some biologic mechanisms might be upregulated and thus be

easier to detect, which has been shown before [17–19]. In Jing et al. [19], for example, the mag-

nitude of effects for known loci identified in a GWAS of serum urate in CKD patients were of

similar or higher magnitude than those reported from population-based studies.

The German Chronic Kidney Disease (GCKD) study comprises a large cohort of CKD

patients [20]. Besides demographic and clinical data, genetic data are available as well as base-

line measurements of serum OPN, providing an ideal setting to explore the genetics of OPN.

For this purpose, we performed a GWAS of serum OPN levels in the GCKD study.

Results

Description of the GCKD analysis set

Table 1 gives an overview of baseline characteristics of a selected number of variables for the

complete GCKD study cohort and the GWAS analysis set in which participants with complete

data on genetics, OPN measurements as well as estimated glomerular filtration rate (eGFR)

and urinary albumin-to-creatinine ratio (UACR) are included (S1 Fig). There were no major

discrepancies between the complete cohort and the analysis set.

Overall, the GWAS analysis set was characterized by a proportion of 60% men with a mean

age of 60.2 years (SD: 12.0), with median values of 46.0 mL/min/1.73m2 (p25: 37.0; p75: 57.0)

for eGFR and of 50.2 mg/g (p25: 9.4; p75: 382.8) for UACR (Table 1). Among the included

Table 1. Study sample characteristics of the complete GCKD study cohort (N = 5,217) and the GWAS analysis set

(N = 4,897).

N = 5,217 N = 4,897

Osteopontin, ng/mL, median (p25; p75) 29.2 (20.7; 41.9) 29.2 (20.7; 41.8)

Age, years, mean (SD) 60.1 (12.0) 60.2 (12.0)

Male, N (%) 3,132 (60.0) 2,950 (60.2)

eGFR, mL/min/1.73m2, median (p25; p75) 46.4 (37.1;57.4) 46.0 (37.0; 57.0)

UACR, mg/g, median (p25; p75) 50.9 (9.7; 391.7) 50.2 (9.4; 382.8)

HDL, mg/dL, median (p25; p75) 48.4 (39.3; 61.4) 48.5 (39.4; 61.4)

Systolic blood pressure, mmHg, mean (SD) 139.5 (20.4) 139.4 (20.3)

BMI, kg/m2, mean (SD) 29.8 (6.0) 29.8 (6.0)

Diabetes mellitus, N (%) 1,868 (35.8) 1,715 (35.0)

Smoking, current, N (%) 828 (15.9) 781 (16.0)

CVD, N (%) 1,591 (30.5) 1,489 (30.4)

Continuous variables are mean (SD: standard deviation) for normally distributed variables or median (p25; p75: 25th;

75th percentile) for variables with skewed distributions.

eGFR: estimated glomerular filtration rate; UACR: urinary albumin to creatinine ratio; HDL: high density

lipoproptein; BMI: body mass index; CVD: history of cardiovascular disease.

Missingness per variable: N complete cohort (N GWAS cohort): Osteopontin 63 (0), eGFR 55 (0), UACR 90 (0), HDL

66 (8), systolic blood pressure 34 (29), BMI 54 (49), smoking 16 (14), CVD 2 (2).

https://doi.org/10.1371/journal.pgen.1010139.t001
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participants, 35% had a prevalent diabetes mellitus, 16% were current smokers and 30%

reported a history of cardiovascular disease (CVD).

Median OPN levels in the complete cohort were 29.2 ng/mL (p25: 20.7; p75: 41.9; Table 1).

Levels of OPN increased on average across eGFR categories and UACR categories from a

median of 25.4 ng/mL for CKD stage G1/2 to 38.5 ng/mL for CKD stage G4/5, as well as from

median OPN values of 25.6 ng/mL for UACR stage A1 to mean OPN values of 34.2 ng/mL for

UACR stage A3 (S2 Fig).

Genome-wide association study and fine-mapping

We conducted a GWAS for serum OPN levels (log2-transformed) using ~7.7 million high-

quality autosomal bi-allelic variants of the GCKD study with a minor allele frequency (MAF)

of�0.01 (S1 Table). The quantile-quantile plot comparing observed and expected p-values

from the OPN GWAS did not indicate inflation (inflation factor λ = 1.01), consistent with the

absence of systematic errors (S3 Fig).

Overall, the Manhattan plot revealed three genome-wide significant regions associated with

OPN levels (p-value <5.0E-08; S4 Fig). Besides the three identified regions, conditional analy-

sis did not reveal additional independent signals (S5 Fig). The respective association results for

the three index SNPs (= SNP with the lowest p-value in the respective region) are presented in

Table 2. For all three SNPs the coded allele was present frequently (allele frequency range 0.5–

0.75). The respective coded allele in our cohort decreased OPN levels on average (S6 Fig) with

effect estimates per copy of the coded allele ranging from -0.10 to -0.18 (SE: 0.01–0.02;

Table 2). One of the index SNPs on chromosome 4 (rs10011284, 4:88833389) is located

upstream of SPP1, which encodes the protein OPN itself (Fig 1A). The other index SNP on

chromosome 4 (rs4253311, 4:187174683) maps into the KLKB1 gene (intronic variant), encod-

ing the protein prekallikrein (PK) that is converted to kallikrein (KAL); a protease implicated

in the surface-dependent activation of coagulation, bradykinin (BK) release, and potentially

the renin angiotensin aldosterone system (Fig 2A). The index SNP on chromosome 5

(rs2731673, 5:176839898) maps closest to the F12 gene, which encodes coagulation factor XII,

a serine protease that cleaves KLKB1-encoded PK to KAL, among other functions and is also

related to blood coagulation, fibrinolysis, and the generation of BK (S7 Fig). A summary of

Table 2. Association results for the 3 index SNPs genome-wide-significantly associated with serum osteopontin levels in the GWAS discovery of the GCKD study

(N = 4,897) and in the replication cohort of the YFS (N = 1,979).

