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Abstract 

 

The γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central 

nervous system (CNS). Type A GABA receptor (GABAAR) system is the primary 

pharmacological target for many drugs used in clinical anesthesia. The α1, β2 and γ2 subunit-

containing GABAARs located in the various parts of CNS are thought to be involved in versatile 

effects caused by inhaled anesthetics and classic benzodiazepines (BZD) both of which are 

widely used in clinical anesthesiology. 

During the past decade, the emergence of tonic inhibitory conductance in extrasynaptic 

GABAARs has coincided with the evidence showing that these receptors are highly sensitive to 

the sedatives and hypnotics used in anesthesia. Anesthetic enhancement of tonic GABAergic 

inhibition appears to be preferentially increased in regions shown to be important in controlling 

the memory, awareness and sleep. 

This review will focus on the physiology of the GABAARs on one hand and 

pharmacological properties of clinically used BZDs on the other. Although classic BZDs are 

widely used in the anesthesiological practice, there is a constant need for new drugs with more 

favourable pharmacokinetic and –dynamic effects and with less side-effects. New hypnotics are 

currently developed, and promising results for one of these, a GABAAR agonist remimazolam, 

have recently been published. 



   4 

Table of contents 

 

Abstract 3 

I Introduction 6 

II GABAA receptors 8 

A GABAA receptor subtypes 9 

B Expression of GABAA receptor subunits in the human brain 10 

C Structure and function of the GABAA receptors  14 

III Benzodiazepines 15 

A Chemical structure 15 

B Physicochemical characteristics 16 

C Pharmacology 17 

1 Pharmacological action at GABAA receptor level 17 

2 Pharmacological action in the CNS 18 

a Sedation and GABAA receptor subtypes  18 

b Anesthetics and GABAA receptors 19 

c Anticonvulsive effects of benzodiazepines 21 

3 Cardiovascular system 22 

4 Ventilation 23 

D Pharmacokinetics and biotransformation of commonly used benzodiazepines  23 

1 Midazolam 25 

2 Diazepam and its metabolites 28 

3 Lorazepam 29 

4 Remimazolam (CNS 7056) 29 



   5 

5 Flumazenil 31 

E Pharmacokinetic-pharmacodynamic relationship of benzodiazepines 31 

F Pharmacokinetic drug interactions of benzodiazepines used in anesthesiology 33 

1 Mechanisms of pharmacokinetic drug interactions  34 

2 Cytochrome P450-mediated drug interactions and benzodiazepines  35 

IV Clinical use of benzodiazepines in anesthesiology 37 

A Premedication 37 

B Sedation and ambulatory anesthesia  40 

C Induction and maintenance of anesthesia  43 

D Benzodiazepines in the intensive care unit 45 

V GABAA subtypes as a specific target for new sedatives and hypnotics  47 

Acknowledgements 50 

References 52 



   6 

I. Introduction 

 

Classic benzodiazepine (BZD) drugs are widely used in clinical anesthesiology as 

anxiolytics, sedatives, hypnotics and anticonvulsants. GABA type A receptors (GABAARs) are 

the key targets that mediate practically all clinically important effects of the BZDs and 

intravenous anesthetics in the CNS. GABAAR subunits produce heteropentameric receptor 

complexes (Fig. 1). The five subunits of the pentameric structure span the lipid membrane and 

are arranged around a central anion channel. The expression of different GABAAR complexes in 

the brain shows subunit-dependency; for example, the expression of α6 is strictly restricted to 

cerebellar granule cells, while α1 is widely expressed in the CNS. This review will focus partly 

on the GABAAR-physiology relevant to the anesthesiologic drug action. It must be however 

emphasized, that the BZD binding site, located at the interface between an α and a γ subunit, 

differs from the binding site of general anesthetics, e.g. propofol. Therefore the mechanism of 

action of these drugs also differ. 

The actions of BZDs are due to the potentiation of the neural inhibition that is mediated 

by GABA. As GABA is the main inhibitory neurotransmitter in the brain, the effects of BZDs are 

also inhibitory. At low doses the BZDs have anxiolytic and anti-convulsive effects. Sedative, 

amnestic and finally hypnotic effect predominate as the dose of BZDs increases. Sedation is 

defined here as the reduction of irritability or agitation and a decreased level of arousal by 

administration of sedative drugs. With increasing doses of a sedative, unconsciousness (or 

hypnosis) may be finally achieved. Hypnosis in the form of sleep and abolishment of perception 

of environmental stimuli, can not usually be generated with BZDs. Intravenous hypnotics, e.g. 

propofol, can be employed in anesthesiology to elicit hypnosis. The effect of the BZDs is clearly 
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dose-related but there seems to be a ceiling effect where increasing the dose does not increase the 

effect. 

BZDs act as positive allosteric modulators and potentiate the effects of GABA on the 

GABAARs by increasing the frequency of chloride channel opening by generating fast, transient 

inhibitory postsynaptic currents (IPSCs). Hovever, the emergence of so called tonic inhibitory 

conductance has challenged this view over the last decade. There is growing evidence suggesting 

that extrasynaptic GABAARs are continuously activated by low concentrations of GABA thus 

mediating the persistent tonic inhibition. Extrasynaptic GABAARs that generate tonic 

conductance are considered to be highly sensitive to anesthetics and recent evidence points out to 

a possibility that general anesthetics discriminate between synaptic and tonic GABAARs. 

Numerous different BZDs have been synthesized, but only few are used in everyday 

clinical anesthesia: the agonists midazolam, diazepam, lorazepam, temazepam and the antagonist 

flumazenil. The pharmacology and clinical pharmacology of these drugs will be discussed in the 

latter part of this review. Benzodiazepines are well tolerated and their pharmacokinetics are quite 

well studied. Although BZDs are safe in every day practise, some side-effects caveat their use. 

BZDs have a dose-dependent ventilatory depressant effect and they also cause a modest reduction 

in arterial blood pressure and an increase in heart rate as a result of a decrease of systemic 

vascular resistance. Of clinical significance is that many BZDs are extensively metabolized by 

cytochrome P450 (CYP) enzymes. Midazolam and diazepam have many clinically significant 

interactions with inhibitors and inducers of CYP3A4 and 2C19, which should be recognized 

especially in the continuous use of these drugs. However, the duration of action of all BZDs is 

not only dependent on the pharmacokinetics of the drug, but the duration of their administration, 

which has a profound impact on the pharmacologic effect of BZDs. Based on clinical studies and 
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computer simulations,midazolam has the shortest recovery profile followed by lorazepam and 

diazepam. 

Although classic BZDs have established their place in the drug repertoire of an 

anesthesiologist, there is a constant need for shorter-acting sedatives providing for rapid onset, 

deep sedation, and full, rapid emergence from the effects of anesthesia. As demonstrated by 

remifentanil, a short-acting opioid analgesic, an organ-independent elimination mechanism seems 

to provide more predictable and reproducible pharmacodynamic and pharmacokinetic profile. 

Recent raports suggest that the same approach gives promising results also for GABAAR agonists 

given the results published recently of a new GABAAR agonist, remimazolam. 

 

II. GABAA receptors 

 

GABAAR belong to Cys-loop superfamily of ligand-gated ion channels (Collingridge et 

al., 2009). In addition, Cys-loop receptor superfamily comprises the nicotinic acetylcholine 

receptors, the glycine receptors, the 5-hydroxytryptamine3 receptor and zinc-activated cation 

channel (Collingridge et al., 2009). The subunits of Cys-loop receptors share a common primary 

structure consisting of large extracellular domain with a ”signature” disulfide, four 

transmembrane segments (TM) and a large variable cytoplasmic domain (cytoplasmic loop) 

between TM3 and TM4 (Connolly and Wafford, 2004). The secondary and three-dimensional 

structures of the subunits and the quaternary pentameric assembly of the subunits are also well 

concerved within the superfamily (Dent, 2006; Dougherty, 2008). 

Mammalian GABAARs are assembled from 19 subunits that belong in 8 subunit classes 

according to sequence similarity: α1-α6, β1-β3, γ1-γ3, δ, ε, π, θ, and ρ1-ρ3 (Olsen and Sieghart, 



   9 

2008). Each subunit is encoded by a homologous but separate gene. Most of the genes are 

organized in γ-α-β and γ-α-α-β gene clusters on different chromosomes. In humans the γ1-α2-α4-

β1 subunit gene cluster is localized on chromosome 4p12 (Buckle et al., 1989; Kirkness et al., 

1991; Wilcox et al., 1992; McLean et al., 1995, Simon et al., 2004), γ2-α1-α6-β2 cluster on 

chromosome 5q34, (Johnson et al., 1992; Wilcox et al., 1992; Russek and Farb, 1994; Kostrzewa 

et al., 1996, Simon et al., 2004), γ3-α5-β3 cluster on chromosome 15q13.2 (Wagstaff et al., 1991; 

Knoll et al., 1993; Greger et al., 1995, Simon et al., 2004) and ε-α3-θ cluster on Xq28 (Bell et al., 

1989; Levin et al., 1996; Wilke et al., 1997). The human genes coding for δ and π subunits are 

localized on chromosomes 1p36.3 (Emberger et al., 2000) and 5q35.1 (Simon et al., 2004), 

respectively. Genes coding for human ρ1 and ρ2 subunits are on chromosome 6q15 and ρ3 gene 

on chromosome 3q12.1 (Simon et al., 2004). 

In addition to large number of subunit genes, additional variation is produced by 

alternative splicing of some subunits. Alternative splicing of human β2 subunit produces a 38 

amino acid insertion with several potential phosphorylation sites in the second, large intracellular 

loop of the subunit (McKinley et al., 1995). The human γ2 variants differ in only an additional 

eight-amino acid protein kinase C consensus sequence containing stretch in the large intracellular 

loop present in the γ2L subunit and missing in the γ2S subunit (Cheng et al., 1997). The 

functional difference between the two splice variants has not been clearly demonstrated for either 

β2 or γ2. 

 

A. GABAA receptor subtypes 

GABAAR subunits produce heteropentameric receptor complexes (Fig. 1). Most 

GABAARs consist of α, β and γ subunits with a subunit stoichiometry of 2α:2β:1γ (Olsen and 
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Sieghart, 2008). The γ2 subunit is the γ isoform present in over 90% of αβγ receptors, and thus, 

75-80% of GABAARs contain γ2 (Sieghart and Sperk, 2002; Whiting, 2003). γ2 subunit in the 

receptor complex confers sensitivity to benzodiazepines (BZD) (Pritchett et al., 1989). The αβγ 

receptor subtypes clearly identified in the brain thus far are each α subunit isoform in 

combination with a β and γ2 subunit: α1β2γ2, α2βγ2, α3βγ2, α4βγ2, α5βγ2 and α6βγ2 (Olsen and 

Sieghart, 2008). The α1 is the most abundant α subunit and its expression colocalizes with those 

of β2 and γ2. Thus, α1β2γ2 receptor subtype comprises 40-50% of brain GABAARs (Whiting, 

2003; Olsen and Sieghart, 2008). Subunits α4 and α6 combine with β2 or β3 and δ subunit to 

form α4β2δ, α4β3δ, α6β2δ and α6β3δ receptor subtypes (Olsen and Sieghart, 2008). In addition, 

receptor subtypes existing with high probability include α1β3γ2, α1βδ and α5β3γ2; αβγ receptors 

containing either γ1 or γ3 subunit, receptors containing only α and β subunits (αβ), and αβγ or 

αβδ receptors containing two different α or β subunits (Olsen and Sieghart, 2008). 

Rho subunits form homomeric and heteromeric pentameric ρ receptors (Enz and Cutting, 

1998). At present it is controversial whether ρ subunits combine with other classes of GABAAR 

subunits (Enz and Cutting, 1998; Olsen and Sieghart, 2008). Epsilon and θ are believed to 

combine with other classes of GABAAR subunits to form receptors, but the native receptor 

combinations are currently not known. π subunit is expressed outside CNS and forms homo-

oligomeric complexes (Hedblom and Kirkness, 1997). 

 

B. Expression of GABAA receptor subunits in the human brain 

Mammalian GABAAR subunits are expressed in brain region and cell-type specific 

manner (Laurie et al., 1992a, 1992b; Wisden et al., 1992). Subunit expression repertoire and the 

preferential combining of the subunits govern formation of receptor subtypes in a given cell. 

