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Abstract. We study local convexity properties of the triangular ratio
metric balls in proper subdomains of the real coordinate space. We also
study inclusion properties of the visual angle metric balls and related
hyperbolic type metric balls in the complement of the origin and the
upper half space.

1. Introduction

The hyperbolic metric has become an important tool in geometric function
theory. It works well in simply connected subdomains of the complex plane,
because we can use the Riemann mapping theorem to map such domains
onto the unit disk, where explicit formulas are known [B1, KL]. In higher
dimensions (n ≥ 3) no counterpart exists and thus there is need for other
methods. One approach is to generalize the hyperbolic metric for higher
dimensions in such a manner that the generalized metric is comparable with
the hyperbolic metric when the domain is the upper half plane or the unit
ball

Hn = {(x1, . . . , xn) ∈ Rn : xn > 0} , Bn = {z ∈ Rn : |z| < 1} .
We call these generalizations hyperbolic type metrics. One of the first hyper-
bolic type metrics, the quasihyperbolic metric, was introduced by Gehring
and Palka in the 1970’s [GP]. Soon the quasihyperbolic metric found nu-
merous applications and nowadays it is a standard tool in geometric function
theory, see e.g. [GH]. During the past two decades many authors have intro-
duced various other hyperbolic type metrics, [HIMPS], [KLVW], [B2], [S],
[HMM].

However, it is not clear which one of these hyperbolic type metrics is
preferable for a specific application. The natural line of research in this
situation is to compare the geometries defined by two hyperbolic type metrics
to each other. In this paper we study so called triangular ratio metric or
s-metric, which is defined as follows for a domain G ⊂ Rn and x, y ∈ G:

(1.1) sG(x, y) = sup
z∈∂G

|x− y|
|x− z|+ |z − y|

∈ [0, 1] .

This metric has been studied in [CHKV, HKLV]. For a metric space (G,m)
we define the metric ball for x ∈ G and r > 0 by Bm(x, r) = {y ∈ G :
m(x, y) < r} . We study the metric balls defined by the triangular ratio
metric. The behaviour of a metric can be studied in many different ways.
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Our goal is to examine the geometric properties of the metric space (G, sG)
by discussing local convexity properties of the metric balls BsG(x, r) . We
prove that BsG(x, r) , r ∈ (0, 1], is always starlike with respect to x and find
the best constant r0 such that BsG(x, r) , r ∈ (0, r0) , is convex. Similar
local convexity results for other hyperbolic type metrics can be found in
[HKLV, K1, K2, K3, KRT, HPS]. We also compare different hyperbolic
type metrics by considering the inclusion of metric balls. For some other
hyperbolic type metrics similar research is carried out in [KV1, KV2].

We next formulate our main results.

Theorem 1.2. Let G ( Rn be a domain. Then for all z ∈ G and all
r ∈ (0, 1], the s-ball Bs(z, r) is Euclidean starlike with respect to z .

In addition to the s-metric, we also study other metrics defined on subdo-
mains of Rn , for example the quasihyperbolic metric kG, the distance ratio
metric jG, the visual angle metric vG , and the point pair function pG which
are defined in Section 4. For these metrics we summarize our results in the
following theorems.

Theorem 1.3. Let x ∈ Rn\{0} , r ∈ (0, rm] , andm ∈ {j, k, |·|, p, q, s} . Then
we can find the best possible radius t = t(r) such that Bm(x, t) ⊂ Bv(x, r) .
Theorem 1.4. Let x ∈ Hn and r ∈ (0, π/2] . Then

Bn(x+ (sec2 r − 1)xnen, (tan r)xn) ⊂ Bv(x, r)

⊂ Bn

(
x+ (2xn tan

2 r)en, 2xn
tan r

cos r

)
,

and the Euclidean balls are the best possible. Moreover

Bn(x, xn sin r) ⊂ Bv(x, r) ⊂ Bn

(
x, 2xn

(
tan r

cos r
+ tan2 r

))
.

This paper may be considered to be a continuation of the earlier studies
[HKLV, K1, K2, K3, KMS]. Our main results and their proofs suggest that
similar results might be valid for other metrics as well and this offers ideas
for further studies of the same topic, for instance for the Apollonian or the
Seittenranta metrics [B2, S].