SNP Position

(GRCh37)

Gene(s) Coded allele / non-

coded allele

Study Quality (quality

score)

Frequency, coded

allele

Beta (SE) p-value,

2-sided

rs10011284 4:88833389 MEPE (dist = 65421), SPP1
(dist = 63413)

A/G GCKD imputed (0.999) 0.57 -0.10

(0.01)

8.59E-11

YFS imputed (0.997) 0.52 -0.07

(0.02)

2.11E-05

rs4253311 4:187174683 KLKB1 G/A GCKD genotyped 0.50 -0.14

(0.01)

5.29E-20

YFS imputed (0.997) 0.58 -0.10

(0.02)

1.93E-08

rs2731673 5:176839898 F12 (dist = 3321), GRK6
(dist = 13789)

C/T GCKD imputed (0.987) 0.75 -0.18

(0.02)

4.47E-25

YFS imputed (0.985) 0.74 -0.03

(0.02)

1.63E-01

Associations with OPN were adjusted for age, sex, log(eGFR), log(UACR) in GCKD (GWAS discovery) and for age, sex, and log2(eGFR) in YFS (replication cohort).

Statistical significant association p-values are marked in bold: discovery: p-value<5E-08, replication: 1-sided p-value<0.05/3.

https://doi.org/10.1371/journal.pgen.1010139.t002
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annotations combined from different publicly accessible data bases and related to all three

SNPs is provided in S2 Table.

We next tested whether these three index SNPs were associated with serum OPN levels in

the Young Finns Study (YFS) cohort, a population-based study with a mean age of 38 years

(SD: 5.0) and a mean eGFR of 92.6 mL/min/1.73m2 (SD: 20.7; S1 Methods). Both SNPs on

chromosome 4, rs10011284 and rs4253311, were significantly associated with OPN levels

showing also direction consistency (Table 2 and Figs 1B and 2B). In contrast, rs2731673 clos-

est to the F12 gene did not replicate in the YFS cohort (S7 Fig).

The two replicated SNPs on chromosome 4 explained 1% of OPN levels each within the

GCKD study and did not show a non-additive effect on OPN levels (S8 Fig). Moreover, statis-

tical fine-mapping was performed for the two replicated loci to resolve associated loci into

potentially causal variants by constructing credible sets that collectively accounted for 99%

posterior probability of containing the variant or variants that cause the association signal

(PPA; Material and methods, [21]). However, fine-mapping results are inconclusive as

both constructed sets are large and single variants included only exhibit low PPA estimates

(S3 Table).

Fig 1. Regional association plot for the region around rs10011284 on chromosome 4: (A) GCKD study (discovery)

and (B) YFS cohort (replication). Plots are produced in LocusZoom and show the most strongly associated SNP

(purple diamond), SNP colors reflect LD correlation (r2) using 1000G EUR population as reference. The -log10 p-

values (left y-axis) of SNPs are shown according to their chromosomal positions (x-axis, GRCh37); the genetic

recombination rates are shown on the right y-axis. The -log10 p-values are shown for both genotyped and imputed

SNPs distributed in a 0.8-megabase genomic region.

https://doi.org/10.1371/journal.pgen.1010139.g001

Fig 2. Regional association plot for the region around rs4253311 on chromosome 4: (A) GCKD study (discovery)

and (B) YFS cohort (replication). Plots are produced in LocusZoom and show the most strongly associated SNP

(purple diamond), SNP colors reflect LD correlation (r2) using 1000G EUR population as reference. The -log10 p-

values (left y-axis) of SNPs are shown according to their chromosomal positions (x-axis, GRCh37); the genetic

recombination rates are shown on the right y-axis. The -log10 p-values are shown for both genotyped and imputed

SNPs distributed in a 0.8-megabase genomic region.

https://doi.org/10.1371/journal.pgen.1010139.g002
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Colocalization analyses

In order to learn more about the molecular mechanisms and associated phenotypes underlying

the identified association signals for OPN, we compared patterns of OPN GWAS results in

predefined regions to respective GWAS summary statistics from three other sources using

human data (see Material and methods for details). Comparable patterns may indicate a com-

mon biological basis.

Gene expression. First, we performed colocalization analyses of OPN GWAS summary

statistics related to the two replicated loci with the corresponding GWAS summary statistics of

gene expression in cis using data from the GTEx project and the NEPTUNE study (Material

and methods). Colocalization (posterior probability of H4 [p12]>0.8) of the OPN association

signals were detected with the expression of MEPE in lung (Fig 3A) and of SPP1 in pancreas

(Fig 3B and S4 Table). Furthermore, colocalization was found between the OPN association

signal and expression of F11 in six other tissues (in descending order of H4): tibial artery (Fig

3C), brain cortex, terminal ileum part of the small intestine, muscularis of the esophagus,

transverse colon, and aortic artery (S4 Table). Except for the colocalization of the OPN signal

with expression of MEPE in lung, the effect direction of both traits (OPN and gene expression)

was concordant (alpha12>0; S4 Table).

Plasma proteome. In addition, colocalization analyses were conducted using GWAS

summary statistics of SNP associations in cis and in trans with levels of ~3,000 different plasma

proteins (pGWAS) reported by Sun et al. (Material and methods, [22]). While no colocaliza-

tion was present for the summary statistics of the GWAS of OPN and proteins in cis, pGWAS

results for 87 proteins from various protein classes were found to trans colocalize with OPN

GWAS results for rs4253311 at KLKB1 (S5 Table). For the majority of colocalization results

Fig 3. Comparing summary statistics from OPN GWAS and GTEx tissue colocalizing: (A) MEPE: OPN and lung

tissue (H4: p12 = 0.99), (B) SPP1: OPN and pancreas (H4: p12 = 0.85); (C) F11: OPN and tibial artery (H4:

P12 = 0.98). Left: scatter plot comparing association p-values from both sources against each other (-log10 scale).

Upper right: OPN GWAS results for the region of interest. Lower right: GTEx GWAS results for the region of interest

of respective organ. Colors reflect LD correlation (r2) using 1000G EUR population as reference.

https://doi.org/10.1371/journal.pgen.1010139.g003
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(60/87, 69%), the effect direction of OPN and proteins was concordant, which is in accordance

with the fact that the activated KKS is involved in a broad spectrum of processes, like inflam-

mation, cancer, cardiovascular disease, as well as (patho)physiological roles in kidney and the

central nervous system.

For 86 mapped proteins, a Gene Ontology (GO) enrichment analysis was conducted to

assess whether their encoding genes were enriched in terms representing specific cellular com-

ponents and molecular functions (Material and methods, S6 Table). Because of a hierarchical

structure of reference lists, implicated terms are partially dependent on each other showing

e.g. overlapping upregulated molecular functions as well as upregulated hormone and receptor

activities (S9 Fig).