Subunit expression patterns have been extensively characterized in rodents, but there are also 
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many studies on the expression of GABAAR subunits in human brain (Table 1). The GABAAR 

system is highly concerved in mammals, but some quantitative and/or qualitative differences 

have been found between human and rat in brain regional expression patterns of the subunits. The 

expression of some subunits is very restricted, i.e. the expression of α6 subunit is confined in 

cerebellar granule cells (Hadingham et al., 1996), while α1 is widely expressed in most brain 

regions (Akbarian et al., 1995; Loup et al., 2006; Waldvogel et al., 2008; Houser et al., 1988; 

Fatemi et al., 2009). Some cell types express only a small repertoire of subunit mRNAs, e.g. α1, 

β2, β3 and γ2 in cerebellar Purkinje cells (Wisden et al., 1992), while the majority of individual 

human dentate granule neurons express 10 or more different subunit mRNAs (Brooks-Kayal et 

al., 1999).  

The expression of α1 subunit mRNA is detected in all six prefontal cortical layers, the 

expression being most pronounced in layers III and IV (Akbarian et al., 1995; Ohnuma et al., 

1999) and in human temporal neocortex (Loup et al., 2006), α1 being the most abundant α 

subunit variant in human prefrontal and temporal cortices. In entorhinal cortex α1 expression is 

high in layers II, III and V (Longson et al., 1997). The expression of α1 is strongest in motor 

cortex layers III-IV (Petri et al., 2003). In human substantia nigra pars reticulata α1 subunit is 

expressed at comparatively high levels, while in substantia nigra pars compacta the expression is 

very low (Waldvogel et al., 2008). In human hippocampus the expression of α1 is highest in the 

molecular layer of the dentate gyrus and CA1, moderate in CA2, and nearly devoid in CA3 

region (Houser et al., 1988; Loup et al., 2000; Pirker et al., 2003; Rissman et al., 2003, 2004). 

The expression of α1 protein is stronger than that of the other subunits studied (Fatemi et al., 

2009).  

Prefrontal cortical expression pattern of α2 mRNA was similar to that of α1 mRNA, 

expression being strongest in layers II-IV (Akbarian et al., 1995). In temporal neocortex α2 
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expression is strongest in layers II and III (Loup et al., 2006) and in layers II, IV and V in motor 

cortex (Petri et al., 2003). No α2 expression was detected in the substantia nigra (Waldvogel et 

al., 2008). In human hippocampus the α2 subunit is very abundant throughout the hippocampal 

formation, the expression being strongest in dentate molecular layer (Loup et al., 1998, 2000). 

Immunoreactivity of α3 protein is most intense in temporal neocortex layer II and upper 

part of layer III (Loup et al., 2006). This is in contrast to α3 expression in rat neocortex where it 

is mainly located in deep layers (Fritschy and Möhler, 1995; Pirker et al., 2000). The expression 

of α3 is strongest in motor cortex layers IV-VI (Petri et al., 2003). α3 subunit is expressed at 

relatively high levels in substantia nigra pars compacta and pars reticulata (Waldvogel et al., 

2008). While virtually absent in the rat hippocampus (Fritschy and Möhler, 1995), in human 

hippocampus α3 subunit is very intense in CA1, subiculum and in the dentate molecular layer 

(Loup et al., 1998; 2000; Pirker et al., 2003). 

The expression of human α4 subunit is uniform in cortical layers II-V and lower in layer 

VI (Petri et al., 2003; Maldonado-Avilés et al., 2009). Prefontal cortical α5 mRNA expression is 

strongest in layer IV, adjacent parts of layer III and in layers V and VI (Akbarian et al., 1995). 

The expression of α5 is strongest in motor cortex layers IV-VI (Petri et al., 2003). In the 

hippocampus α5 expression is highest within the mid-CA1 and dentate gyrus subregions, 

followed by CA1/CA2 and CA3 subfields (Rissman et al., 2003).  α6 subunit is expressed 

exclusively in cerebellar granule cells (Hadingham et al., 1996). 

The expression of β1 mRNA in human cerebral cortex is most prominent in prefontal 

cortical layers II and III (Akbarian et al., 1995). In the hippocampus β1 immunoreactivity is 

present in the granule cell layer and in pyramidal cell layer of CA2 and CA3 (Pirker et al., 2003). 

β2 mRNA is present in all prefontal cortical layers, most prominently in layers III and IV 

(Akbarian et al., 1995). In temporal neocortex the expression pattern of β2/3 immunoreactivity is 
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nearly identical to that of α1 (Loup et al., 2006). In entorhinal cortex β2/3 expression is very 

similar to that of α1, being strongest in layers II, III and V (Longson et al., 1997). In motor cortex 

the expression of β2 is strongest in layers III-VI (Petri et al., 2003). In human substantia nigra 

pars reticulata β2/3 subunit is expressed at comparatively high levels, while in substantia nigra 

pars compacta the expression is very low (Waldvogel et al., 2008). The expression of β2/3 

subunits in hippocampus is highest in dentate molecular layer and CA1, and moderate in CA2 

and CA3 (Loop et al., 2000). β2 immunoreactivity is present in subiculum and in dentate 

molecular layer (Pirker et al., 2003), whereas β3 immunoreactivity is expressed in hippocampal 

CA1-CA3, dentate gyrus, hilus and the subiculum (Pirker et al., 2003). The expression of β3 is 

much stronger in CA1-CA3 regions than that of β2 (Pirker et al., 2003). 

Expression pattern of γ2 mRNA in prefontal cortex and temporal neocortex is similar to 

those of α1 and β2 (Akbarian et al., 1995; Loup et al., 2006). γ2 expression is strong in entorhinal 

cortex layers II, III and V (Longson et al., 1997) and in motor cortex layers II-VI (Petri et al., 

2003). γ2 subunit is expressed at relatively high levels in substantia nigra pars compacta and pars 

reticulata (Waldvogel et al., 2008). In the hippocampus γ2 expression is strong in dentate 

molecular layer and CA1, and moderate in CA2 and CA3 (Loop et al., 2000; Pirker et al., 2003). 

The expression of δ is strong in human motor cortex layers III-VI (Petri et al., 2003; 

Hashimoto et al., 2008; Maldonado-Avilés et al., 2009). This is in contrast to the weak and more 

restricted expression of δ subunit in rodent motor cortex (Wisden et al., 1992; Persohn et al., 

1992). In hippocampus δ is expressed in dentate granule cells (Brooks-Kayal et al., 1999) and in 

cerebellum in cerebellar granule cells (Bullock et al., 2008).  

The expression of ε subunit in human brain is restricted to the hypothalamus and to 

subfields of the hippocampus (Whiting et al., 1997), while θ is expressed in dopaminergic 

neurons of the substantia nigra pars compacta and in locus coeruleus (Bonnert et al., 1999). The π 
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subunit is expressed in non-neural tissues with predominant expression in uterus (Hedblom and 

Kirkness, 1997). The ρ subunits (ρ1-ρ3) are mainly expressed in the retina with low levels in 

several brain regions (Enz and Cutting, 1999). 

 

C. Structure and function of GABAA receptors 

Three-dimensional models of Cys-loop receptors are based on the original models of 

Torpedo marmorata nicotinic acetylcholine receptor (Unwin, 2005) and the soluble acetylcholine 

binding protein from Lymnaea stagnalis (Brejc et al., 2001; Smit et al., 2001). Especially the 

three-dimensional structure of the latter one has been extensively used to model Cys-loop 

receptors. GABAAR subunits consist of the conserved topological properties of Cys-loop 

receptors: an N-terminal α-helix, two 310 helices and ten β-strands folded into two β sheets to 

form a sandwich, the luminal (inner) and abluminal (outer) sheet connected by the signature 

disulfide bridge (Fig. 2)(Ernst et al., 2005). GABA and BZD binding sites are formed at each 

extracellular interface between adjacent subunits by six ”so-called” loops A, B and C for the plus 

(principal) side, and D, E and F for the minus (complementary) side (Ernst et al., 2003). The two 

GABA binding sites are located at the interfaces between α and β subunits while the BZD 

binding site resides at the interface between α and γ2 subunits (Ernst et al., 2003). The five 

subunits of the pentameric structure span the lipid membrane and are arranged around a central 

anion channel. The TM2 segments of each subunit face the lumen of the aqueous anion channel. 

Upon binding of two GABAA agonists to the receptor-associated GABA binding sites, allosteric 

movements in the channel structure result in an opening of the anion channel, allowing chloride 

and bicarbonate ions to traverse the lipid bilayer. This results in hyperpolarization of cell 

membrane potential and inhibition of neuronal activity. 
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The potency of GABA to elicit electrophysiological responses on human GABAAR 

subtypes is predominantly determined by the α-variant present in αβγ2 receptor subtypes. The 

potency is highest in α6βγ2 receptors followed by α5βγ2 receptors (Wafford et al., 1996; Ebert et 

al., 1997, 2001). The potency is lowest in α3-containing receptors (Ebert et al., 1997), GABA-

sensitivity in α1-, α2- and α4-containing receptors being intermediate (Hevers and Lüddens, 

1998). 

 

III. Benzodiazepines 

 

The first BZD, chlordiazepoxide, was synthesizedin 1955 and its hypnotic and sedative 

properties were accidentally discovered two years later (Greenblatt and Shader, 1974). It was also 

the first benzodiazepine brought into the clinical use. Ten years later diazepam was used for 

induction of anesthesia (Stovner and Endresen, 1965). After that, numerous different BZDs have 

been synthesizedand about 30 of them are currently in clinical use. In clinical anesthesia, only 

few BZDs, the agonists midazolam, diazepam, temazepam and lorazepam and the antagonist 

flumazenil are widely used. 

 

A. Chemical structure 

Most BZDs share the 5-phenyl-1,3-dihydrobenzo[e] [1,4]diazepine nucleus, with different 

possible substitutents at the 1, 2, 3, 7 and 2’ positions. BZDs commonly used in clinical 

anesthesiology can be structurally classified as either 1,4-benzodiazepines or 

imidazobenzodiazepines (Fig. 3). An electro-negative substituent in position 7 is indispensable 

for BZD activity (Sternbach, 1979). Anesthesiologically relevant BZD agonists contain a 5-aryl 

substituent which further enhances the pharmacological potency (Gerecke, 1983). Diazepam (7-
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chloro-1,3-dihydro-1-methyl-5-phenyl-2H-1,4-benzodiazepin-2-one) was introduced onto the 

market after chlordiazepoxide, and is still one of the most widely used BZDs in the whole world. 

Lorazepam (7-chloro-5-(2-chlorophenyl)-1,3-dihydro-3-hydroxy-2H-1,4-benzodiazepin-2-one) 

and temazepam (7-chloro-1,3-dihydro-3-hydroxy-1-methyl-5-phenyl-1,4-benzodiazepin-2-one) 

are short-to intermediate-acting BZDs. 

Imidazobenzodiazepines possess an imidazo ring substituted at positions 1 and 2 of the 

diazepine nucleus and similarly to 1.4-benzodiazepines, a 5-phenyl substituent is pivotal for 

pharmacological effect. (Fig 3). Imidazobenzodiazepines seem to possess structural requirements 

for binding that are distinct from classic 1,4-BZDs (Kucken et al., 2000, Kucken et al., 2003). 

Midazolam (8-chloro-6-(2-fluorophenyl)-1-methyl-4H-imidazo-[1,5-α][1,4]-benzodiazepine) is a 

short-acting imidazobenzodiazepine. Imidazobenzodiazepine derivative remimazolam (3-[8-

bromo-1-methyl-6-(2-pyridinyl)-4H- -imidazo[1,2-α][1,4]-benzodiazepin-4(S)-yl]propionic acid 

methyl ester) is a carboxylic ester. Flumazenil (ethyl 8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-

imidazo-[1,5-α][1,4]benzodiazepine-3-carboxylate) is a competitive BZD receptor antagonist 

with some inverse agonist activity. It possesses two important structural differences compared to 

the agonists. Flumazenil has a keto-residue at position 6 instead of an aryl ring substituent and a 

methyl substituent at position 5. Commonly used BZDs are fairly small molecules with molecular 

weights ranging from 284.7 to 325.8 daltons. The chemical structures of BZDs discussed here are 

shown in Fig. 4. 