2. Starlikeness and convexity of triangular ratio metric
balls

In this section we consider local convexity properties of s-metric balls. We
start with Rn \ {0} and generalize the results to proper subdomains of Rn.
Before studying local convexity properties we introduce preliminary results.

Given two points x and y in Rn, the line segment between them is denoted
by

[x, y] = {(1− t)x+ ty : 0 ≤ t ≤ 1} ,
and ](x, z, y) stands for the angle in the range [0, π] between the line seg-
ments [x, z] and [y, z] .

Definition 2.1. Let G ( Rn be a domain and x ∈ G . We say that G is
starlike with respect to x if for every y ∈ G , [x, y] ⊂ G . The domain G is
strictly starlike with respect to x if G is bounded and each ray from x meets
∂G at exactly one point.
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Proof of Theorem 1.2. Without loss of generality we may assume
z = 0 . Fix 0 < r ≤ 1. Let y ∈ Bs(0, r). Since s(y, 0) < 1, [0, y] ⊂ G. Let
x ∈ [0, y] and z ∈ ∂G. Since

|x| ≤ |z|+ |x− z|, |x|+ |x− y| = |x|, and |y − z| ≤ |y − x|+ |x− z|,

we have
|x|

|z|+ |x− z|
≤ |x|+ |x− y|
|z|+ |x− z|+ |x− y|

=
|y|

|z|+ |x− z|+ |x− y|

≤ |y|
|z|+ |y − z|

≤ s(y, 0) .

Taking a supremum over all z ∈ ∂G we thus obtain

s(x, 0) ≤ s(y, 0) < r ,

since x is an arbitrary point in [0, y] ⊂ Bs(0, r). �

Next we continue the study of [HKLV] by considering the convexity of
triangular ratio metric balls in a general subdomain of Rn.

Lemma 2.2. [HKLV, 3.6, 3.8] Let x ∈ G = Rn \ {0} and r ∈ (0, 1) . Then
Bs(x, r) is (strictly) convex if and only if r ≤ 1/2 (r < 1/2).

Theorem 2.3. Let G ( Rn be a domain, x ∈ G and r ∈ (0, 1) . Then
Bs(x, r) is convex if r ≤ 1/2 .

Proof. By [HKLV, (2.2)] the ballBs(x, r) is the intersection of ballsBsz(x, r) ,
where sz is the triangular ratio metric in Rn\{z} , z ∈ ∂G , and by Lemma 2.2
each of these balls Bsz(x, r) is convex. The assertion follows as intersection
of convex domains is a convex domain. �

Figure 1. Left: The s-metric disks s(0.75e1 + 0.6e2, r) in
R2 \ {0, 2e1, 2e2} with r = 0.4, r = 0.5, r = 0.6 . Right: s-
metric disks in a polygonal domain.

Finally, we make the following conjecture for the balls of the point pair
function, which is defined below in 4.4.

Conjecture 2.4. Let x ∈ Rn \{0} and r ∈ (0, 1) . Then Bp(x, r) is (strictly)
convex if and only if r ≤

√
2− 1 .
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3. Formula for visual angle metric in Hn

For a domain G ( Rn , n ≥ 2 , and x, y ∈ G let

(3.1) vG(x, y) = sup{](x, z, y) : z ∈ ∂G} .

If ∂G is not a proper subset of a line, then vG defines a metric on G, as
shown in [KLVW, Lemma 2.8].

The supremum in (3.1) can be found by a geometric construction if G =
B2 . Indeed by [KLVW, Theorem 1.2], by considering the two points z1 and
z2 of intersection of the ellipses with foci at 0, x and 0, y , respectively, both
with focal sum equal to 1 , the formula for vB2(x, y) is just

vB2(x, y) = max{](x, z1/|z1|, y),](x, z2/|z2|, y)} .

Here we find an analogue of this formula for H2 by finding the points of
intersection of two parabolas with foci at x and y , respectively, and both
with the real axis ∂H2 as the directrix, see Figure 2.

Figure 2. The point z = (z1, z2) is the intersection of the
parabola with focus x and directrix ∂H2 and the parabola
with focus y and directrix ∂H2 . The extremal point (z1, 0) in
the definition of vH2(x, y) can be found as the projection of
z to ∂H2 .

For this purpose it is convenient to use horocycles. For two distinct points
x, y ∈ G where G = B2 or G = H2, a horocycle through x, y is a Euclidean
circle or line through x and y tangent to ∂G .