UK Biobank (UKB) diseases. In order to address the interplay between genetic modula-

tion of OPN levels and phenotypes we further conducted a colocalization analysis with binary

UKB disease traits that showed a genome-wide significant association in the GeneAtlas

resource [23]. Based on marginal association statistics, no positive colocalization was detected

between OPN and various disease traits (S7 Table). Still, for four of seven traits with an associ-

ation signal different from the OPN signal in the region (H3: p1.2>0.8), a second independent

association signal for the respective disease trait in UKB was detected. We then performed

additional colocalization analyses based on the obtained conditional association statistics, and

identified a positive colocalization between the OPN association signal at rs4253311 at the

KLKB1 locus and rs1593 for deep venous thrombosis (DVT; H4: p12 = 0.96; S7 Table and S10

Fig). In the GeneAtlas GWAS of DVT, the major allele of rs1593 (A, allele frequency = 0.87)

was associated with a higher risk for DVT (OR = 1.2, p-value 2.4e-16), as was the major allele

of rs4253311 (major allele: G, allele frequency = 0.51, OR = 1.13, p-value = 2.6e-16).

Rare variant analysis

Based on 4,879 GCKD participants with available exome chip data, we additionally conducted

aggregated rare variant testing (S1 Fig). Variants with a MAF <1% and having a major effect

on the gene product (nonsynonymous, stop gain/loss, splicing; “qualifying variants”) as anno-

tated by dbNSFP v.2.0 were aggregated (Material and methods, [24,25]).

While there was no significant association result when the burden test was used, we found a

significant association using the sequence kernel association test (SKAT) for the SPP1 gene

(Table 3, p-value = 2.5E-08), which remained significant after adjustment for the two repli-

cated SNPs from the initial GWAS (p-value = 9.4E-08). Seven variants were aggregated for the

analysis of the SPP1 gene. In the single variant analysis, effect estimates of the seven variants

ranged from -1.20 to 0.24 with rs139555315 (4,88901197), a splice-site variant (CADD score:

23.7) showing the most significant association (effect estimate = -1.20, SE = 0.19, p-

value = 2.5E-10) and thus likely driving the association. This is supported by the non-signifi-

cant result (p-valueSKAT = 3.5E-01) when rs139555315 was excluded from the variant set.

Other genes implicated by GWAS of common variants reached only nominal statistical sig-

nificance (p<0.05; MEPE: p-valueSKAT = 4.6E-03; KLKB1: p-valueBurden = 5.6E-04, p-valueSKAT

= 2.8E-03; F12: p-valueBurden = 3.4E-02, p-valueSKAT = 3.0E-02).

Discussion

In this study, we focused on characterizing the genetics of OPN within a CKD cohort, because

OPN levels are known to be associated with adverse kidney outcomes, but genetic underpin-

nings of this kidney-enhanced protein are not fully understood. The use of a CKD patient

cohort might present an advantageous setting in which the transcription of kidney-specific

genes may be altered in comparison to the general population, making identification of
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specific SNPs possibly easier. We identified three loci, two on chromosome 4 (rs10011284,

rs4253311), that could be replicated in an external population-based cohort, and rs2731673 on

chromosome 5, which could not be replicated. When aggregating rare variants, the SPP1 gene

encoding OPN was detected.

To our knowledge this is the first GWAS of serum OPN levels quantified via ELISA. Other

studies like Sun et al. conducted GWAS of plasma proteins (pGWAS) including OPN. Here

proteins were quantified differently via an aptamer-based technology (SOMAscan, [22]).

While this study was likely too small (N = 3,301) to detect any genetic signals for OPN, a study

by Pietzner et al. (N up to 10,708) provided signals on chromosome 3, 4, and 10 associated

with SOMAscan-measured OPN [26]. The detected signal on chromosome 4 (rs5860110,

4:88897106, MAF = 0.30) is a common, intronic indel located within SPP1 not in linkage dis-

equilibrium (LD) with common variants identified in our project. In a next step, Pietzner et al.
reported association statistics for the SOMAscan detected loci using a different technique to

measure proteins (Olink, antibody-based protein panels). Olink measurements were, however,

only available for a small fraction of the study population and none of the three SOMAscan-

measured OPN signals could be confirmed. The systematic comparison of protein levels quan-

tified by these two techniques revealed varying correlations (median 0.38, IQR: 0.08–0.64). For

OPN, a correlation coefficient of 0.51 was reported. A similar comparison of even more prote-

omics platforms also reported on a wide range of correlations among measurements [27]. Dif-

ferences in the detection of genetic signals could thus not only be explained by differences in

power but by technical, protein and variant characteristics. Across platforms, any comparison

results is thus difficult and meta-analyses could lead to wrong inferences.

Table 3. Association results for SPP1 (chromosome 4) for the rare variant analysis.

(A) Association results of aggregated variant testing

Model Gene Burden test SKAT test No of SNPs

aggregated

Total

MAC

Cumulative MAF of

SNPsp-value Beta (SE) p-value

adjusted for age, sex, log(eGFR), log

(UACR)

SPP1 1.36E-03 -0.31

(0.10)

2.51E-08 7 59.03 6.05E-03

Same as above plus 2 replicated common

SNPs�
SPP1 1.50E-03 -0.30

(0.10)

9.43E-08 7 59.03 6.05E-03

(B) Association results of single variant analysis for aggregated variants

Model Variant Position

(GRCh37)

MAF Beta (SE) p-value Exonic effect (CADD)

adjusted for age, sex, log(eGFR), log

(UACR)

rs139555315 88901197 1.54E-03 -1.20

(0.19)

2.54E-10 splicing (23.7)

rs140258871 88901249 1.95E-03 0.24 (0.17) 1.62E-01 nonsynonymous (NA)

rs138638879 88902774 7.18E-04 -0.18

(0.28)

5.18E-01 nonsynonymous (26.8)

rs7435825 88903774 3.08E-04 0.04 (0.42) 9.17E-01 nonsynonymous (12.8)

rs149833253 88903825 3.08E-04 -0.45

(0.42)

2.85E-01 nonsynonymous (8.8)

rs146563765 88903899 1.02E-03 -0.10

(0.23)

6.83E-01 nonsynonymous (4.2)

rs4660 88904005 2.05E-04 -0.52

(0.52)

3.22E-01 nonsynonymous (9.8)

MAC: minor allele count; MAF: minor allele frequency; NA: not available

� rs10011284, rs4253311. Statistical significant association p-values are marked in bold (aggregated variant testing: p-value<1.4E-06, single variant analysis: p-

value<5.0E-08. Exonic effects: source dbNSFP v.2.0.

https://doi.org/10.1371/journal.pgen.1010139.t003
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rs10011284; 4:88833389 (SPP1/MEPE intergenic)

The index SNP rs10011284 (MAF = 0.43) of the first locus on chromosome 4 maps between

the SPP1 and MEPE genes. Whether this variant or another is the causal variant underlying

the observed association remains unclear as results from statistical fine-mapping are inconclu-

sive. Nevertheless, when aggregating rare variants, SPP1, the gene encoding the protein OPN,

showed a significant association driven by a splice-site variant. Any errors occuring during the

splicing process can lead to false intron removal causing alterations of the open reading frame.