 

B. Physicochemical characteristics 

The physiochemical characteristics of BZD receptor agonists commonly used in the 

practice of anesthesia are summarized in the Table 2. All clinically used BZDs are lipid soluble at 
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physiologic pH, which accounts for their rapid CNS effects. Contrary to other BZDs, midazolam 

is a water soluble imidazobenzodiazepine. It is a lipophilic substance with low solubility in water, 

but the basic nitrogen atom in the imidazole ring forms water-soluble salts with acids which 

opens the imidazole ring. At physiological pH, the ring closes and the molecule loses its charge 

becoming highly lipophilic (Reves et al., 1985, Amrein and Hetzel 1990). Intravenous lorazepam 

contains propylene glycol, which has been associated with toxicity when high doses of lorazepam 

are administered (Horinek et al., 2009). 

 

C. Pharmacology 

1. Pharmacological action at GABAA receptor level. Classic 1,4-BZDs such as diazepam 

exert their action by interacting with GABAARs (Olsen and Sieghart, 2008). They act as positive 

allosteric modulators and potentiate the effects of GABA on the receptor by increasing the 

frequency of chloride channel opening (Study and Barker, 1981). The BZD binding site is located 

at the interface between an α and a γ subunit, and its pharmacology is thus influenced by both α 

and γ subunits (Fig. 2) (Ernst et al., 2003, Ogris et al., 2004). Most classic BZDs bind to αβγ2 

receptors containing α1, α2, α3 or α5 subunits with approximately the same affinity (Table 1). In 

contrast, several non-BZDs such as zolpidem and zaleplon have high affinity (low nanomolar) to 

α1βγ2 receptors and intermediate affinity (high nanomolar) to α2 and α3 containing receptors, 

with the affinity of zolpidem to α5βγ2 receptors being very low (Korpi et al., 2002; Olsen and 

Sieghart, 2008). αβγ2 receptors containing α4 or α6 subunits are insensitive to BZDs. This is 

based on the presence of an arginine (α4/6) residue instead of a histidine (α1/2/3/5) at a 

conserved position in BZD binding site (Wieland et al., 1992). The requirement of the His-

residue for BZD binding has been utilized to generate knockin mutant mouse lines [α1(H101R), 

α2(H101R), α3(H126R), α5(H105R], where the Arg-containing receptor subtype is insensitive to 
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classic BZDs (see for review Rudolph and Möhler, 2004). Studies on these mouse lines have 

demonstrated the roles of GABAAR subtypes in mediating specific behavioral actions of 

diazepam. The α1-containing αβγ2 receptors appear to mediate sedative, anterograde amnesic and 

antimyoclonic actions of diazepam (Rudolph et al., 1999), while anxiolytic activity is mediated 

by α2-containing and probably by α3-containing αβγ2 receptors (Löw et al., 2000; Crestani et al., 

2001). Muscle relaxant activity of BZDs is mediated partially by α1-, α2-, α3- and α5-containing 

αβγ2 receptors (Löw et al., 2000; Crestani et al., 2001, 2002).  

2. Pharmacological action in the CNS. As GABA is the main inhibitory 

neurotransmitter in the brain, the effects of BZDs are also inhibitory. At low doses the BZDs 

have anxiolytic and anti-convulsive effects. As the dose increases, the BZDs produce sedation, 

amnesia and finally unconsciousness. The effect of the BZDs is clearly dose-related but there 

seems to be a ceiling effect where increasing the dose does not increase the effect (Hall et al., 

1988). 

a. Sedation and GABAA receptor subtypes Studies with receptor subtype-selective 

non-BZDs like zolpidem, CL 218,872 and zaleplon have implicated the major GABAAR subtype 

α1β2γ2 (and α1β3γ2) to mediate sedative effects of BZDs (Dawson et al., 2005). This is in 

accordance with results from studies on GABAAR knockin mouse lines (Rudolph and Möhler, 

2004). The development of anxioselective BZD-site ligands, however, has produced some 

surprising results. Preclinical studies with rodents and efficacy-selective BDZ-site compounds 

have usually yielded results that are in accordance with the behavioral effects mediated by 

GABAAR α1/α2/α3/α5-subtypes. However, compound MRK-409 with selective efficacy at 

α2/α3-containing over α1 GABAARs that shows minimal signs of sedation in rodents at 

occupancies over 90%, produced sedation in humans at relatively low occupancy (Atack et al., 

2010a). This sedation might be due to the partial agonist efficacy of the compound at the α1 
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subtype (Atack et al., 2010b). Furthermore, humans are obviously more sensitive and aware of 

the sedative effects of a drug than are the species used in preclinical studies (Whiting, 2006). It 

remains to be seen whether the roles of various GABAAR subtypes in man are similar to the roles 

suggested by the rodent models.  

The pyrazolo[1,5-a]-pyrimidine ocinaplon, a positive allosteric modulator binding to 

GABAAR BDZ site further confused the view of GABAAR subtypes mediating different 

behavioral effects of BZDs. Ocinaplon is a full agonist at α1β2γ2 receptors and a partial agonist 

at α2β2γ2, α3β2γ2 and α5β2γ2 receptors (Lippa et al., 2005). However, despite it’s 

pharmacological properties in vitro, ocinaplon is anxioselective without sedative properties in 

vivo (Lippa et al., 2005). These data suggest that in humans the roles of GABAAR subtypes in 

mediating behavioral effects of BZD-site compounds are not as straightforward as suggested by 

knockin mouse models. 

b. Anesthetics and GABAA receptors Over the last decade evidence has been 

gathering to demonstrate, that sleep is generated when neuronal clusters located in the 

ventrolateral preoptic nucleus (VPLO) increase their activity and inhibit the output of neuronal 

structures maintaining the wakeful state in lateral hypothalamic area (Saper et al., 2001). A 

population of GABAergic neurons in the VPLO area show state-dependent firing patterns with 

highest discharge rates during sleep (Sherin et al., 1996, Szymusiak et al., 1998). The efferent 

projections of these neurons inhibit the centers promoting wakeful state (see Saper et al., 2001). 

These systems are largely ascending and include GABA-containing neurons (Sherin et al., 1998). 

Sleep-active neurons in VLPO have cortical ascending projections which dampen the fast cortical 

activity on the one hand, and descending projections to the spinal cord and brainstem to diminish 

muscle tone and behavioral arousal on the other hand. 
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Evidence from functional brain imaging has shown inhibition of thalamic and midbrain 

reticular formation nuclei during anesthetic-induced unconsciousness (Alkire et al., 2000). This 

resembles the characteristics of naturally occurring thalamocortical inhibition of non-REM sleep 

(Steriade, 2003). The behavioral phenotype of genetically modified mice that express anesthetic-

insensitive subunits supports the hypothesis that different GABAARs subtypes mediate different 

anesthetic effects (Bonin and Orser, 2008). GABAARs are the key targets that mediate most of 

the clinically important effects of intravenous anesthetics (Möhler 2006, Winsky-Sommerer, 

2009) and general anesthesia is not a single phenomenon but rather a complex state comprising 

multiple components (sedation, amnesia, hypnosis, analgesia, and immobility) (Campagna et al., 

2003, Rudolph and Antkowiak, 2004). Various components of the anesthetic state are probably 

mediated by different receptor populations and neuronal pathways (Campagna et al., 2003). This 

is emphasized by findings that anesthetics distribute throughout the brain (Eckenhoff and 

Eckenhoff, 1998) affecting several nuclei which send bidirectional signals, either inhibitory or 

excitatory (Dong et al., 2006). In summary, current evidence suggests that anesthetics act by 

uncoupling the activity of cortical regions that would otherwise influence one another in the 

waking state (Imas et al., 2005, Peltier et al., 2005). 

GABAARs mediates the majority of inhibition by generating fast, transient IPSCs (Fig. 5). 

Synaptic or “phasic” inhibition mediates the key role of GABA in precise neuronal firing patterns 

and synchronization of activity in the neuronal networks (Cobb et al., 1995, Pouille and 

Scanziani, 2001). Enhancement of fast synaptic inhibition by IPSCs was widely thought to be the 

primary mechanism underlying the actions of many GABAergic drugs, but over the past decade, 

the emergence of tonic inhibition of GABAARs has challenged this view. Tonic inhibitory 

conductance is generated by high-affinity, slowly desensitizing GABAARs that are activated by 

low concentrations of GABA (Fig. 5)(Farrant and Nusser, 2005). There is growing evidence 
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suggesting that extrasynaptic GABAARs are continuously activated thus mediating the persistent 

tonic inhibition (Semyanov et al., 2004, Cavalier et al., 2005, Farrant and Nusser, 2005, Mody, 

2005, Walker and Semyanov, 2008). Tonic conductance was first found in the CA1 pyramidal 

neurons (Bai et al., 2001, Marchionni et al 2007) after which the importance of tonic inhibition 

was demonstrated in many cell types (Porcello et al., 2003, Jia et al 2005, Drasbeck et al., 2007, 

Vardya et al., 2008, Glykus et al., 2008). 

Extrasynaptic GABAARs that generate tonic conductance are considered to be highly 

sensitive to anesthetics. Moreover, recent study indicates that general anesthetics discriminate 

between synaptic and tonic GABAARs (Bieda et al., 2009). Extrasynaptic GABAARs are 

activated by low concentrations of GABA and as anesthetics increase the receptor affinity (Orser 

et al., 1998), agonist binding and current amplitude may increase (Fig. 5). Midazolam enhances 

the GABAergic inhibition by increasing the tonic current over synaptic current in some brain 

regions (Bai et al., 2001). Finally, extrasynaptic GABAARs are expressed in two brain regions 

involved in anesthetic-sensitive actions: the pyramidal neurons in the CA1 regions of the 

hippocampus and the thalamic VB neurons (Mortensen and Smart, 2006, Belelli et al., 2005, Jia 

et al., 2005). Long-term plasticity of excitatory neurotransmission in hippocampal CA1 

pyramidal neurons is widely considered to be a molecular substrate for memory (Frank et al 

2006). GABAARs containing the α5 subunit mediate the tonic conductance in the hippocampal 

pyramidal neurons (Orser, 2006) causing also the amnestic effects of general anesthetic etomidate 

(Cheng et al., 2006). 

c. Anticonvulsive effects of benzodiazepines GABAergic inhibition has a pivotal role in 

self-termination of isolated epileptic seizures and the transition from a single epileptic seizure to 

status epilepticus is associated with the breakdown of GABAergic inhibition. Results from the 

studies employing mice with α1-subunit gene knockout demonstrate, that α1-subunit-containing 
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GABAARs in part mediate the anticonvulsant effect of diazepam (Kralic et al., 2002). Nuclei 

located in the amygdala express high levels of α1-GABAARs, and are primary sites of BZD-

induced behavioral responses (Pirker et al., 2000, Kaufmann et al., 2003, Savic et al., 2005). This 

is further evidenced by amygdala-specific reduction of α1 receptor subunits, which disrupts the 

inhibition of anticonvulsive effects of diazepam (Heldt and Ressler, 2010). 

Rapid loss of GABAergic inhibition is seen in dentate gyrus cells after a brief perforant 

path stimulus, indicating GABAergic impairment (Naylor and Wasterlain, 2005). Within minutes 

of ongoing seizure activity, significant endocytosis of GABAARs in the dentate gyrus cell 

synapses occurs (Naylor et al., 2005). Erosion of GABAergic inhibition due to dissappearance of 

GABAARs may also explain the progressive pharmacoresistance to BZDs seen during ongoing 

status epilepticus (Mazarati et al., 1998). The initial treatment of status epilepticus is 

enhancement of impaired GABAAR-mediated synaptic inhibition. BZDs are the drug of choice in 

these emergencies.  