We consider the problem of finding the center points of two horocycles.
These centers are the points of intersection of the parabolas with foci at x
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and y and directrix ∂H2 . Therefore the formula for centers z = (z1, z2) of
these horocycles are given by

|x− z| = z2 = |y − z| ,

we have {
(x1 − z1)2 + (x2 − z2)2 = z2

2 ,

(y1 − z1)2 + (y2 − z2)2 = z2
2 .

By solving this system of quadratic equations we get

z1 =
x2y1 − x1y2 ±

√
x2y2|x− y|

x2 − y2
, x2 6= y2 .

If x2 = y2 , then z1 = (x1 + y1)/2. In terms of this solution in the case
x2 6= y2 , the possible extremal points for the visual angle metric are the two
possible points of the form (z1, 0) ∈ ∂H2 , and here we choose either + or −
whichever corresponds to the smaller imaginary part.

Now by Figure 3
vH2(x, y) = π − α− β ,

α = arctan

(
x2

z1 − x1

)
and β = arctan

(
y2

y1 − z1

)
.

Therefore
(3.2)

vH2(x, y) ≡ π − arctan

(
2
√
x2y2|x− y| ± (x2 + y2)(x1 − y1)

(x1 − y1)2 − 4x2y2

)
(modπ) .

Another formula for vH2(x, y) can be derived from

z2 =
|x− y|

2(x2 − y2)2
(|x− y|(x2 + y2)∓ 2(x1 − y1)

√
x2y2)

and the law of cosines together with the inscribed angle theorem.

4. Inclusion properties of metric balls in Rn \ {0} and Hn

In this section we study inclusions of the visual angle metric balls and
other metric balls. We begin by defining the metrics which we use.

4.1. Quasihyperbolic metric. Let G be a proper subdomain of Rn . For
all x, y ∈ G , the quasihyperbolic metric kG is defined as

kG(x, y) = inf
γ

∫
γ

1

d(z, ∂G)
|dz|,

where the infimum is taken over all rectifiable arcs γ joining x to y in G
[GP]. If we assume x, y ∈ G = Rn \ {0} and the angle ϕ between the line
segments [0, x] and [0, y] satisfies 0 < ϕ < π then by [Vu2, 3.11]

(4.2) kG(x, y) =

√
ϕ2 + log2

|x|
|y|
, G = Rn \ {0} .
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Figure 3. Two horocycles through x and y and the ex-
tremal point (z1, 0) with vH2(x, y) = ](x, z1, y) .

4.3. Distance ratio metric. For a proper open subset G ⊂ Rn and for all
x, y ∈ G, the distance ratio metric jG is defined as

jG(x, y) = log

(
1 +

|x− y|
min{d(x, ∂G), d(y, ∂G)}

)
.

This metric was introduced by Gehring and Palka [GP] in a slightly different
form and in the above form in [Vu1]. If confusion seems unlikely, then we
also write d(x) = d(x, ∂G) .

4.4. Point pair function. We define for x, y ∈ G ( Rn the point pair
function

pG(x, y) =
|x− y|√

|x− y|2 + 4 d(x) d(y)
.

This point pair function was introduced in [CHKV] where it turned out to be
a very useful function in the study of the triangular ratio metric. However,
there are domains G such that pG is not a metric: for instance this is the
case if G = B2 , [CHKV, Remark 3.1].

4.5. Chordal metric. The chordal metric is defined by
q(x, y) =

|x− y|√
1 + |x|2

√
1 + |y|2

; x, y ∈ Rn ,

q(x,∞) =
1√

1 + |x|2
.

Proposition 4.6. If G = Rn \ {0} , then the v-balls Bv(x, r) , x ∈ G , r ∈
(0, π) , are angular domains with vertex at 0 .
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Lemma 4.7. For all x ∈ Rn \ {0} , r ∈ (0, π]

Bs

(
x, sin

r

2

)
⊂ Bv(x, r) ,

and the radius sin r
2 is best possible.

Proof. By symmetry we may assume that n = 2 and x = e1 . Let y =
teir, t > 0 . Now

sG(x, y) =
|x− y|
|x|+ |y|

=

√
1 + t2 − 2t cos r

1 + t
=: f(t) .