In turn this may either lead to formation of a premature stop codon and a shortened protein

or more likely to a faster mRNA degradation called nonsense mediated decay [28]. The variant

driving this association at SPP1, a splice-site variant (rs139555315, 4:88901197, MAF = 1.54E-

03), was reported to be associated with pediatric systemic lupus erythematosus [29].

SPP1 is made up of 7 exons containing 942 transcribed nucleotides from the start codon in

exon 2 to the stop codon (within exon 7, [30]). OPN belongs to the SIBLING glycoprotein

family of secreted phosphoproteins; other members of this family comprise dentin matrix pro-

tein 1, dentin-sialophosphoprotein, statherin, bone sialoprotein, and matrix extracellular phos-

phoglycoprotein (MEPE). Results from our colocalization analysis using GeneAtlas are

pointing towards a connection of SPP1 with bone disorders. Fitting with these results, one of

OPN’s main physiological functions in the body is the regulation of biomineralization pro-

cesses [31]. Conflicting results have been reported on OPN as well as SPP1 polymorphisms

and susceptibility to nephrolithiasis in the past [32–36]. From in vitro studies it may be

inferred, that OPN inhibits nucleation, growth, and aggregation of calcium oxalate crystals

[37], but clinical studies draw a more unclear picture. Some researchers report on a protective

role of OPN, where others do not [38,39]. Nonetheless, a recent study from South Asia found a

significant association of the SPP1 rs2853744:G>T polymorphism with urolithiasis [40].

OPN is mostly secreted, but an intracellular form has also been reported [41]. Using

reverse-transcription-PCR OPN was found to be expressed in normal human adult kidney,

further immunohistochemical analyses and in situ hybridization revealed OPN expression to

be restricted to the distal convoluted and straight tubules in kidney cortex and medulla in

monkey kidney [42]. Looking at GTEx tissue expression data, a positive colocalization of the

OPN association signal at SPP1 with pancreas tissue was detected. This is in line with findings

in the literature where OPN has been suggested to have a role in type 2 diabetes. One study

performed by Cai et al. investigated a diabetic mouse model SUR1-E1506K+/+ and islets from

human donors and was able to demonstrate that in islets from human cadaver donors, OPN
gene expression was elevated in diabetic islets, and externally added OPN significantly

increased glucose-stimulated insulin secretion from diabetic but not normal glycemic donors

[43]. Many other studies have also investigated OPN’s role in pancreatic cancer, here, OPN

was found to be a prognostic marker associating higher levels with poor overall prognosis in

patients [44].

MEPE (Matric Extracellular PhosphoglycoprotEin) is the gene encoding the secreted cal-

cium-binding phosphoprotein MEPE. A common feature of SIBLING proteins is the Acidic

Serine Aspartate Rich MEPE associated motif (ASARM), involved in the regulation of miner-

alization, bone turnover, mechanotransduction, phosphate and energy metabolism [45]. The

ASARM motif is also the connecting link between SIBLINGs and FGF23 thereby being part of

the physiological bone-kidney link [45]. MEPE is involved in the regulation of the phosphate

homeostasis controlled by the kidney and intestine [46,47]. Colocalization of the OPN associa-

tion signal at MEPE leads to detection of an association with lung tissue. So far a connection

between several members of the SIBLING family with lung cancer have been reported, but a

definite connection between MEPE and lung has not been made before [48]. Since there are
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multiple transcript variants known due to alternative splicing a connection between MEPE
and lung cannot be ruled out and could offer possible research areas in the future. Results

from our colocalization analysis using GeneAtlas are pointing towards a connection of MEPE
with bone disorder. Diseases associated with MEPE are osteomalacia and autosomal-dominant

hypophosphatemic rickets supporting this connection between MEPE and bone disorders

[49]. Another phenotype seemingly related to rs10011284 is gout. This association is most

likely driven by ABCG2, which is located in close proximity to SPP1 and MEPE, and is one of

the best described uric acid transporter genes to date [19,50].

rs4253311; 4:187174683 (KLKB1 intronic)

The 2nd replicated index SNP rs4253311 (MAF = 0.50) on chromosome 4 is an intronic variant

of the KLKB1 gene. Again, whether this variant is the causal variant responsible for the

observed association cannot be answered by this study.

KLKB1 encodes prekallikrein (PK) a single-chain zymogen that, after activation to kalli-

krein (KAL), a serine protease, becomes involved in the surface-dependent activation of blood

coagulation, fibrinolysis, kinin generation and inflammation. Diseases associated with KLKB1
include PK deficiency and malignant essential hypertension [51,52]. PK and subsequently

KAL are part of the kallikrein-kinin system (KKS). Main function of KAL includes the release

of bradykinin (BK) [53]. Genome-wide association studies in the past identified associated

SNPs in KLKB1 with vasoactive peptides or precursors of vasoactive peptides (BK [54,55],

active renin [56], B-type natriuretic peptide [57], aldosterone/renin ratio [57], midregional

proadrenomedullin and C-terminal-pro-endothelin-1 [58], L-arginine [59]), and apolipopro-

tein A IV [60], but not OPN.

Pathways related to this gene include complement and coagulation cascades, as well as deg-

radation of the extracellular matrix [61,62]. An important paralog of KLKB1 is the gene F11.