3. Cardiovascular system The paraventricular nucleus of the hypothalamus (PVN) 

is an important site for autonomic and endocrine homeostasis of the cardiovascular system. The 

PVN integrates specific afferent stimuli to produce an appropriate differential sympathetic output 

to regulate blood volume while rostral ventrolateral medulla is the dominant brain region for 

tonic regulation of arterial blood pressure (Coote, 2007). Under normal circumstances the 

sympathetic nervous system is tonically inhibited. This inhibition is dependent upon GABA and 

nitric oxide such that nitric oxide potentiates local GABAergic synaptic inputs onto the neurones 

in the PVN (Li et al., 2006). The inhibitory action is mediated primarily through ionotropic 

GABAA and metabotropic GABAB receptors (Decavel and Van den Pol, 1990). 
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Sedative and anesthetic doses of intravenous BZDs decrease the systemic vascular 

resistance and cause a reduction in arterial blood pressure and increase in heart rate. They induce 

a minor reduction of cardiac output (Samuelson et al., 1981; Ruff and Reves, 1990) and 

midazolam and diazepam have also been shown to depress the baroreflex. As a result, both 

midazolam and diazepam induce a limited ability to compensate for hemodynamic alterations 

related to hypovolemia (Marty et al., 1986). 

4. Ventilation  GABAAR subunits are expressed in the human type II alveolar 

epithelial cells (Xiang et al., 2007) and it has been suggested that GABAergic activity in alveolar 

epithelial cells is associated with mucus overproduction (Lu and Inman, 2009). However, the 

effect of BZDs on this signalling system is currently not known. 

Hypnotic doses of oral BZDs have essentially no effect on ventilation in healthy subjects. 

At higher doses, the BZDs affect ventilation in two different ways. They decrease the muscular 

tone in upper airways which increases the risk of airway obstruction (Norton et al., 2006). BZDs 

are therefore not recommended and are considered contraindicated in patients suffering from 

obstructive sleep apnoea. In addition, they affect the ventilatory response curve to carbon dioxide 

by flattening the response. BZDs do not shift the curve to the right like opioids but a typical 

reaction to BZDs is a decrease in tidal volume (Sunzel et al., 1988). If the patient is given BZDs 

together with opioids, the risk of significant ventilatory depression is increased markedly because 

BZDs depress the reaction to hypoxia under hypercapnic conditions (Alexander and Gross, 1988; 

Tverskoy et al., 1989). 

 

D. Pharmacokinetics and biotransformation of commonly used benzodiazepines 

The BZDs commonly used in anesthesia, namely midazolam, lorazepam, diazepam and 

flumazenil, show quite similar distribution pharmacokinetics, but their metabolism and clearance 
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differ significantly. The pharmacokinetic variables of intravenous BZDs are summarized in Table 

3. 

The biotransformation of BZDs is mediated by CYP- and conjugating enzymes. CYP-

enzymes catalyse the phase I oxidation reactions, which are O2- and NADPH-dependent and 

require the presence of the complete mixed-function oxidase system consisting of cytochrome 

P450 and NADPH-cytochrome P450 reductase (Danielson, 2002). Reactions start with initial 

insertion of a single oxygen atom into the substrate molecule. Resulting mono-oxygenated 

metabolite may undergo further rearrangement and/or decomposition leading to final products. 

Subsequent phase II reactions are conjugation reactions in which the drug or its metabolite is 

attached to an endogenous water-soluble molecule, such as glucuronic acid, glutathione, sulphatic 

group, acetyl group, methyl group or glucosamine. During this process, the whole complex 

becomes more hydrophilic. The enzymes catalysing the phase I and II reactions are expressed in 

many tissues but the main sites for biotransformation are are liver and small intestine which have 

the highest concentrations of enzymes involved in the drug metabolism (Danielson, 2002, Galetin 

et al., 2010). 

Long-acting BZDs are either N1-desalkyl derivatives or are oxidized in the liver to N1-

desalkyl derivatives (e.g. diazepam). Further biotransformation of N1-desalkylated metabolites 

proceeds much more slowly than for the parent drug, and they therefore accumulate in the body 

after a few days of treatment. The rate-limiting step of their metabolism is C3-hydroxylation to 

the pharmacologically active oxazepam or its 2´-halogenated analogues.  

Short-acting BZDs include the C3-hydroxylated BZDs such as lorazepam, which 

undergoes rapid conjugation with glucuronic acid to water-soluble inactive metabolites that are 

excreted in the urine, and drugs such as midazolam requiring oxidation involving aliphatic 

hydroxylation before subsequent conjugation. Although these hydroxylated metabolites may 
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retain pharmacological activity, they are unlikely to contribute significantly to clinical activity 

because of their negligible plasma concentrations and rapid inactivation by glucuronidation. 

1. Midazolam. a. Pharmacokinetics. After oral ingestion, midazolam is rapidly and 

almost completely absorbed from the intestine (Thummel et al., 1996), and the peak plasma 

concentration is achieved in 30 to 80 minutes (Olkkola et al., 1994, Thummel et al., 1996). 

However, the bioavailability of the drug remains under 50% because of a significant first-pass 

metabolism in the intestinal wall and in the liver (Allonen et al., 1981, Thummel et al., 1996, 

Gorski et al., 1998). The comparison of intravenous and oral midazolam kinetics in healthy 

young subjects demonstrate that the intestine has a major influence on the overall first-pass 

elimination of midazolam after oral administration (Thummel et al., 1996). The oral 

bioavailability of midazolam is greater in the elderly compared with young subjects (Greenblatt 

et al., 1984, Gorski et al., 1998). Similar increase is observed with oral doses over 30 mg, 

presumably as a result of saturated first-pass metabolism (Bornemann et al., 1985). 

Following intravenous administration, midazolam is rapidly distributed and the 

distribution half-life is 6 to 15 minutes (Allonen et al., 1981). Midazolam is 94-98% bound to 

plasma proteins (Allonen et al., 1981, Greenblatt et al., 1984), so small changes in plasma protein 

binding can produce large changes in the amount of free drug available (Dundee, 1984). The 

hepatic extraction ratio of midazolam is low, ranging from 0.30 to 0.44, but is significantly higher 

than the unbound free fraction of midazolam in plasma (Thummel et al., 1996, Gorski et al., 

1998). Thus the protein binding of midazolam is not a restrictive factor for drug extraction in 

liver, and changes in the protein binding are not likely to affect the magnitude of drug extraction. 

The high lipophilicity of midazolam accounts for the relatively large volume of distribution at 

steady-state, i.e. 0.8-1.7 l/kg (Heizmann et al., 1983). 
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The plasma disappearance curve of midazolam can be described with 2- or 3-

compartment models. The elimination half-life ranges from 1.7 to 3.5 h (Allonen et al., 1981; 

Heizmann et al., 1983; Greenblatt et al., 1984) and is independent of the route of drug 

administration. The initial rapid disappearance of midazolam from plasma after intravenous dose 

is due to the redistribution outside the vascular space, with a distribution half-life of 

approximately 30 min (Allonen et al., 1981). Distribution of midazolam to the adipose tissue is 

presumably more extensive than distribution to other body tissues because of the high 

lipophilicity of the drug. The increased volume of distribution is reflected in the prolonged 

elimination half-life of up to 3-fold in obese subjects compared with those of normal weight 

(Greenblatt et al., 1984). Major operations seem to increase the volume of distribution and 

prolong the elimination half-life (Harper et al., 1985). For some reason, a small proportion of the 

otherwise healthy population has a prolonged elimination half-life of more than 7 h (Dundee, 

1984; Kassai et al., 1988). It has been suggested that the prolonged elimination is caused by 

increased tissue binding (Wills et al., 1990). 

The fused imidazole ring of midazolam is oxidized much more rapidly than the methylene 

group of the diazepine ring of other BZDs which accounts for the greater plasma clearance of 

midazolam ranging from 5.8 to 9.0 ml/kg/min (Dundee, 1984). In elderly men, the clearance of 

midazolam is reduced and the elimination half-life is prolonged as compared to young males, but 

no similar decrease has been observed among women (Greenblatt et al., 1984). This issue seems 

to be controversial since Thummel et al., (1996) observed no gender-related differences in the 

clearance of midazolam, but Gorski et al., (1998) reported women to have a higher oral clearance 

of midazolam than men. Cirrhosis of the liver reduces the plasma clearance and the elimination 

half-life is prolonged compared to healthy volunteers (Pentikäinen et al., 1989), while the volume 

of distribution remains unchanged. 



   27 

b. Biotransformation The first step in the metabolism of midazolam is 

hydroxylation by CYP3A4 and CYP3A5 (Wandel et al., 1994). The metabolites formed are 1-

hydroxymidazolam and 4-hydroxymidazolam both of which are pharmacologically active 

(Heizmann et al., 1983; Ziegler et al., 1983). Small amounts of 1,4-hydroxymidazolam is also 

produced. All metabolites are rapidly conjugated with glucuronic acid and excreted through 

kidneys. N2-glucuronidation is catalyzed by UDP-glucuronosyltransferase (UGT) 1A4-enzyme 

and 1-hydroxymidazolam may also be further conjugated by 1’-O-glucuronidation which is 

catalyzed by UTG2B4 and UGT2B7 (Klieber et al., 2008). 1-hydroxymidazolam is the main 

metabolite and it composes at least 70% of the urinary recovery of metabolites, while up to 6% is 

comprized of the minor metabolites. Less than 0.5% of the dose is excreted unchanged in the 

urine (Allonen et al., 1981, Thummel et al., 1996). 

Recent report by Hyland et al. (2009) suggested that direct N-glucuronidation of 

midazolam occurs in vivo, possibly by UGT1A4-enzyme. Midazolam N-glucuronide was 

identified from human urine samples and evidence was shown demonstrating that under CYP3A 

inhibition the contribution of UGT1A4 enzyme in midazolam metabolism may increase. 

1-hydroxymidazolam is as potent as the parent compound, and the affinity of 1-

hydroxymidazolam to the BZD receptors in the brain is about 60% of that of midazolam. Also the 

glucuronidated 1-hydroxymidazolam binds to the receptors, but the affinity is 10 times weaker 

than that of midazolam. However, the clinical importance of the 1-hydroxymidazolam as a 

sedative is limited because of the rapid glucuronidation and much shorter elimination half-life 

(0.8 h), than that of midazolam (Bornemann et al., 1985). Accumulation of conjugated 1-

hydroxymidazolam has been reported to result in a clinically significant prolongation of the 

sedative effects of midazolam in patients with severe renal dysfunction (Bauer et al., 1995). The 
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production of 4-hydroxymidazolam is insignificant and this metabolite is clinically unimportant 

(Mandema et al., 1992). 

2. Diazepam and its metabolites. a. Pharmacokinetics. After oral administration, 

diazepam is absorbed rapidly and completely and it has almost a 100% bioavailability after oral 

intake (Divoll et al, 1983). In healthy volunteers peak plasma concentration after ingestion of 10 

mg diazepam tablet is 300 ng/ml (Seppälä et al., 1976) and time to peak plasma concentration is 

about 60 min (Gamble et al., 1976). An intravenous injection of 0.15 mg/kg of diazepam resulted 

in peak plasma concentrations of about 800 ng/ml (Greenblatt et al., 1989b). Diazepam is highly 

lipophilic and extensively bound to plasma proteins (average 98%). The volume of distribution is 

0.7-1.7 l/kg. It is increased in obese patients, which results in the prolongation of elimination 

half-life (Abernethy et al., 1983). In patients with end-stage renal failure, the mean unbound 

fraction of diazepam is greatly increased while the volume of distribution of the unbound drug is 

reduced (Ochs et al., 1981). 

The clearance of diazepam ranges from 0.2 to 0.5 mg/kg/min (Greenblatt et al., 1980). 

The clearance of diazepam varies extensively and gender has been shown to have some influence 

on the disposition of diazepam (Greenblatt et al, 1978, Herman and Wilkinson, 1996). The mean 

elimination half-life of diazepam is 30 h with a range of 20 to 100 h while that of N-

desmethyldiazepam is even longer with a range of 30 to 200 h (Mandelli et al., 1978). In patients 

with liver cirrhosis, the plasma clearance of orally administered diazepam is reduced, while in 

patients with end-stage renal failure the plasma clearance of unbound diazepam remains 

essentially unchanged (Ochs et al., 1981). 

b. Biotransformation of diazepam and temazepam. Diazepam is metabolized in liver and 

only traces of unchanged drug is excreted in urine. In vitro oxidative metabolism of diazepam is 

mediated mainly by CYP2C19 and CYP3A4, which account for 80 % of the biotransformation of 
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diazepam to its metabolites (Andersson et al, 1994, Jung et al, 1997, Yang et al, 1999). In vivo 

predominant metabolic pathway is methylation of diazepam to N-desmethyldiazepam which is 

mediated mainly by CYP2C19. 3-hydroxylation of diazepam to temazepam is catalysed by 

CYP3A (Fig. 6A) (Ahonen, 1996a, 1996b, Bertilsson, 1989, Luurila, 1996). N-

desmethyldiazepam has similar pharmacodynamic characteristics as diazepam, but its elimination 

is considerably slower with a elimination half-life extending to 200 h. It is further metabolized to 

oxazepam, which is also active. Temazepam is eliminated mainly by conjugation, yielding 

temazepam glucuronide, and, to a lesser extent, it is demethylated to oxazepam (Fig. 6A), which 

is further conjugated to oxazepam glucuronide (Locniskar, 1990). Glucuronization of oxazepam 

and temazepam do not contribute to the overall diazepam effect since they are cleared faster than 

the parent drug (Greenblatt, 1981). 