By Proposition 4.6, we want to minimize f(t) . Now

f ′(t) =
(t− 1)(1 + cos r)

(1 + t)2
√
1 + t2 − 2t cos r

,

and f ′(t) = 0 if and only if t = 1 , so |y| = |x| and sG(x, y) = |x−y|
2|x| = sin r

2 .

The sharpness follows from this argument. �

Lemma 4.8. For all x ∈ Rn \ {0} and r ∈ (0, π]

Bj

(
x, log

(
1 + 2 sin

r

2

))
⊂ Bv(x, r) ,

and the radius log(1 + 2 sin r
2) is best possible.

Proof. In the same way as in the proof of Lemma 4.7, we may assume again
that n = 2 , x = e1 and y = teir, t > 0 . Now

jG(x, y) = log

(
1 +

|x− y|
min{|x|, |y|}

)
= log

(
1 +

√
1 + t2 − 2t cos r

min{1, t}

)
.

Define

f(t) =


log
(
1 +

√
1 + t2 − 2t cos r

t

)
for t ≤ 1 ,

log
(
1 +

√
1 + t2 − 2t cos r

)
for t > 1 .

Computation yields

f ′(t) =


t cos r − 1

t(1− 2t cos r + t(t+
√
1 + t2 − 2t cos r)

for t ≤ 1 ,

t− cos r

1 + t2 − 2t cos r +
√
1 + t2 − 2t cos r

for t > 1 .

By Proposition 4.6, the extremal case takes place when t = 1 , and hence

|y| = |x| and jG(x, y) = log
(
1 + |x−y|

|x|

)
= log

(
1 + 2 sin r

2

)
. Therefore R =

log
(
1 + 2 sin r

2

)
and the proof is complete. The sharpness follows from this

proof. �

Lemma 4.9. For all x ∈ Rn \ {0} and r ∈ (0, π]

Bk(x, r) ⊂ Bv(x, r),

and the radius r is best possible.
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Proof. We assume by symmetry that n = 2 , x = te1 and y = e1, t > 0 .
Now

kG(x, y) =

√
r2 + log2

|x|
|y|

=

√
r2 + log2 t =: f(t) ,

and

f ′(t) =
log t

t
√
r2 + log2 t

.

By Proposition 4.6, the extremal case happens when t = 1 , so |y| = |x|
and kG(x, y) = r and the proof is complete. The sharpness follows from the
proof. �

Lemma 4.10. For all x ∈ Rn \ {0} and r ∈ (0, π], we have

Bn(x,R) ⊂ Bv(x, r) , R =

{
|x| sin r for r ∈ (0, π/2] ,

|x| for r ∈ (π/2, π] ,

and the radius R is best possible.

Proof. Fix x ∈ Rn \ {0} , and y ∈ Bv(x, r) . We consider two cases. If
r ∈ (π/2, π] then by Proposition 4.6, |x−y| ≤ |x| . If r ∈ (0, π/2] then by the
law of sines and Proposition 4.6, |x − y| ≤ |x| sin r . The sharpness follows
from the proof. �

Lemma 4.11. For all x ∈ Rn \ {0} and r ∈ (0, π], we have

Bq(x,R) ⊂ Bv(x, r) , R = min

{
2|x| sin r/2
1 + |x|2

,
|x|√

1 + |x|2

}
,

and the radius R is best possible.

Proof. Fix x ∈ Rn \ {0} , and y ∈ Bv(x, r) . We consider two cases. If
r ∈ (π/2, π] then

q(x, y) ≤ q(x, 0) = |x|√
1 + |x|2

.

If r ∈ (0, π/2] we may assume that x = e1 , and let y = teir, t > 0 . Then by
the law of sines

q(x, y) =
|x− y|√

1 + |x|2
√

1 + |y|2
=

√
1 + t2 − 2t cos r√

2
√
1 + t2

=: f(t) ,

and

f ′(t) =
(t2 − 1) cos r√

2(1 + t2)3/2
√
1 + t2 − 2t cos r

.

The extremal case takes place when t = 1 , therefore |x| = |y| , and

q(x, y) =
|x− y|
1 + |x|2

=
2|x| sin(r/2)
1 + |x|2

.