Since our analysis revealed colocalizations between OPN association signal for rs4253311 and

expression in multiple tissues for F11, it could be presumed that rs4253311 is linked to F11
rather than KLKB1. Interestingly, OPN contains several protease cleavage sites that regulate its

activity [31]. Some OPN interaction sites require cleavage by thrombin, another serine prote-

ase, to become fully functional. In return, OPN has been shown to be a substrate for other pro-

teases, that regulate its activity [31]. One might speculate that inflammatory processes within

the kidney of CKD patients bring together, on the one hand, an activated KKS and, on the

other hand, higher OPN levels, thus it might be plausible that new bioactive OPN fragments

could possibly be generated by KAL.

Conditional colocalization analyses with SNPs located around KLKB1 resulted in positive

results for rs1593, mapping intronically into the F11 gene, and DVT. DVT is a serious disease

influenced by both genetic and environmental risk factors, but 60% of the variation in risk for

DVT has been attributed to genetic risk factors in the past [63]. Genetic studies of DVT have

reported several common SNPs in the 4q35.2 locus to be associated with DVT [63]. These

common SNPs were localized within KLKB1 and F11 amongst others [63].

Other colocalization results showed association signals between the OPN locus at KLKB1
and 87 plasma proteins. These proteins showed enrichment for proteins of the neuronal cell

body in plasma and cerebrospinal fluid of patients. BK, the principal effector of the plasma

KKS, is generated systemically and locally (vessel wall) and acts in a paracrine or autocrine

way influencing vascular tone and ultrastructure via two G protein-coupled receptors [64,65].

Components of the KKS and in particular BK have been shown to have important functions in

the central nervous system by regulating cerebrovascular resistance, vessel capacity and perme-

ability of the blood-brain-barrier. Maintenance of a vascular permeability equilibrium in the
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central nervous system is critical for maintaining brain integrity. Associations of the KKS in

CNS pathology include several disease states among which are neuropsychiatric lupus, Alzhei-

mer’s disease, schizophrenia, and epileptic syndrome [66]. These facts in turn explain the

enrichment analysis results of the molecular functions: hormone activity via signaling receptor

binding as well as receptor regulatory activity.

rs2731673; 5:176839898 (F12/GRK6 intergenic)

Finally, the index SNP rs2731673 (MAF = 0.25) that could not be replicated in the population-

based YFS cohort is located between the genes F12 and GRK6. While this non-confirmation

may indicate a false positive result of our GWAS, replication may have failed for some

unknown reason such as being a specific result relevant for CKD patients. In the absence of

another cohort (whether population-based or CKD cohort) with necessary data on OPN and

genetics, we were unable to validate this any further.

The gene nearest to the locus is the F12 gene that encodes coagulation factor XII, which,

together with plasma PK, belongs to the contact activation system [67,68]. While KAL can acti-

vate factor XII (factor XIIa: active enzyme of factor XII) that, in turn promotes inflammation

via the KKS, including PK [69]. Since CKD patients markedly have more inflammation and

fibrosis as the joined common final path of kidney disease progression these insights and con-

nection may encourage further validation of this locus. Inflammatory processes also play a

major role in CVD and CKD patients, who are well known to suffer from excessive CVD pro-

moting higher morbidity and mortality. In the human cardiovascular system, OPN is primar-

ily expressed in endothelial cells, macrophages, and smooth muscle derived foam cells and can

also be detected in human atherosclerotic plaques of the arterial system [70,71]. Higher serum

OPN levels were found in patients with acute coronary syndrome vs chronic coronary syn-

drome. In coronary artery disease (CAD) patients high OPN levels were associated with rapid

coronary plaque progression and in-stent restenosis [72]. OPN has been known to be associ-

ated with adverse outcomes in patients with CVD [73–75], but its function in CVD is diverse.

Acute increases of OPN in CVD are associated with wound healing and neovascularization

[76,77]. Chronically increased OPN, however, is associated with a poor prognosis of major

adverse cardiovascular events [78].

GRK6 on the other hand is involved in blood pressure regulation and was found to have a

decreased kidney expression in spontaneously hypertensive rats, providing a similar rationale

[79].

Strengths and limitations

The presented analyses have several strengths and limitations: Firstly, our analyses are based

on a CKD patient population of European ancestry and mostly CKD stage 3 under regular

nephrologist care. While biological mechanisms may be upregulated in impaired kidney func-

tion and thus detected more easily in CKD patients, results potentially compromise generaliz-

ability to the general population as well as to other ethnicities. Secondly, we could replicate

two of three identified loci in a population-based cohort of the YFS, who also applied an

ELISA technique to measure OPN, thus confirming the potential to transfer findings from a

CKD cohort to the general population. Regarding the third, non-replicated finding, one should

await further validation of this result as regarding it as false-positive would be a premature

conclusion. Thirdly, serum OPN was measured in the GCKD study from baseline samples

using a state-of-the-art ELISA assay. Although serum has been validated for use in the used

OPN assay, it is not the recommended sample type, because of proteolytic cleavage by throm-

bin during the clotting process. In contrast, OPN measurements were obtained from plasma
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samples in the YFS cohort. While a comparable assay was used, differences between levels in

CKD patients and YFS participants might thus be explainable by more than disease status.

Conclusions

In this first GWAS of serum OPN levels in a large CKD cohort two replicated associations on

chromosome 4 were detected. One locus closest to the SPP1 gene, as well as a locus mapping

into the KLKB1 gene, connecting OPN to its production and the KKS. Further studies are

needed to fully explain OPN’s role in kidney (patho)physiology and elucidate functions of

OPN in connection with the KKS and possibly inflammatory processes during kidney fibrosis.

Material and methods

Ethics statement

The German Chronic Kidney Disease (GCKD) study was approved by all Ethics Committees

of participating institutions in Germany that also covers the present project. It was registered

in the national registry for clinical studies (DRKS 00003971; S1 Information). Written

informed consent was obtained for all participants.

Study population

The GCKD study cohort consists of 5,217 adult CKD patients of European ancestry with (i) an

eGFR between 30–60 mL/min per 1.73m2 or (ii) an eGFR>60 mL/min/1.73 m2 and ‘overt’

albuminuria/proteinuria at baseline [20]. At the baseline visit (2010–2012), trained personnel

obtained data using a standardized questionnaire and physical examinations. Biosamples were

obtained, directly processed and then stored at -80˚C in a central biobank [80]. Study proce-

dures and main baseline findings have been reported before [20,81].