3. Lorazepam The oral bioavalaibility of lorazepam is high averaging nearly 90%. 

Peak plasma levels are reached after about 2 h and the mean elimination half-life is 15 h with a 

range of 8 to 25 h (Greenblatt et al., 1979). Lorazepam is has a large volume of distribution, from 

0.8 to 1.3 l/kg (Greenblatt 1981, Reves, 1984) and it is highly bound to plasma proteins (over 

90%). The elimination half-life has been reported to range from about 10 to 20 h. Lorazepam is 

conjugated in the liver to the inactive glucuronide, and excreted in urine. 

4. Remimazolam (CNS 7056) Remimazolam is a high-affinity and selective ligand for 

the BZD site on the GABAAR. The carboxylic ester appendix of remimazolam is rapidly 

degradated in the plasma by non-specific esterases to the metabolite, CNS 7054 (Fig. 6B). It 

enhances GABA currents in cells stably transfected with subtypes of the GABAAR and, like 

midazolam and other classic BZDs, shows similar activity at the four subtypes tested (α1β2γ2 , 

α2β2γ2, α3β2γ2, α5β2γ2) (Kilpatrick et al., 2007). Remimazolam is a potent sedative in rodents, 
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with a short duration of action (Kilpatrick et al., 2007). A dose escalation study of remimazolam 

on sedation, and respiratory and cardiovascular function in sheep demonstrated, that 

remimazolam doses of 0.37–2.21 mg/kg produced short periods of sedation for 9–25 min without 

excessive respiratory or cardiovascular depression (Upton et al., 2008). A study comparing the 

sedative effects of remimazolam with midazolam and propofol in sheep has also been published 

recently (Upton et al., 2009). Remimazolam produced substantial sedation with fast onset and 

offset over a wide dose range. The depth of sedation was comparable between remimazolam and 

propofol, but the onset with propofol was slower. Also, the depth of sedation was dose-dependent 

with propofol, a phenomenon not seen with remimazolam. Compared to midazolam, 

remimazolam had more rapid offset and greater depth of sedation. All three drugs produced dose-

dependent respiratory and cardiovascular depression (Upton et al., 2009). 

Limited human data in volunteers and patients has also been published. Remimazolam 

has been infused for 1 min to healthy male volunteers and a dose-related depression of bispectral 

index and a change in the sedation state was observed (Antonik et al., 2009). A randomized, 

double-blind, dose finding study of 100 patients undergoing upper gastrointestinal endoscopy has 

been completed recently (ClinicalTrials.gov Identifier: NCT00869440, Available from 

www.clinicaltrials.gov, Accessed 21 September 2010). According to the data published by the 

manufacturer Paion AG (Available from www.paion.com, Accessed 27th September 2010) the 

procedure was completed without assisted ventilation or supplementary sedation in 32%, 56%, 

and 64% of patients receiving remimazolam 0.1, 0.15, and 0.2 mg/kg, respectively, compared 

with 44% of patients receiving midazolam 0.075 mg/kg. A Phase IIb study evaluating the safety 

and efficacy of multiple doses of remimazolam is currently recruiting participants 

(ClinicalTrials.gov Identifier: NCT01145222, Available from www.clinicaltrials.gov, Accessed 

21th September 2010) and the results are expected to be reported at the end of 2010.  
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5. Flumazenil Flumazenil is rapidly and fully absorbed from the gastrointestinal tract 

(peak concentrations are achieved after 20 to 90 minutes) and extensive first-pass hepatic 

metabolism results in a low systemic bioavailability (16%) (Roncari et al., 1986). Flumazenil is 

extensively metabolized in the liver to N-demethylated and/or hydrolysed metabolites, since less 

than 0.2% of dose is recovered as unchanged drug in the urine (Klotz et al., 1984). The 

elimination half-life is short (0.7 to 1.3 h). In patients with hepatic impairment the clearance of 

flumazenil is decreased with a resultant prolongation of half-life. The apparent distribution 

volume of flumazenil is 0.6 to 1.6 L/kg and it is 40-50% bound to plasma proteins in these 

patients (Klotz and Kanto, 1988). 

 

E. Pharmacokinetic-pharmacodynamic relationship of benzodiazepines 

During non-steady-state conditions the traditional elimination half-life is unable to 

describe the increase and decrease of drug concentrations observed after different dosing schemes 

(Shafer and Varvel, 1991). If the pharmacokinetics is described using a multicompartmental 

model, the distribution of the drug between the central and peripheral compartments is a 

significant contributor to drug disposition in the central compartment. Computer simulations can 

be used to describe the decay of plasma drug concentrations after discontinuation of drug 

administration. It has been suggested that context-sensitive half-times (Hughes et al., 1992) or 

other decrement times (Bailey, 1995) can be used to describe the decay of drug concentration 

after discontinuation of drug administration and thus better describe the cessation of drug effect. 

The context-sensitive half-time (50% decrement time) is the time required for blood or plasma 

concentrations of a drug to decrease by 50% after stopping the drug administration. 

Correspondingly, 80% decrement time is the time required for drug concentrations to decrease by 

80%. Figure 7 shows the context-sensitive half-times for commonly used intravenous anesthetics. 
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Although the decrement times may be useful for the prediction of the duration of drug 

action, the duration of drug effect is not only a function of its pharmacokinetic properties. 

Pharmacodynamic properties, i.e. the concentration-effect relationship also plays a major role. 

Other factors affecting the magnitude of the pharmacological response include interindividual 

differences between the subjects and possible drug-drug interactions (Keifer and Glass, 1999).  

Midazolam can be used as the sole hypnotic agent (Theil et al., 1993) or with a 

supplemental volatile anesthetic (Ahonen et al., 1996a) to provide the hypnotic component in 

balanced anesthesia. There are not too many studies on the pharmacokinetic-pharmacodynamic 

relationship of BZDs in humans. Persson et al. (1988) studied the relation of sedation and 

amnesia to plasma concentrations of midazolam in surgical patients. The effect was assessed by 

means of a rating scale divided into degree of sedation and amnesia. A good correlation was 

observed between midazolam plasma concentration and pharmacological response. Another 

study investigated the effect of age on the pharmacokinetics and pharmacodynamics of 

midazolam using a pharmacokinetic-pharmacodynamic model. The authors used a three-

compartment model with an effect compartment and sigmoid Emax model to describe the 

pharmacokinetics and pharmacodynamics of midazolam. In young and elderly volunteers it was 

observed that while the pharmacokinetics of midazolam is essentially similar in young and 

elderly individuals, elderly people are much more sensitive to the sedative effects of midazolam 

(Albrecht et al., 1999). The authors observed a huge interindividual variability in the half-

maximum concentration of midazolam in both age groups (Fig. 8). The mean values for the 

disposition rate constant ke0 describing the hysteresis between plasma drug concentration and 

onset of drug effect were 0.11 ± 0.06 and 0.08 ± 0.02/min in young and elderly subjects, 

respectively. No statistically significant differences were observed. 
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Continuous infusions of midazolam and lorazepam are commonly used in intensive care 

patients for sedation during mechanical ventilation. Midazolam and lorazepam have substantial 

pharmacokinetic and pharmacodynamic differences in critically ill patients. Barr et al., (2001) has 

observed that the pharmacodynamic model can predict the depth of sedation for both midazolam 

and lorazepam with 76% accuracy. The estimated sedative potency of lorazepam is twice that of 

midazolam and the relative amnestic potency of lorazepam is fourfold. The predicted emergence 

times from sedation after a 72-h BZD infusion for light and deep sedation in a typical patient are 

3.6 and 14.9 h for midazolam infusions and 11.9 and 31.1 h for lorazepam infusions, respectively 

(Fig. 9). Since the relative concentration decrements for midazolam and lorazepam are not 

markedly different, the differences in emergence times are primarily due to different 

pharmacokinetics (Barr et al., 2001). 

 

F. Pharmacokinetic drug interactions of benzodiazepines used in anesthesiology 

An interaction may alter systemic drug disposition, and the first-pass metabolism of an 

orally administered drug (Dresser et al., 2000). The clinical significance of a drug-drug 

interaction depends on the magnitude of the change in the active parent drug and/or active 

metabolite concentrations at the effect site, and on the therapeutic index of the drug. 

The inhibition of CYP-enzymes has been recognized as the pivotal cause of drug-drug 

interactions in clinic (Dresser et al., 2000). Although pharmacokinetic interactions may involve 

absorption or distribution, the most prevalent and dangerous ones are associated with 

metabolism, in particular the CYP-mediated metabolism (Pirmohamed and Park, 2003). Most 

drugs used in anesthesia, intensive care and pain medicine are cleared by metabolism (Mouly, 

2009). Thus, concomitant therapy with drugs inhibiting CYP enzymes may affect the clinical 

efficacy and safety of drugs used in anesthesiology.  
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Clinically significant CYP inhibition occurs only when the inhibited enzyme is a major 

elimination pathway. The (unbound) plasma concentration of the inhibitor must also be 

sufficient. One common approach is to compare the in vitro-derived inhibitory constant of the 

inhibitor (Ki)-values with the in vivo plasma concentration data of the inhibitor. The methods for 

CYP-associated in vitro drug-drug interaction studies are well established, but in vitro – in vivo 

correlation for drug-drug interaction has not always been satisfactory. There are numerous factors 

explaining the discrepancy between in vitro and in vivo studies: The estimated Ki-values differ 

depending on the mechanism of inhibition, substrate and inhibitor concentrations; protein 

concentrations of the microsomes containing the CYP-enzymes; artefacts in in vitro -interaction 

studies; differences in the liver/plasma partition ratio in vivo, and active drug transport. Therefore 

the reliability of in vitro drug-drug interaction study is uncertain, but certain biases are 

amendable, providing opportunities for predictive kinetic models. 

1.  Mechanisms of pharmacokinetic drug interactions The mechanism of CYP 

inhibition can be divided into reversible, quasi-irreversible and irreversible inhibition, among 

which the reversible inhibition is probably the most common (Lin and Lu, 1998). 

Reversible inhibition can further be divided, based on the enzyme kinetics, into 

competitive, noncompetitive and uncompetitive inhibition. Competitive inhibition is usually 

caused by alternate substrate inhibition when two substrates of the enzyme compete with each 

other for the active site on the CYP enzyme. The amount of the drug and its affinity for the 

enzyme, defined as the apparent Michaelis-Menten constant of the substrate, determine the 

relative proportion of binding; the maximum velocity of metabolism does not change. The degree 

of inhibition thus depends on both substrate and inhibitor concentrations, and Ki, which shows 

the potency of the drug to inhibit the metabolism of the substrate (competitor) drug. As 

competitive inhibitors are likely to inhibit enzyme activity only at plasma concentrations higher 
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than Ki, the plasma concentration of an inhibitor achieved during clinical use is of pivotal 

importance (Lin and Lu, 1998, Pelkonen et al., 1998). In noncompetitive inhibition, the inhibitor 

binds to a different site of the enzyme and has no effect on the binding of the substrate. 

Uncompetitive CYP-inhibition has not been reported with BZDs. 

There is a notable variation in the CYP2C19 activity between subjects carrying different 

CYP2C19 alleles yielding ultrarapid, extensive, intermediate and poor metabolizer genotypes 

(Sim et al., 2006, Goldstein, 2001). Several studies have reported differences in the diazepam 

pharmacokinetics and pharmacodynamics between the CYP2C19 poor and extensive 

metabolizers (Bertilsson et al., 1989, Sohn et al., 1992, Ishizaki et al., 1995, Qin et al., 1999). 