The proof is complete because by Proposition 4.6, Bv(x, y) is an angular
domain. The sharpness follows from the proof. �
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Lemma 4.12. For all x ∈ Rn \ {0} and r ∈ (0, π], we have

Bp(x,R) ⊂ Bv(x, r) , R =
sin(r/2)√

sin2(r/2) + 1
,

and the radius R is best possible.

Proof. By symmetry we may assume that n = 2 and x = e1 . Let y =
teir, t > 0 . By the definition

pG(x, y) =
|x− y|√

|x− y|2 + 4|x||y|
=

√
1 + t2 − 2t cos r

1 + t2 − 2t cos r + 4t
=: f(t) .

By Proposition 4.6, we want to minimize f(t) . Now

f ′(t) =
2(t2 − 1)√

1 + t2 − 2t cos r(1 + t(4 + t)− 2t cos r)3/2
,

and f ′(t) = 0 if and only if t = 1 , so |y| = |x| and

pG(x, y) =
|x− y|√

|x− y|2 + 4|x|2
=

sin(r/2)√
sin2(r/2) + 1

.

The sharpness follows from the proof. �

Proof of Theorem 1.3. The proof follows from Lemmas 4.7 – 4.12. �

Theorem 4.13. For all x ∈ Hn and r ∈ (0, π/2), we have

Bv(x, r) ⊂ Bn(x+ (2T 2)xnen, 2T (
√
T 2 + 1)xn)(4.14)

⊂ Bn(x, (2T
√
T 2 + 1 + 2T 2)xn) ,

where T = | tan(π− r)| . Moreover, the smaller Euclidean ball is the smallest
possible containing Bv(x, r) .

Note that (4.14) is equivalent to

Bv(x, r) ⊂ Bn

(
x+ (2xn tan

2 r)en, 2xn
tan r

cos r

)
⊂ Bn

(
x, 2xn

(
tan r

cos r
+ tan2 r

))
.

Proof. It suffices to consider the case n = 2 . For the first inclusion, let us
fix x = i . We claim that

Bv(i, r) ⊂ B2

(
(1 + 2 tan2 r)i, 2

tan r

cos r

)
.

By (3.2), we have

vH2(x, y) ≡ π − arctan

(
2
√
y2 ·

√
y21 + (y2 − 1)2 ∓ y1(1 + y2)

y21 − 4y2

)
(modπ) .

Writing vH2(i, y) = r , we conclude that

(4.15) y1 =

{
cot r(1 + y2 − 2

√
y2 sec r) =: f1(y2, r) ,

cot r(−1− y2 + 2
√
y2 sec r) =: f2(y2, r) .

This gives the equation of ∂Bv(i, r) , for y2 ∈ [b1, b2] .
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10 y2

y1

¶BvHx, rL

¶B2H1+2tan2r, 2ÑL, Ñ=
tan r

cos r

Figure 4. Proof of Theorem 4.13.

Letting f1(y2, r) = f2(y2, r) = 0 , we see that

(4.16) y2 =

{
2(1− sin r) sec2 r − 1 =: b1 ,

2(1 + sin r) sec2 r − 1 =: b2 .

Our next goal is to find the equation of ∂B2

(
(1 + 2 tan2 r)i, 2

tan r

cos r

)
. Tak-

ing |y − (1 + 2 tan2 r)| = 2
tan r

cos r
, gives

y1 =

{
−
√
4y2 sec2 r − (1 + y2)2 =: g1(y2, r) ,√

4y2 sec2 r − (1 + y2)2 =: g2(y2, r) .

By symmetry, it is sufficient to show that g2(y2, r) ≥ f2(y2, r) . In order to
prove this inequality, it is convenient to estimate the circular arc g2(y2, r) ,
by a triangle with vertices b1, b2 and (1, g2(1, r)) . We can do this estimation
because

∂2

∂y22
(g2(y2, r)) =

−4 sec2 r tan2 r
(4y2 sec2 r − (1 + y2)2)

3/2
≤ 0 .

Denote the above mentioned triangle by T (y2, r)

(4.17) T (y2, r) =


y1 =

g2(1, r)

1− b1
(y2 − b1) =: l1(y2, r) , b1 ≤ y2 < 1 ,

y1 =
g2(1, r)

1− b2
(y2 − b2) =: l2(y2, r) , 1 ≤ y2 ≤ b2 .