Baseline variables and measurements

A standardized set of biomarkers was measured in a central certified laboratory using stan-

dardized protocols [81]. Among others, creatinine and albumin from serum and urine were

quantified using an IDMS traceable methodology (Creatinine plus, Roche, Germany) and a

turbidimetric method (Tina-quant, Roche, Germany) Roche/Hitachi MODULAR P,

respectively.

Glomerular filtration rate (GFR) was estimated using the creatinine-based CKD-EPI for-

mula (unit: mL/min/1.73m2, [82]). UACR was calculated as measured urinary albumin/uri-

nary creatinine (mg/g, [83]). Age and sex were self-reported at the baseline visit.

In 2015, OPN was measured from baseline serum samples of the complete GCKD study

cohort using a quantitative sandwich enzyme immunoassay technique (solid-phase ELISA;

Quantikine Human OPN Immunoassay DOST00 from R&D Systems (R&D Systems Europe,

Abingdon, UK)). Quantification was carried out at the Institute of Clinical Chemistry and Lab-

oratory Medicine, Greifswald, Germany. Coefficients of variation (intra-assay) were 4.5%,

5.3% and 3.5% for low, median and high levels, respectively. The inter-assay coefficient of vari-

ation was 6.4%. Reagents and secondary standards were used as recommended by the

manufacturer.

Genotyping, quality control and imputation

Detailed information on genotyping and data cleaning in the GCKD study has been described

previously [18]. Briefly, DNA was isolated from whole blood and genotyped at 2,612,357 vari-

ants for 5,123 GCKD participants using the Illumina HumanOmni2.5 Exome BeadChip array
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(Illumina, GenomeStudio, Genotyping Module Version 1.9.4) at the Helmholtz Center

Munich. Data cleaning was carried out separately for the Omni2.5 content and the exome chip

content of the array.

Based on standardized protocols [84], custom written scripts (R, Perl) and Plink1.9 [85]

software was used for quality control (QC) of the Omni2.5 content. Sample-based QC steps

included checks of call rate, sex, heterozygosity, genetic ancestry and relatedness, leading to

the exclusion of 89 samples. On the variant level, single nucleotide polymorphisms (SNPs)

were excluded if the call rate was <0.96, and whenever the assumption of the Hardy-Weinberg

equilibrium was violated (p-value <1.0E-05). After removing SNPs on duplicate positions, the

cleaned dataset contained 5,034 individuals and 2,337,794 SNPs (S1 Fig). Genotypes were then

imputed using minimac3 v2.0.1 at the Michigan Imputation Server [86]. The Haplotype Refer-

ence Consortium (HRC) haplotypes version r1.1 were used as the reference panel, and Eagle

2.3 was used for phasing. The final dataset contains data of 5,034 participants and 7,750,367

high-quality autosomal bi-allelic variants (imputation quality of R2�0.3, MAF�1%).

For the exome chip content, QC was similarly conducted [18]. In addition, checks specific

for exome variants were added [87]. In brief, 96 individuals and 3,818 SNPs were removed, the

latter of which had a call rate<0.95 and a Hardy-Weinberg equilibrium p-value <1.0E−05.

The final exome chip dataset contains 5,027 participants with 226,233 variants (S1 Fig). For

the exome chip association analysis, the genotypes were post-processed using zCall with a z-

score threshold of six [88]. Genomic positions base on human genome build GRCh37.

Genome-wide association study of common variants

As previously reported [17,18], GWAS was conducted for GCKD participants with complete

genotyping (Omni2.5), eGFR, UACR and log2(OPN) measurement (N = 4,897) data using lin-

ear regression of log2(OPN) on SNPs (additive genetic model) with a MAF�1%, adjusted for

age, sex, log(eGFR), and log(UACR) (S1 Fig). Association analysis was performed using

SNPTEST v2.5 [89]. Summary statistics were checked for quality using GWAtoolbox [90] and

for inflation using genomic control [91]. A genomic control correction, however, was not

requested (λ = 1.01). Associations with a p-value<5.0E-08 were considered significant. Per

chromosome, an index SNP was defined as the SNP with the lowest genome-wide p-value with

a 1-Mb interval centered around this SNP. This approach was repeated until no further SNP

outside the interval(s) was available passing the genome-wide significance threshold. In order

to discover further independent signals, we repeated GWAS analysis for chromosomes with

significant results by conditioning on the genotype of the SNP with the lowest association p-

value of the respective chromosome. This procedure was repeated until no further genome-

wide signal was observed.

Functional annotation of variants was conducted using ANNOVAR[92], SNiPA [93], Open

Targets Genetics [94], FAVOR [95], and RegulomeDB [96]. Regional association plots were

plotted using LocusZoom v1.3 [97].

Fine-Mapping

Statistical fine-mapping [21] was carried out as previously described [17] for the two replicated

SNPs within a region ±500kb. Approximate Bayes factors (ABFs) were then derived from the

original GWAS statistics estimates. The SD prior was chosen as 0.61 because 95% of the effect

size estimates fell within the −1.2 to 1.2 interval [21]. The ABF of the SNPs were used to calcu-

late the posterior probability for each variant driving the association signal (PPA, ‘causal vari-

ant’). Credible sets were determined by summing up PPA-ranked variants until the

cumulative PPA was >99%.

PLOS GENETICS Osteopontin, genetics and chronic kidney disease

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010139 April 6, 2022 13 / 23

https://doi.org/10.1371/journal.pgen.1010139


Colocalization analyses

In order to further understand the molecular mechanisms and associated phenotypes underly-

ing the associations, we performed colocalization analyses of the OPN GWAS summary statis-

tics related to the two replicated OPN loci with GWAS summary statistics from three other

sources as outlined below. For all colocalization analyses, we used the ‘coloc.fast’ function

from the R package gtx with default parameters and prior definitions (https://github.com/

tobyjohnson/gtx), an implementation of an adapted version of the colocalization method

introduced by Giambartolomei et al. [98]. We consider a positive colocalization when the pos-

terior probability of a shared causal variant at the association locus for both traits (H4, p12)

was> 0.8.

Gene expression. First, we used GWAS summary statistics of gene expression data from

the GTEx project [99] and the NEPTUNE study [100]. The eQTL data from the GTEx V8 (49

tissues) and the NEPTUNE study (NephQTL from glomerulus and tubulointerstitial kidney

portions) were downloaded from the GTEx Portal (https://www.gtexportal.org/home/) and

NephQTL web site (http://nephqtl.org/), respectively.