Diazepam elimination was decreased significantly in individuals with defective CYP2C19*2 

alleles, compared with the individuals homozygous for the wild-type CYP2C19*1 allele. 

Diazepam levels may reach toxic levels as a result of slower elimination in poor metabolizers. 

These results have further been emphasized by a recent study demonstrating that CYP2C19 

genotype affects the emergence from general anesthesia in patients who have been given oral 

diazepam for premedication (Inomata et al., 2005). 

2.  Cytochrome P450-mediated drug interactions and benzodiazepines a. Midazolam. 

The interaction of midazolam with inhibitors of CYP has been shown in multiple in vitro and in 

vivo studies. Midazolam is the most widely used CYP3A probe, although midazolam clearance 

may be influenced to some degree by hepatic blood flow (Rogers et al., 2003). Midazolam 

clearance shows significant relationship with CYP3A mediated metabolism (Kharasch et al., 

2004a) and evaluation of CYP3A4 phenotype by midazolam clearance has been used to optimize 

chemotherapy (Mathijssen et al., 2004). In vitro, ketoconazole noncompetitively inhibits 

midazolam 1-hydroxylation with Ki-values averaging 0.1 µmol/l (Gascon and Dayer, 1991). It is 

more potent than itraconazole, but as 1-hydroxymidazolam can interfere the assay, a further study 
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investigating the competitive azole inhibition of midazolam hydroxylation was designed. Results 

of this study point out that ketoconazole, itraconazole and fluconazole are all competitive 

inhibitors of both 1-hydroxylation and 4-hydroxylation of midazolam (von Moltke et al., 1996). 

The Ki-values were 0.0037 µmol/l for ketoconazole, 0.275 µmol/l for itraconazole and 1.27 

µmol/l for fluconazole. Depending on the model, much higher Ki-values have been reported for 

midazolam hydroxylation (Thummel and Wilkinson, 1998).  

In vivo, the inhibition of CYP3A by the concomitantly given drugs results in clinically 

significant drug interactions with the midazolam, as demonstrated in studies in healthy volunteers 

(Table 4). 

b. Diazepam. Diazepam metabolism involves primarily CYP2C19 and CYP3A4, and it is 

likely to have interactions with drugs affecting these enzymes. However, even strong inhibitors of 

CYP3A4 appear to have only a minor effect on the pharmacokinetics of diazepam (Luurila et al., 

1996; Ahonen et al., 1996b). Thus far no clinically significant drug interactions with diazepam 

and CYP3A4 inhibitors have been published. 

Inhibitors of CYP2C19 have stronger interactions with diazepam. Omeprazole, inhibitor 

of CYP2C19, decreased the clearance of intravenous diazepam by 27% (Andersson et al., 1990) 

and fluvoxamine, an inhibitor of CYP1A2, CYP2C19 and CYP3A4, reduced the apparent oral 

clearance of diazepam by 65% and the elimination half-life was increased from 51 h to 118 h 

(Perucca et al., 1994). Quite interestingly, ciprofloxacin, inhibitor of CYP1A2 and cimetidine, 

inhibitor of CYP1A2 and CYP3A4, reduced diazepam clearance by 37% and 38% (Kamali et al., 

1993), but the exact mechanism for this is unknown. Pharmacokinetics of oral diazepam is 

markedly affected by concomitant voriconazole or fluconazole administration (Saari et al., 2007). 

A considerable delay in the elimination of diazepam is seen while the absorption of diazepam is 
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unchanged. Consequently, 2.5 and 2.2 times higher exposure to diazepam is seen after 

voriconazole or fluconazole, respectively, compared with the control values. 

The effect of CYP2C19 genotype on the emergence from general anesthesia has been 

studied in patients who had received 0.1 mg/kg diazepam as a premedication. Patients emerging 

slowly (>20 min) from general anesthesia showed lower levels of CYP3A4 mRNA and had a 

variant CYP2C19 allele (Inomata et al., 2005). 

c. Lorazepam and temazepam. Pharmacokinetic drug interactions mediated by CYP-

enzyme inhibition are not plausible, because unlike the midazolam and diazepam, lorazepam is 

mainly eliminated by direct conjugation with glucuronic acid (Greenblatt, 1981). Probenecid and 

valproic acid decrease lorazepam clearance by decreasing the formation clearance of lorazepam-

glucuronide (Abernethy et al., 1985, Samara et al., 1997). A recent study has demonstrated, that 

genetic polymorphism in the uridine 5’-diphosphate-glucuronosyltransferase 2B7 genotype seems 

to affect the magnitude of the lorazepam-valproate interaction (Chung et al., 2008). 

Demethylation of temazepam is catalyzed by CYP3A, therefore drug interactions may 

arise due to this mechanism. However, randomized studies in healthy volunteers with CYP3A 

inhibitors erythromycin and itraconazole have not demonstrated any clinically significant drug 

interactions (Luurila et al., 1994, Ahonen et al., 1996c). 

d. Remimazolam and flumazenil. As remimazolam has no CYP-mediated metabolism, 

clinically significant metabolic drug interactions are unlikely. Pharmacokinetic interactions with 

flumazenil have not been reported. 

 

IV. Clinical use of benzodiazepines in anesthesiology 

 

A. Premedication 
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The role of premedication before anesthesia and surgery is frequently debated and the 

premedication practices vary greatly among geographic areas and even within a given institution 

(Kain et al., 1997). The goals of premedication are to produce anxiolysis, sedation, amnesia, 

analgesia, vagolysis, sympathicolysis, to reduce salivation, to reduce gastric secretion and acidity 

and to prevent postoperative nausea and vomiting. The need for some of these goals depends on 

the type of the procedure. No single drug includes all these features but BZDs are the most 

commonly used premedication agents both in adults and children because of their anxiolytic, 

sedative and amnesic properties (Kain et al., 1997). They also seem to reduce postoperative 

nausea and vomiting (Bauer et al., 2004). 

Relief of anxiety and lack of recall of unpleasant events during the procedure are the 

primary objectives of preoperative medication. Most patients do not want prolonged amnesia, i.e. 

they want to be able to recall events both before and after the procedure (Korttila et al., 1981). 

Appropriate use of preoperative medication, however, improves patient satisfaction (Bauer et al., 

2004; van Vlymen et al., 1999). Most orally administered drugs should be given 60-90 min prior 

to the patient’s arrival in the operating theatre to exert their full effects. 

The most popular preoperatively used BZDs midazolam, diazepam, and lorazepam can be 

administered both orally and intravenously, whereas temazepam only orally. In the USA, 

midazolam is the most frequently used preparation (Kain et al., 1997) in adults and children 

although there is an ongoing debate about the drawbacks of BZDs and the increasing role of the 

α2 adrenoceptor agonists (primarily clonidine) in pediatric anesthesia (Dahmani et al., 2010). In 

adult patients, the choice between the intravenous and oral route of administration depends on 

organizational and patient-related variables. 

The effects of BZDs on memory are anterograde; the retrograde memory is not affected. 

Typical of BZDs, during sedation the volunteers or the patients seem conscious and coherent, yet 



   39 

they are amnesic for events and procedures (George and Dundee, 1977). Compared with 

intravenously administered midazolam, at identical plasma concentrations of the drug, an oral 

dose produces more marked effects due to higher plasma concentrations of the active metabolite 

1-hydroxymidazolam (Mandema et al., 1992). In addition to the sedative and anxiolytic effects, 

small doses of an oral BZD, i.e. 7.5 mg of midazolam, appear to have a significant effect on the 

patients’ preoperative cortisol levels (Jerjes et al, 2005). Salivary cortisol has been established as 

one of the most accurate measures of the stress response system in humans (Kiess et al, 1995; 

Young and Breslau, 2004). 

In adult patients, the usual oral dose of midazolam ranges 7.5-15 mg, that on diazepam 5-

10 mg and that of temazepam 10-20 mg, respectively (Lanz et al., 1987; Hargreaves, 1988). The 

dose depends on the patient’s age, size and level of anxiety as well as on the type and length of 

surgery. If longer sedation should be avoided but a more intense anxiolysis and sedation are 

desirable, higher doses of temazepam up to 40 mg (O’Boyle et al., 1986) should be favoured 

instead of higher doses of diazepam. On the contrary, if a longer and more intense anxiolysis and 

sedation are desirable (e.g. in cardiac surgery), 2-4 mg of lorazepam can be administered about 2 

h before anesthesia and surgery (Pollock and Kenny, 1993). It should be emphasized, however, 

that lorazepam is particularly unpredictable with regard to duration of amnesia which is 

undesirable in patients who wish or need to have recall in the immediate postoperative period 

(George and Dundee, 1977). 

In pediatric anesthesia, commercially prepared oral midazolam formulations have re-

placed noncommercial, nonstandard oral drug preparations. Currently, the commercial 

preparations come in a variety of tastes, and as such midazolam is highly accepted by the 

children. Oral midazolam syrup is effective for producing sedation and anxiolysis within 10-20 

min at such a low dose as 0.25 mg/kg (Coté et al, 2002). Furthermore, midazolam has minimal 
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effects on respiration and oxygen saturation even when administered at doses as large as 1.0 

mg/kg (maximum, 20 mg) as the sole sedating medication to healthy children in a supervized 

clinical setting. Although there is a statistically significant relationship between the dose and time 

of onset for both sedation and anxiolysis, this difference is probably not clinically important. 

Satisfactory sedation and anxiolysis seem to last for up to 40-45 min (Coté et al, 2002). In 

comparative studies, parents of children undergoing bone marrow biopsy preferred midazolam to 

fentanyl for sedation (Sandler et al., 1992). According to a recent meta-analysis, premedication 

with clonidine may produce more satisfactory levels of sedation at induction, decrease emergence 

agitation and produce more effective early postoperative analgesia when compared with 

midazolam in children (Dahmani et al., 2010). However, one major drawback of clonidine as 

premedication is prolonged onset time, which requires it to be administered 45 min before the 

induction of anesthesia.  

 

B. Sedation and ambulatory anesthesia 

Monitored anesthesia care (MAC) is a specific anesthesia service for a diagnostic or 

therapeutic procedure and includes all aspects of anesthesia care – a preprocedure visit, 

intraprocedure care and postprocedure anesthesia management. MAC may include varying levels 

of sedation, analgesia and anxiolysis as necessary. The provider of MAC must be prepared and 

qualified to convert to general anesthesia when necessary. If the patient loses consciousness and 

the ability to respond purposefully, the anesthesia care is a general anesthetic, irrespective of 

whether airway instrumentation is required. (American Society of Anesthesiologists: Position on 

Monitored Anesthesia Care, 2008). A classic example of MAC was a critically ill patient 

undergoing tracheotomy, for which the anesthesiologist would be available to monitor the 



   41 

patient’s vital signs and provide sedation and analgesia with small bolus doses of an intravenous 

BZD and opioid, respectively.  

MAC has become increasingly important in the practice of anesthesiology and it has been 

extended to cases in which the procedure itself is relatively minor but excessive patient anxiety 

and fear impair cooperation, e.g. pediatric patients undergoing diverse procedures. With 

technological advances in diagnostic and surgical equipment many procedures can be performed 

on an outpatient basis using local anesthetic techniques combined with rapid and short-acting 

intravenous drugs to provide anxiolysis, sedation and supplemental analgesia (Sá Rêgo et al., 

1997). The usual end point for titration of the medication is the patient’s verbal acknowledgement 

of comfort and relaxation, which is usually confirmed by vital signs. The patient should remain 

cooperative and comfort-able with airway reflexes intact.  

BZDs are the most widely used sedative drugs during MAC because they combine 

anxiolysis with varying degrees of amnesia and sedation (Sá Rêgo et al., 1997). The degree of 

sedation and reliable amnesia, as well as preservation of respiratory and hemodynamic function 

are better overall with BZDs than with other sedative-hypnotic drugs used for conscious sedation. 

Despite the wide safety margin with BZDs, however, respiratory function must be monitored 

when these drugs are used for sedation e.g. during regional anesthesia (Gauthier et al., 1992) as 

well as when they are combined with opioids (Vinik et al., 1994). 