We only need to show that h(y2, r) = T (y2, r)− f2(y2, r) ≥ 0 .
If b1 ≤ y2 < 1 , then

h(y2, r) =
1

cos r
(y2 − 1 + (y2 + 1) sin r)− cot r(2

√
y2 sec r − 1− y2) .

But
∂2(h(y2, r))

∂y22
=

csc r

2y
3/2
2

> 0 , for 0 ≤ r ≤ π/2 .



LOCAL CONVEXITY OF METRIC BALLS 11

Hence h′(y2, r) is an increasing function of y2 .Moreover we claim that indeed

h′(b1, r) = cot r + sec r + tan r − csc r√
−1 + 2/(1 + sin r)

= 0 .

To see this, it is sufficient to make the following observation√
1− sin r

1 + sin r
=

csc r

cot r + sec r + tan r
.

Now it is easy to check that for 0 ≤ r ≤ π/2 , both sides are equivalent to
csc
(
π
4 + r

2

)
sin
(
π
4 −

r
2

)
. Thus h′(y2, r) ≥ 0 .

Similarly we can show that

h(b1, r) = 2 sec r

(
csc r − 1− cot r

√
1− sin r

1 + sin r

)
= 0 .

To see this, it suffices to show that

1− sin r

cos r
=

√
1− sin r

1 + sin r
.

It follows easily that for 0 ≤ r ≤ π/2 , both sides are equivalent to

csc
(π
4
+
r

2

)
sin
(π
4
− r

2

)
.

Hence h(y2, r) ≥ 0 . In the same manner for 1 ≤ y2 ≤ b2 ,

h(y2, r) = (1 + y2 + csc r − y2 csc r) tan r − cot r(−1− y2 + 2 sec r
√
y2) .

But
∂2(h(y2, r))

∂y22
=

csc r

2y
3/2
2

> 0 , for 0 ≤ r ≤ π/2 ,

and

h′(b2, r) = tan r + cot r − sec r − csc r√
2 sec2 r + 2 tan r sec r − 1

= 0 .

To see this, it is enough to show that√
2 sec2 r + 2 tan r sec r − 1 =

csc r

tan r + cot r − sec r
,

and it is easy to check that for 0 ≤ r ≤ π/2 , both sides are equivalent to
csc
(
π
4 −

r
2

)
sin
(
π
4 + r

2

)
. Therefore h′(y2, r) ≥ 0 . We next show that

h(b2, r) = 2 sec r
(
csc r − cot r

√
2 sec r(tan r + sec r)− 1 + 1

)
= 0 .

To see this we need to show that√
2 sec r(tan r + sec r)− 1 = (1 + csc r) tan r .

In the same manner as in the previous part, we can show that for 0 ≤ r ≤
π/2 , both sides are equivalent to csc

(
π
4 −

r
2

)
sin
(
π
4 + r

2

)
. Hence h(y2, r) ≥

0 .
An easy computation shows that g2(b1, r) = g2(b2, r) = 0 . Hence the

Euclidean ball B2

(
(1 + 2 tan2 r)i, 2

tan r

cos r

)
is the smallest possible ball con-

taining Bv(x, r) , and this completes the proof for the first inclusion.
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For the second inclusion, let

y ∈ ∂B2

(
x+ (2x2 tan

2 r)e2, 2
tan r

cos r
x2

)
.

It follows that

|y − x1e1 − (1 + 2 tan2 r)x2e2| ≤ 2
tan r

cos r
x2 .

Therefore

|y − x| ≤ |y − x1e1 − (1 + 2 tan2 r)x2e2|+ | − x+ x1e1 + (1 + 2 tan2 r)x2e2|

≤ 2x2(
tan r

cos r
+ tan2 r) ,

and y ∈ ∂B2

(
x, 2x2(

tan r

cos r
+ tan2 r)

)
. �

Figure 5. ∂Bv(i, r) , in the upper half space, for r = π/6, π/4, π/3 .

Remark 4.18. By the proof of Theorem 4.13 we observe that ∂Bv(x, r) is not
smooth for 0 ≤ r ≤ π . By (4.15),

f ′2(b
+
1 , r) = cot r

(
sec r√

2 sec2 r − 2 tan r sec r − 1
− 1

)
,

and

f ′1(b
+
1 , r) = − cot r

(
sec r√

2 sec2 r − 2 tan r sec r − 1
− 1

)
.