The analysis steps of colocalization have been described in detail elsewhere [17]. Firstly,

GWAS summaries of GTEx and NephQTL in genomic regions ±100kb of the two OPN SNPs

were extracted. The genes in the extracted GWAS are identified and for each gene, a cis win-

dow of 500kb flanking the start and end of the gene are defined. Then, for every such cis gene

window, with at least one SNP having an association p-value < 0.001, the GWAS summaries

of GTEx and NephQTL tissue as well as the OPN GWAS were extracted and used as input for

colocalization analysis.

Plasma proteome. In addition, we used GWAS summary statistics of plasma proteins

(pGWAS) by Sun et al. [22] to run colocalization analysis to identify consistent association sig-

nals between OPN and proteins with effects in cis as well as in trans. In contrast to data from

GTEx and NephQTL, the genome-wide available pGWAS summary does allow the assessment

of both effects.

In order to detect colocalization with cis-pQTLs, pGWAS summary statistics of any pro-

tein-gene region (gene region ±500kb, cis region) were extracted. Per OPN locus and a 100kb

region around it, we checked if any of the cis pGWAS extracts overlapped and had a pGWAS

association p-value of<0.05/2 (Bonferroni correction for two OPN loci). For all hereby

selected proteins, we then extracted the protein-gene-region from the OPN GWAS summary

statistics and ran colocalization within the protein-gene-region.

For potential colocalization with trans-pQTLs, we selected all proteins with pGWAS associ-

ation p-values <0.05/2/3,000 (Bonferroni correction for the two OPN loci and number of pro-

teins evaluated in pGWAS) within a 100kb region around an OPN-associated index SNP. For

all hereby selected proteins, colocalization analyses were conducted within the ±500kb region

of the OPN-associated index SNP.

For colocalizing proteins, a Gene ontology (GO) enrichment analysis (http://geneontology.

org/, [101,102]) in form of a PANTHER [103] overrepresentation test with the two annotation

data sets of GO cellular component and GO molecular function (homo sapiens) as references

was conducted to assess enriched categories to which identified proteins were assigned to.

Overall, 20,595 human genes are mapped to various terms related to cellular component and

molecular function. A category is considered enriched if both, the Bonferroni-corrected p-

value of the Fisher’s exact test and the false discovery rate based on the Benjamini-Hochberg

procedure, are <0.05.

UKB diseases. Finally, we used the GWAS from GeneAtlas database (http://geneatlas.

roslin.ed.ac.uk/) to perform colocalization analysis for the two replicated OPN loci (±500kb)
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and all UKB binary disease traits that showed genome-wide significant associations (p-value

<5.0E-08) in at least one of the two replicated OPN loci. Overall, GeneAtlas comprises GWAS

results of 660 binary disease traits of ~450,000 UKB participants [23].

In addition, we adopted the conditional colocalization analysis approach which was firstly

applied in a GWAS of plasma proteome [104]. Performing colocalization on conditionally

independent association statistics could reveal true colocalization signals that were missing

when using marginal association statistics in the presence of multiple independent association

signals. We applied GCTA COJO Slct algorithm to identify independent association signals in

the OPN region for the seven traits [105], which showed a trait association signal different

from the OPN signal (H3: p1.2>0.8). The cleaned and imputed GCKD genotype dataset men-

tioned before was used as LD reference by GCTA. We set the collinearity cutoff at 0.1 to be

conservative. For loci with more than 1 independent signal, an approximate conditional analy-

sis was conducted by GCTA COJO-Cond algorithm to generate conditional association statis-

tics conditioned on the other independent SNPs in the region [105]. Finally the colocalization

analyses were performed as before for each of the independent SNPs using the conditional

association statistics as input.

Aggregated rare variant testing

Overall, 4,879 GCKD participants with complete data on genotyping (Exome chip), eGFR,

UACR and log2(OPN) measurements were included in the analysis of aggregated rare variant

testing (S1 Fig). As previously described [106], two types of rare variant aggregation tests (bur-

den test, sequence kernel association test [SKAT]) implemented in the R package seqMeta
(v1.6.7, [107]) were conducted using exome chip data and log2(OPN) measurements (out-

come). Per gene, variants with MAF <1% and having a major effect on the gene product (non-

synonymous, stop gain/loss, splicing; “qualifying variants”) as annotated by dbNSFP v.2.0

were aggregated [24,25]. Results were filtered to retain genes with cumulative minor allele

count (MAC)�10 and with�2 contributing variants per gene. Analyses were adjusted for

age, sex, log(eGFR), and log(UACR). To adjust for multiple testing, the statistical significance

level was corrected for the number of assessed genes (N = 17,575) and the two conducted tests:

0.05/(2×17,575) = 1.4E-06. Moreover, analyses were repeated for significantly associated genes

additionally adjusted for the two replicated OPN loci.

Replication of identified loci in Young Finns Study

The three OPN loci identified in the GWAS of GCKD participants were tested for replication

in the Cardiovascular Risk in Young Finns Study (YFS) cohort. Here, plasma OPN was mea-

sured by enzyme-linked immunosorbent assay (Human Osteopontin Quantikine kit, R&D

Systems, USA) from samples thawed for the first time for the assay in 2007. Samples of 2,442

participants and 546,677 genotyped SNPs were available for further analysis after QC and

imputation. Further details can be found in S1 Methods.

Per selected locus, association analysis of log2(OPN) on SNP dosage (additive) was per-

formed by fitting linear regression models adjusted for age, sex, and eGFR by using SNPTEST

v2.5.4 [89]. GFR was estimated with the MDRD study equation and log2-transformed prior to

analysis [108]. Replication was defined by a one-sided association p-value <0.05/3 (Bonferroni

correction for three OPN loci).

Supporting information

S1 Fig. Flow chart showing exclusion of patients and analysis sets.

(PDF)
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S2 Fig. Osteopontin (OPN, ng/mL) measurements in GCKD.

(PDF)

S3 Fig. Quantile-Quantile plot of results from GWAS of log2(OPN).

(PDF)

S4 Fig. Manhattan plot of results from GWAS of log2(OPN).

(PDF)

S5 Fig. Regional association plots obtained in the course of conditional analysis to identify

independent signals.

(PDF)

S6 Fig. Levels of osteopontin (log2-transformed) in the overall cohort and across genotypes

of discovered SNPs in GCKD.