When the effect of BZDs is quantified by electroencephalography (EEG), diazepam has 

an effective concentration in 50% of the volunteers or patients of 269 ng/ml and midazolam 35 

ng/ml, respectively (Greenblatt et al., 1989a). The spectrum of clinical CNS activity such as 

amnesia and sedation is similar with intravenous midazolam (0.05-0.15 mg/kg) and diazepam 

(0.1-0.3 mg/kg). However, the relationship between the sedation score and the initial dose is 

much steeper with midazolam compared with diazepam suggesting that midazolam possesses a 



   42 

smaller margin of safety and greater need for careful titration to achieve the desired level of 

sedation and anxiolysis without untoward side effects (White et al., 1988). 

Diazepam (0.1-0.2 mg/kg intravenously) produces dose-dependent anxiolysis, sedation, 

and amnesia (White et al., 1988). However, large doses (0.3 mg/kg) impair driving skills for at 

least 10 h and may prolong recovery to a greater extent than in patients undergoing general 

anesthesia (Korttila and Linnoila, 1975). Accordingly, such high doses of diazepam should be 

avoided in outpatients. 

Midazolam (0.05-0.15 mg/kg intravenously) provides more profound perioperative 

amnesia, anxiolysis, and sedation than diazepam (White et al., 1988). After intravenous 

administration, the onset of action of midazolam occurs usually within 30–60 s. The half-time of 

equilibration between the plasma concentration and the EEG changes is approximately 2-3 min 

(Breimer et al., 1990). Therefore, repeated bolus doses administered over a short period of time 

may lead to cumulative effects, i.e. oversedation during MAC. Continuous intravenous infusions 

can be used instead of bolus doses: a loading dose of 0.025-0.05 mg/kg followed by a 

maintenance infusion of 1-2 µg/kg/min of midazolam provides a titratable level of sedation 

during local anesthesia (White and Negus, 1991). Recovery from the CNS effects of midazolam 

is generally considered to be more rapid than recovery from the effects of diazepam. After 

intravenous administration of 0.15 mg/kg of diazepam in healthy volunteers, the duration of 

diazepam effects, based on a statistically significant difference over the baseline EEG values, is 

5-6 h compared with 2.5 h after administration of 0.1 mg/kg of midazolam (Greenblatt et al., 

1989a). However, larger doses of midazolam (0.2 mg/kg) may prolong the postoperative sedation 

(McClure et al., 1983).  

The choice of a regimen of sedative and analgesic drugs for use during MAC should be 

based on the anticipated degree of pain associated with the procedure and the requirements for its 
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successful completion (Sá Rêgo et al., 1997). If the diagnostic or surgical procedure is relatively 

pain-free and anxiolysis is the primary end-point, it may be justified to use only a BZD such as 

midazolam or diazepam. If the procedure is pain-free but patient immobility is essential, an initial 

bolus dose of a BZD and a small-dose propofol infusion can be combined. Infusion rates required 

for sedation in healthy patients are half or less than those required for general anesthesia, i.e. 30-

60 µg/kg/min. In patients older than 65 years and in sicker patients, the infusion rates that are 

necessary are markedly reduced (Mackenzie and Grant, 1987). Thus, it is important to titrate the 

infusion of propofol individually to the desired effect.  If brief periods of pain are anticipated 

during the procedure, the BZD-induced sedation and anxiolysis should be supplement by 

administration of a rapid, short-acting opioid analgesic such as remifentanil or alfentanil. If 

analgesia is provided by a regional anesthetic technique, sedation can be achieved by small bolus 

doses of midazolam (or diazepam) or by a variable-rate infusion of midazolam or propofol (Sá 

Rêgo et al., 1997). In children, midazolam has been combined with inhaled nitrous oxide for 

sedation and analgesia. However, progression from conscious to deep sedation occurs with 

nitrous oxide concentrations exceeding 30% (Litman et al., 1996). 

 

C.  Induction and maintenance of anesthesia 

Midazolam has been used to induce and maintain general anesthesia (Nilsson et al., 

1988). Although both diazepam and lorazepam have also been used to induce unconsciousness, 

the faster onset and shorter context-sensitive half-time make midazolam better suited to induce 

and maintain general anesthesia (Hughes et al., 1992; Bailey, 1995). Administration of 

midazolam for induction of anesthesia should be undertaken cautiously in the elderly, who are 

more sensitive to the sedative effects than younger individuals (Jacobs et al., 1995). 
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The optimal dosing scheme for midazolam during general anesthesia remains open. When 

combined with alfentanil, an induction dose of 0.42 mg/kg of midazolam followed by a 

maintenance infusion of about 2 µg/kg/min resulted in satisfactory anesthesia (Nilsson et al., 

1988).  When used with adjuvant volatile anesthetics, an induction dose of 0.05-0.15 mg/kg 

followed by a maintenance infusion of 0.25-1 µg/kg/min results in plasma levels of more than 50 

ng/ml of midazolam. This regimen is sufficient to keep the patient asleep and amnesic but 

arousable at the end of surgery (Theil et al., 1993).  

Emergence from anesthesia depends on the dose of midazolam and on the administration 

of adjuvant anesthetics (Reves et al., 1985). The emergence from a midazolam dose of 0.32 

mg/kg supplemented with fentanyl is about 10 min longer than from a thiopental dose of 4.75 

mg/kg supplemented with fentanyl (Reves et al., 1979). After a maintenance infusion, the 

termination of action of the BZDs is primarily a result of their redistribution from the CNS to 

other tissues (Greenblatt et al., 1983). Blood levels of midazolam will decrease more rapidly than 

those of the other BZDs due to the greater clearance of midazolam. The context-sensitive 

decrement times (Fig. 7) rather than the elimination half-time can be used to assess the 

emergence from an infusion anesthetic (Hughes et al., 1992; Bailey, 1995).  

A slow intravenous injection of flumazenil can be used to reverse the BZD-induced 

sedation and anesthesia. The initial dose for the reversal of BZD-induced sedation is 0.2 mg, 

followed by further doses of 0.1-0.2 mg at intervals of 60 s if needed. The total dose should be 

not more than 1 mg or occasionally 2 mg. If drowsiness recurs, an intravenous infusion of 0.1-0.4 

mg per h may be used (Brogden and Goa, 1991). Flumazenil tends to reverse the hypnotic and 

respiratory effects more than the amnesic effects of the agonist BZDs (Curran and Birch, 1991). 

Another important caution is that resedation may occur because of the relatively short half-life of 
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the drug (Nilsson et al., 1988). Flumazenil has not gained wide-spread use in clinical anesthesia 

whereas it has an important role in diagnosing and treating a BZD overdose. 

The context-sensitive half-time of midazolam is about three times longer than that of 

propofol (Hughes et al., 1992). Therefore, the genuine use of midazolam as the sole induction 

(and maintenance) agent for general anesthesia is nowadays exceptionally uncommon and has 

been replaced by induction and maintenance infusions of propofol. Due to organizational and 

economic reasons, fast track recovery has gained increasing popularity even within the field of 

cardiac anesthesia. However, concurrent administration of BZDs reduces the induction dose of 

other intravenous anesthetics; even subhypnotic doses of midazolam reduce the induction dose of 

thiopental and propofol remarkably (Vinik, 1995). Midazolam also causes an increase in the 

blood propofol concentrations through a reduction in the metabolic and rapid and slow 

distribution clearances of propofol. In addition, the hemodynamics are involved such that a 

reduction in mean arterial blood pressure is associated with an increase in the blood propofol 

concentration (Vuyk et al., 2009). Because of their anxiolytic, sedative and amnesic properties, 

BZDs remain very important supplemental drugs during general anesthesia. 

 

D. Benzodiazepines in the intensive care unit 

Until recently intravenous lorazepam was the preferred agent for long-term sustained 

sedation in the intensive care unit (ICU), and it was recommended by the Society of Critical Care 

Medicine (Jacobi et al, 2002). Lorazepam has a slower onset but less potential drug interactions 

because of its lack of CYP-mediated metabolism (Cock et al., 2002). Maintenance of sedation 

can be accomplished with intermittent or continuous intravenous administration. However, an 

infusion is not readily titratable because of the long elimination half-life of lorazepam. Loading 

doses given by i.v. push should be used initially with relatively fixed infusion rates.  
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The lorazepam solvents polyethylene glycol and propylene glycol have been implicated as 

the cause of reversible acute tubular necrosis, lactic acidosis, and hyperosmolar states after 

prolonged high-dose infusions (Horinek et al., 2009). The dosing threshold for this effect has not 

been prospectively defined, but doses exceeding 20 mg/h and continued for longer than four 

weeks and higher doses (> 25 mg/h) continuing for hours to days have been proposed (Laine et al 

1995, Seay et al, 1997, Arbour, 1999). Toxicity from propylene glycol has been attributed to 

direct effects and its metabolites, lactate and pyruvate (generated by hepatic alcohol 

dehydrogenase), resulting in hyperosmolar states, cellular toxicity, metabolic acidosis and acute 

tubular necrosis.  

Midazolam is a widely used alternative, especially in hemodynamically unstable patients 

(Jacobi et al., 2002). It contains no propylene glycol, but prolonged use of this agent results in 

accumulation of the parent drug and its active metabolite, 1-hydroxymidazolam. Duration of 

midazolam action can vary greatly in critically ill patients. Excessive sedation is reported when 

combined with CYP3A inhibitors (Table 4). In patients staying for a long time in the ICU, azoles 

and macrolides are examples of frequently used drugs that might lead to prolonged sedation due 

to inhibition of midazolam metabolism. Sedative effects should be monitored to prevent weaning 

problems. Titrating sedation and interrupting midazolam daily until patients are awake, is 

common practice in ICU and is even more important if CYP3A4-inhibitors are concurrently 

administered. 

BZDs are among the most useful anticonvulsives available for treating patients with status 

epilepticus or acute repetitive seizures. They have several clinical advantages from being highly 

effective, having a rapid onset of action and relatively low toxicity to support their use. However, 

tolerance may develop over time, making BZDs unsuitable for use in long-term epilepsy 

management. Additionally, withdrawal symptoms may develop after cessation of BZD therapy. 
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Other shortcomings include adverse events, such as delirium and sedation should be remembered. 

Several randomized controlled trials support the use of diazepam and lorazepam as initial drug 

therapy in patients with status epilepticus (Shaner et al., 1988, Treiman et al., 1998, Alldredge et 

al., 2001). A randomized double-blind trial demonstrated the effectiveness of i.v. diazepam, on 

status epilepticus when the drugs were administered by paramedics before patients arrived at the 

hospital (Alldredge et al., 2001). Status epilepticus was terminated by the time of arrival in the 

emergency department in 42.6% of the 68 patients treated with one or two 5-mg doses of i.v. 

diazepam (infused over 1–2 min). 

Results from four comparative studies have suggested that lorazepam is superior to 

phenytoin and as effective as clonazepam, diazepam or the combination of diazepam and 

phenytoin in the initial treatment of status epilepticus (Shaner et al., 1988, Treiman et al., 1998, 

Alldredge et al., 2001, Sorel et al 1981). Large lorazepam doses (0.3–9 mg⁄ h) have been used for 

treating refractory status epilepticus and lorazepam has been shown to terminate status 

epilepticus efficiently (Labar et al 1994). 

The association between cognitive impairment and medication use has been widely 

appreciated, but recently sedatives and analgesics used in the ICU were linked to delirium 

(Pandharipande and Ely, 2006). Establishing causality has been difficult since these drugs are 

often given to treat pre-existing behaviors that may result from delirium. In an attempt to 

establish causality to these drugs Pandharipande et al. (2006) evaluated 11 covariates to 

determine factors that may contribute to the development of delirium. Lorazepam was an 

independent risk factor for developing delirium and patients receiving more than 20 mg of 

lorazepam over 24 h nearly developed subsequently delirium. 