Hence we see that at the point y2 = b1 , the derivative does not exist and
∂Bv(x, r) is not smooth.
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Remark 4.19. The proof of Theorem 4.13 gives more, namely, the lines
l1(y2, r) and l2(y2, r) are tangent to the ∂Bv(x, r) . To see this we first com-
pute the slope of the tangent lines to Bv(x, r) at the points b1, b2 . We have
by Remark 4.18

f ′2(b
+
1 , r) = cot r

(
sec r√

2 sec2 r − 2 tan r sec r − 1
− 1

)
.

Next, by (4.17), the slope of the line l1 is

m1 =
tan r

− sec2 r + tan r sec r + 1
.

We claim that m1 = f ′2(b
+
1 , r) . To see this it is enough to show that

tan2 r + 1− sec2 r + sec r tan r

sec r
=
− sec2 r + tan r sec r + 1√
2 sec2 r − 2 tan r sec r − 1

.

It is easy to check that for 0 ≤ r ≤ π/2 , both sides are equivalent to

cos
(r
2

)
csc
(π
4
− r

2

)
csc
(π
4
+
r

2

)
sin
(r
2

)
.

Similarly, substituting b2 from (4.16), gives

f ′2(b
+
2 , r) = cot r

(
sec r√

2 sec2 r + 2 tan r sec r − 1
− 1

)
.

Next, by (4.17), the slope of line l2 is

m2 = −
tan r

sec2 r + tan r sec r − 1
.

We claim that m2 = f ′2(b
+
2 , r) . To see this, it is enough to show that

− tan2 r − 1 + sec2 r + sec r tan r

sec r
=

sec2 r + tan r sec r − 1√
2 sec2 r + 2 tan r sec r − 1

.

It is easy to check that for 0 ≤ r ≤ π/2 , both sides are equivalent to

cos
(r
2

)
csc
(π
4
− r

2

)
csc
(π
4
+
r

2

)
sin
(r
2

)
.

Theorem 4.20. For all x ∈ Hn and r ∈ (0, π/2), we have

Bn(x+ (sec2 r − 1)xnen, (tan r)xn) ⊂ Bv(x, r) .

Proof. By symmetry, it suffices to consider the case n = 2 .
Let us fix x = i . We claim that

B2(i sec2 r, tan r) ⊂ Bv(x, r) .
By (4.15), the equation of ∂Bv(i, r) is as follows:

y1 =

{
cot r(1 + y2 − 2

√
y2 sec r) =: f1(y2, r) ,

cot r(−1− y2 + 2
√
y2 sec r) =: f2(y2, r) .

Next we find the equation of ∂B2(i sec2 r, tan r) . Taking |y−sec2 r| = tan r
gives

y1 =

−
√
−(y2 − sec2 r)2 + tan2 r =: g1(y2, r) ,√
−(y2 − sec2 r)2 + tan2 r =: g2(y2, r) .
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By symmetry, it is sufficient to show that f2(y2, r) ≥ g2(y2, r) . To see this
we only need to show that h(y2, r) =: f2(y2, r)

2 − g2(y2, r)2 ≥ 0 . But

∂2h(y2, r)

∂y22
=

1

y
3/2
2

(2y
3/2
2 + cos r − 3y2 cos r) csc

2 r .

Denote by
h2(y2, r) = 2y

3/2
2 + cos r − 3y2 cos r .

But
∂2h2(y2, r)

∂y22
=

3

2
√
y2

> 0 , and
∂h2(cos

2 r, r)

∂y2
= 0 .

Moreover h2(cos2 r, r) > 0 for r ∈ (0, π/2) . Therefore ∂2h(y2,r)
∂y22

≥ 0. It is easy

to check that ∂h(sec2 r,r)
∂y2

= 0 , and hence h(y2, r) ≥ 0 . �

Theorem 4.21. For all x ∈ Hn and r ∈ (0, π/2), we have

(4.22) Bn(x, xn sin r) ⊂ Bv(x, r) .

Proof. Let λ = sin r and y ∈ Bn(x, λxn) . By domain monotonicity of the
v-metric, we have for Bx = Bn(x, xn) the inequalities

vHn(x, y) ≤ vBx(x, y) ≤ arcsinλ ,

where the last inequality follows by [KLVW, 3.3]. �

Proof of Theorem 1.4. The proof follows from Theorems 4.13, 4.20 and
4.21. �
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