(PDF)

S7 Fig. Regional association plot for the region around rs2731673 on chromosome 5.

(PDF)

S8 Fig. Effects of rs10011284 and rs4253311 (chromosome 4) on OPN levels.

(PDF)

S9 Fig. Relationship of selected GO terms.

(PDF)

S10 Fig. Comparing summary statistics for the KLKB1 locus from OPN GWAS (uncondi-

tional statistics, A) with respective results for the UK Biobank phenotype deep venous

thrombosis (DVT, conditional statistics, B).

(PDF)

S1 Methods. The Cardiovascular Risk in Young Finns Study (YFS) cohort.

(DOCX)

S1 Information. List of institutions and investigators participating in the GCKD study.

(DOCX)

S1 Table. Genome-wide association results for common variants (MAF�0.01) with p-value

<1E-06.

(XLSX)

S2 Table. Extended annotation of the three top SNPs identified in OPN GWAS in the

GCKD study.
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S3 Table. SNPs in 99% credible sets for the replicated OPN loci.

(XLSX)

S4 Table. Colocalization analysis: results for GTEx tissues.

(XLSX)

S5 Table. Colocalization analysis: results for pQTLs, in trans.
(XLSX)

S6 Table. GO overrepresentation analysis results for colocalized pQTLs, in trans.
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S7 Table. Colocalization analysis: results for GeneAtlas.
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ality in biomedical and pharmaceutical research. Nature. 2011; 477(7362):54–60. Epub 2011/09/03.

https://doi.org/10.1038/nature10354 PMID: 21886157; PubMed Central PMCID: PMC3832838.

56. Biswas N, Maihofer AX, Mir SA, Rao F, Zhang K, Khandrika S, et al. Polymorphisms at the F12 and

KLKB1 loci have significant trait association with activation of the renin-angiotensin system. BMC med-

ical genetics. 2016; 17:21. Epub 2016/03/13. https://doi.org/10.1186/s12881-016-0283-5 PMID:

26969407; PubMed Central PMCID: PMC4788869.

57. Musani SK, Fox ER, Kraja A, Bidulescu A, Lieb W, Lin H, et al. Genome-wide association analysis of

plasma B-type natriuretic peptide in blacks: the Jackson Heart Study. Circ Cardiovasc Genet. 2015; 8

(1):122–30. Epub 2015/01/07. https://doi.org/10.1161/CIRCGENETICS.114.000900 PMID:

25561047; PubMed Central PMCID: PMC4426827.

58. Verweij N, Mahmud H, Mateo Leach I, de Boer RA, Brouwers FP, Yu H, et al. Genome-wide associa-

tion study on plasma levels of midregional-proadrenomedullin and C-terminal-pro-endothelin-1.

Hypertension. 2013; 61(3):602–8. Epub 2013/02/06. https://doi.org/10.1161/HYPERTENSIONAHA.

111.203117 PMID: 23381795.

PLOS GENETICS Osteopontin, genetics and chronic kidney disease

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010139 April 6, 2022 20 / 23

https://doi.org/10.1186/s12881-020-01101-2
http://www.ncbi.nlm.nih.gov/pubmed/32842990
https://doi.org/10.1007/s12026-010-8179-5
http://www.ncbi.nlm.nih.gov/pubmed/21136203
https://doi.org/10.1111/j.1523-1755.2005.00389.x
https://doi.org/10.1111/j.1523-1755.2005.00389.x
http://www.ncbi.nlm.nih.gov/pubmed/15954904
https://doi.org/10.1016/j.bbrc.2017.11.147
http://www.ncbi.nlm.nih.gov/pubmed/29180017
https://doi.org/10.3390/cancers12113379
https://doi.org/10.3390/cancers12113379
http://www.ncbi.nlm.nih.gov/pubmed/33203146
https://doi.org/10.1002/cbf.2841
http://www.ncbi.nlm.nih.gov/pubmed/22573484
https://doi.org/10.1016/j.bone.2003.10.005
https://doi.org/10.1016/j.bone.2003.10.005
http://www.ncbi.nlm.nih.gov/pubmed/14962809
https://doi.org/10.1681/ASN.2008030315
https://doi.org/10.1681/ASN.2008030315
http://www.ncbi.nlm.nih.gov/pubmed/19005008
https://doi.org/10.1158/1078-0432.CCR-04-1072
http://www.ncbi.nlm.nih.gov/pubmed/15623631
https://doi.org/10.1093/nar/gkw1012
http://www.ncbi.nlm.nih.gov/pubmed/27899610
https://doi.org/10.1038/s41588-019-0504-x
http://www.ncbi.nlm.nih.gov/pubmed/31578528
https://doi.org/10.1016/0002-9343%2876%2990500-3
http://www.ncbi.nlm.nih.gov/pubmed/1020754
http://www.ncbi.nlm.nih.gov/pubmed/1325521
http://www.ncbi.nlm.nih.gov/pubmed/9354649
https://doi.org/10.1038/ng.2982
https://doi.org/10.1038/ng.2982
http://www.ncbi.nlm.nih.gov/pubmed/24816252
https://doi.org/10.1038/nature10354
http://www.ncbi.nlm.nih.gov/pubmed/21886157
https://doi.org/10.1186/s12881-016-0283-5
http://www.ncbi.nlm.nih.gov/pubmed/26969407
https://doi.org/10.1161/CIRCGENETICS.114.000900
http://www.ncbi.nlm.nih.gov/pubmed/25561047
https://doi.org/10.1161/HYPERTENSIONAHA.111.203117
https://doi.org/10.1161/HYPERTENSIONAHA.111.203117
http://www.ncbi.nlm.nih.gov/pubmed/23381795
https://doi.org/10.1371/journal.pgen.1010139


59. Zhang W, Jernerén F, Lehne BC, Chen MH, Luben RN, Johnston C, et al. Genome-wide association

reveals that common genetic variation in the kallikrein-kinin system is associated with serum L-argi-

nine levels. Thromb Haemost. 2016; 116(6):1041–9. Epub 2016/09/23. https://doi.org/10.1160/TH16-

02-0151 PMID: 27656708; PubMed Central PMCID: PMC6215702.

60. Lamina C, Friedel S, Coassin S, Rueedi R, Yousri NA, Seppälä I, et al. A genome-wide association
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