 

V. GABAAR subtypes as a specific target for new sedatives and hypnotics 
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Classic BZDs have a well established place in clinical anesthesiology. BZDs are widely 

used to sedate patients in many different occasions, but the risk of oversedation and prolonged 

recovery periods often impede the utilization of BZDs. Several problems are related to the long-

term therapeutic use of drugs affecting the GABAergic system; most significantly the loss of 

efficacy, tolerance development, dependence development, and finally addiction to at least some 

of these drugs. New hypnotics with different and potentially superior pharmacokinetics and 

pharmacodynamics are therefore needed. A truly short-acting BZD agonist, might allow BZD 

anesthesia to be revisited. With computer controlled drug administration even a complex infusion 

schemes can be implemented to the clinical anesthesiology to enhance patient safety. However, it 

should be emphasized that one of the major advantages for using BZDs in anesthesiology is their 

reversibility with flumazenil, a specific antagonist. At present, this can not be achieved for no 

other intravenous anesthetic and sedative agents 

Also, the growing trends towards ambulatory care calls for shorter-acting sedatives 

providing for rapid onset, deep sedation, and full, rapid emergence from the effects of anesthesia. 

As demonstrated by remifentanil, a short-acting opioid analgesic, an organ-independent 

elimination mechanism provides more predictable and reproducible pharmacodynamic and 

pharmacokinetic profile. 

The progress in molecular biology and the introduction of transgenic mouse models have 

had a great impact in our understanding of the molecular machineries responsible for inhibitory 

neurotransmission in the brain (Olsen and Sieghart, 2008). The genetic analysis of the 

pharmacological functions of GABAAR subtypes has opened up new opportunities in drug 

development. Identification of brain region-specific receptor subtypes and revelation of their 



   49 

contribution to various human behaviors may finally enable development of drugs selectively 

affecting only to particular aspects of behavior without undesired side effects. Targetting the new 

drugs to certain specific GABAAR subtypes may help to overcame the major side effects of the 

classic BZD drugs, especially the prolonged recovery after continuous infusion. 
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Tables 

 

TABLE 1. Distribution and BZD pharmacology of the major GABAAR subtypes in the human 

brain. 

 

Receptor 

subtype 

Brain regional localization BZD pharmacology 

Classic BZDs/Zolpidem 

Pharmacological effects mediated 

by classic BZDs in the CNS 

α1βγ2 

 

cerebral cortex 

(throughout), substantia 

nigra pars reticulata, 

hippocampus (DG, CA1-

CA2), cerebellum 

+++/+++ Sedation, anterograde amnesia, 

antimyoclonic and anticonvulsive 

activity, muscle relaxation 

α2βγ2 cerebral cortex, 

hippocampus (throughout) 

+++ /++  Anxiolysis, muscle relaxation  

α3βγ2 temporal neocortex, motor 

cortex IV-VI, substantia 

nigra, hippocampus (CA1, 

subiculum, DG) 

+++ /++ Anxiolysis, muscle relaxation 

α4βγ2 cerebral cortex, thalamus - /- - 

α4βδ motor cortex III-IV, 

hippocampus (DG), 

thalamus, cerebellar granule 

cells 

-/- - 
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α5βγ2 Motor cortex IV-VI, 

hippocampus (CA1-CA3, 

DG) 

+++/+ Memory impairment, muscle 

relaxation 

α6βγ2 cerebellar granule cells -/- - 

α6βδ cerebellar granule cells -/- - 

 

CA, Cornu Ammonis; DG, dentate gyrus, +++, high sensitivity; ++, intermediate sensitivity; +, 

very low sensitivity; -, insensitive.  

 

The receptor subtypes are defined according to localizations of subunit expression in human brain 

and according to receptor subtypes present in rodent brain. Only brain regions where the 

expression has been studied in human brain have been included. See references in section II. B., 

for receptor subunit localizations and section III. C., for BZD pharmacology. 
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TABLE 2. The physiochemical characteristics of benzodiazepine receptor agonists commonly 

used in the practice of anesthesia. 

 

 Molecular weight (daltons) pKa Water solubility 

(g/L) 

Lipid solubility 

(Log P) 

Diazepam 284.7 3.4 0.051 2.801 

Lorazepam 321.2 1.3 0.12 2.382 

Temazepam 300.7 1.6, 11.7 0.28 2.188 

Midazolam 325.8 (hydrochloride 362.2) 6.0 0.004, (2.0, pH 1) 3.798 

Remimazolam 439.3 (besylate 597.5) 5.3 0.008, (7.5, pH 1) 3.724 

Flumazenil 303.3 0.86 0.042 2.151 

 

pKa, dissociation constant. Water solubility values are in unbuffered water, maximal solubility at 

acidic pH in parenthesis. Data from scifinder.cas.org (accessed 16.11.2010).
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TABLE 3. Pharmacokinetic variables of midazolam, diazepam, lorazepam, remimazolam and 

flumazenil. 

 

 Elimination 

half-life (h) 

Clearance 

(mL/kg/min)
a 

Volume of 

distribution 

(L/kg)
b 

Plasma protein 

binding (%) 

Reference(s) 

Midazolam 2-5 5.8-9.0 1.1-1.7 94-98 Dundee et al., 1984 

Albrecht et al., 1999 

Diazepam 20-50 0.2-0.5 0.7-1.7 98-99 Greenblatt et al., 1980 

Lorazepam 11-22 0.8-1.5 0.8-1.3 88-92 Greenblatt et al., 1979 

Temazepam 6-8 1.0-1.2 1.3-1.5 96-98 Frascini and Stankov, 1993 

Remimazolam
c 

21.3 4521 36.4 NA Upton et al., 2010 

Flumazenil 0.7-1.3 13-17 0.9-1.1 40-50 Klotz and Kanto 1998;  

 

a
 ml/min for Remimazolam; 

b
 L for Remimazolam; 

c 
non-compartmental analysis, results from 

sheeps 
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TABLE 4. Effects of some CYP3A inhibitors on the pharmacokinetic parameters of midazolam. 

 

Pharmacokinetic effects Inhibitor 

Increace in AUC 

(n-fold) 

Decrease in CL 

(%) 

Reference 

    

Ketoconazole 15.9 NA Olkkola et al., 1994 

Itraconazole 5.8 

10.8 

6.6 

NA 

NA 

69 

Ahonen et al., 1995 

Olkkola et al., 1994 

Olkkola et al., 1996 

Voriconazole 10.3 72 Saari et al., 2006 

Fluconazole 3.6 

3.7 

51 

NA 

Olkkola et al., 1996 

Ahonen et al., 1997 

Terbinafine NS NS Ahonen et al., 1995 

Erythromycin 4.4 54 Olkkola et al., 1993 

Clarithromycin 3.6 

7.0 

62 Yeates et al., 1996 

Gorski et al., 1998 

Diltiazem 3.7 NA Backman et al., 1994 

Verapamil 2.9 NA Backman et al., 1994 

Saquinavir 5 56 Palkama et al., 1999 

Grapefruit juice 1.5 0 Kupferschmidt et al., 

1995 

 

AUC, area under plasma concentration – time curve; CL, clearance; NS, non-significant change; 

NA, not available. 
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Legends to the figures 

 

FIG. 1. Schematic illustration of benzodiazepine-sensitive GABAA receptor complex. The 

receptor is pentameric, being composed of two α, two β, and one γ2 subunit. Binding of  GABA 

in the two binding sites at the interface between α and β subunits opens the receptor-associated 

anion channel. Binding of benzodiazepine agonists to the binding site at the interface between α 

and γ2 subunits enhances the effect of GABA by increasing the frequency of channel opening. 

 

FIG. 2. Schematics of GABAA receptor structure and function. A, topography of a GABAA 

receptor subunit partially embedded in the lipid bilayer. 1, N-terminal extracellular domain 

responsible for transmitter and ligand binding and coupling of the binding sites with ion channel. 

This part is also important for the assembly of various receptor subunits into functional receptors. 

2, four transmembrane segments forming the anion channel are responsible for binding of 

hydrophobic ligands, ion selectivity, and channel binding sites. 3, intracellular loop between 

transmembrane segments 3 and 4 forms the domain for regulatory phosphorylation sites and for 

the intracellular factors anchoring the receptors in appropriate locations. B, hypothetical binding 

sites for GABA and benzodiazepines ligands in a pentameric receptor complex. 

 

FIG. 3. The numbering scheme for carbon atoms comprising the 1,4-benzodiazepine nucleus (A) 

and 1,2-imidazo ring (B). Both of these are composed of a benzene ring fused to a seven-

membered 1,4-diazepine ring. Anesthesiologically relevant benzodiazepine agonists contain a 5-

aryl substituent which enhances the pharmacological potency (Gerecke, 1983). An electro-

negative substituent in position 7 is indispensable for benzodiazepine activity (Sternbach 1979). 
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FIG. 4. A. The chemical structures of the benzodiazepine agonists diazepam, 

lorazepam,temazepam and midazolam. Benzodiazepine derivative remimazolam is a carboxylic 

ester, which is rapidly broken down by non-specific esterases in bloodstream. The 

benzodiazepine antagonist flumazenil has two important structural differences as compared to the 

agonists. Flumazenil has a keto residue at position 5 instead of an aryl ring substituent and a 

methyl substituent at position 4. B. The influence of pH on the structure of midazolam. Basic 

nitrogen atom at position 2 in the imidazole ring enables free midazolam base (1.) to form water 

soluble salts. An aqueous solution of the hydrochloride (A
-
, pH 3.3) consists of both the ring-

closed form (2.) and a dihydrochlorid acid (2A
-
) having an open ring structure. At physiological 

pH of 7.4, the ring closes and the molecule becomes highly lipophilic (1.). 

 

FIG. 5. Synaptic and extrasynaptic activation of γ-aminobutyric acid (GABA) subtype A 

receptors (GABAARs). GABA mediates the majority of inhibition in the CNS by generating fast, 

transient inhibitory postsynaptic currents (IPSCs) by action-potential-dependent release of GABA 

into the synaptic cleft to transiently activate the GABAARs in the postsynaptic membrane. IPSCs 

are short duration currents due to GABA diffusion and uptake, and the desensitization of synaptic 

receptors. On the contrary, low concentrations of GABA arising from synaptic spillover or other 

non-synaptic release mechanisms activate extrasynaptic GABAARs generating a continuous 

“tonic” current (ITonic). Extrasynaptic GABAARs have low desensitization rates and these 

receptors are also highly sensitive to many anesthetics enhancing the tonic current in 

extrasynaptic receptors. 
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FIG. 6. A. The metabolism of diazepam in vivo (Ahonen 1996a, 1996b, Bertilsson 1989, Luurila 

1996). Diazepam is metabolized to N-desmethyldiazepam and temazepam which are further 

metabolized, conjugated and excreted. Cytochrome (CYP) P450 enzymes CYP2C19 and CYP3A 

are the main enzymes involved in the diazepam metabolism. B. The metabolism of remimazolam. 

The carboxylic ester appendix of remimazolam is rapidly degradated in the plasma by non-

specific esterases to form the metabolite, CNS 7054. 

 

FIG. 7. The context-sensitive half-times for commonly used intravenous anesthetic drugs. 

[Reproduced from Reves JG, Glass PSA, Lubarsky DA, McEvoy MD, Martinez-Ruiz R (2009) 

Intravenous anesthetics, in Anesthesia (Miller RD ed) 7 edition p. 722, Churchill 

Livingstone/Elseview Inc, New York. Copyright © 2009 Churchill Livingstone, an imprint of 

Elsevier Inc. Used with permission.] 

 

FIG. 8. Concentration-response curve and clinical end points for young and elderly healthy 

subjects. The effect is expressed as percentage of the maximum effect measured with the EEG 

median frequency related to the concentration in the effect compartment. [Reproduced from 

Albrecht S, Ihmsen H, Hering W, Geisslinger G, Dingemanse J, Schwilden H, Schüttler J (1999) 

The effect of age on the pharmacokinetics and pharmacodynamics of midazolam. Clin 

Pharmacol Ther 65:630-639. Copyright © 1999. American Society for Clinical Pharmacolofy 

and Therapeutics. Used with permission.] 

 

FIG. 9. Predicted time required for (A) a 43% decrease and (B) a 75% decrease in plasma 

benzodiazepine concentration as a function of the duration of the benzodiazepine infusion 

corresponding to the benzodiazepine concentration change required to emerge from light and 
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deep sedation, respectively. [Reproduced from Barr J, Zomorodi K, Bertaccini EJ, Shafer SL 

(2001) A double-blind, randomized comparison of IV lorazepam versus midazolam for sedation 

of ICU patients via a pharmacologic model Anesthesiology 95:286-298. Copyright © 2001 

American Society of Anesthesiologists and Lippincott Williams & Wilkins. Used with 

permission.] 

 




















