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Abstract
Background: The existing risk prediction models for chemotherapy-induced 
febrile neutropenia (FN) do not necessarily apply to real-life patients in differ-
ent healthcare systems and the external validation of these models are often 
lacking. Our study evaluates whether a machine learning-based risk prediction 
model could outperform the previously introduced models, especially when vali-
dated against real-world patient data from another institution not used for model 
training.
Methods: Using Turku University Hospital electronic medical records, we iden-
tified all patients who received chemotherapy for non-hematological cancer be-
tween the years 2010 and 2017 (N = 5879). An experimental surrogate endpoint 
was first-cycle neutropenic infection (NI), defined as grade IV neutropenia with 
serum C-reactive protein >10 mg/l. For predicting the risk of NI, a penalized re-
gression model (Lasso) was developed. The model was externally validated in an 
independent dataset (N = 4594) from Tampere University Hospital.
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1   |   INTRODUCTION

Prophylactic granulocyte colony-stimulating factors (G-
CSFs) can be used to shorten neutropenia duration and 
prevent febrile neutropenia (FN), which are major dose-
limiting and resource-intensive complications during 
cancer chemotherapy. Meta-analyses show that use of 
G-CSFs significantly reduces the risk of FN, with relative 
risks of 0.27–0.51 compared to patients with no G-CSF 
prophylaxis.1,2 However, risk assessment based on real-
world settings are sparse.3

Significant underuse of G-CSFs in high-  and 
intermediate-risk regimens, and overuse in low-risk reg-
imens, have been reported both in the EU4,5 and in the 
US.6-8 G-CSFs contribute also significantly to increased 
healthcare costs.9 Therefore, selective use of G-CSFs 
based on predetermined FN risk is recommended to opti-
mize the use of healthcare resources.10,11

European and North American guidelines recommend 
the use of prophylactic G-CSF based on the predetermined 
risk of FN, classified as low, intermediate, or high, de-
pending on the chemotherapy regimen.10,11 Prophylactic 
G-CSFs are recommended for high risk but not for low-
risk regimens. For intermediate-risk regimens, a history of 
prior neutropenia or leukopenia, age >65 years, presence 
of comorbid conditions, advanced stage of disease (espe-
cially to bone marrow), poor performance status, female 
sex, and low hemoglobin support the use of prophylactic 
G-CSFs.10-14

Risk prediction models for neutropenic complications 
based on retrospective data from the US14,15 or on prospec-
tive cohorts and trial settings in Europe12,16 or tailored for 

specific cancer type17  have been introduced. Model by 
Lyman et al. is commonly used, which is based on 3760 
US patients with different types of cancer treated during 
2002–200614 and has subsequently been re-evaluated in 
a larger population.15 Despite the available models, they 
have not been typically externally validated against data 
from institutions other than the one used for model train-
ing.17 In the development of any risk prediction model, 
external validation is of great importance to verify the gen-
eralizability of the model to patients outside the training 
cohort and should always be done before its implementa-
tion and wider use in a clinical setting.18

In addition to the lack of external validation, the de-
velopment of previous models has typically relied on 
conventional modeling strategies whose performances 

Results: Lasso model accurately predicted NI risk with good accuracy (AUROC 
0.84). In the validation cohort, the Lasso model outperformed two previously in-
troduced, widely approved models, with AUROC 0.75. The variables selected by 
Lasso included granulocyte colony-stimulating factor (G-CSF) use, cancer type, 
pre-treatment neutrophil and thrombocyte count, intravenous treatment regi-
men, and the planned dose intensity. The same model predicted also FN, with 
AUROC 0.77, supporting the validity of NI as an endpoint.
Conclusions: Our study demonstrates that real-world NI risk prediction can be 
improved with machine learning and that every difference in patient or treatment 
characteristics can have a significant impact on model performance. Here we out-
line a novel, externally validated approach which may hold potential to facilitate 
more targeted use of G-CSFs in the future.

K E Y W O R D S

chemotherapy, clinical decision support, granulocyte colony-stimulating factor, machine 
learning, neutropenia

Novelty and Impact
There are several risk prediction models for 
chemotherapy-induced neutropenia, but the ex-
isting models may not always apply to real-life 
patients in different healthcare systems. A novel 
machine learning-based model was developed 
to predict neutropenic infection risk in cancer 
patients. The model performance was externally 
validated in an independent cohort, outperform-
ing two previously introduced conventional mod-
els. In the future, our model may facilitate more 
targeted use of granulocyte colony-stimulating 
factors.
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might be improved with machine learning-based model-
ing approaches.19 For example, the widely used model by 
Lyman et al. is a multivariable logistic regression model 
developed by applying a stepwise variable selection pro-
cedure14 in which the variable selection process is known 
to be more unstable compared to penalized approaches 
and can magnify problems associated with model overfit-
ting.19,20 The recently re-evaluated version of this model 
introduced by Li et al. also uses the same modeling ap-
proach and same variables as the original study but with 
few variable-related modifications made based on clinical 
and numerical rationale.15

The aim of the present study was to evaluate if a ma-
chine learning-based risk prediction model could outper-
form previously introduced models by Lyman et al. and 
Li et al.14,15 for neutropenic complications in real-world 
patient data. To avoid overfitting and to verify model gen-
eralizability, we carried out external validation against in-
dependent data from another university hospital.

2   |   MATERIAL AND METHODS

2.1  |  Patients

We gathered comprehensive clinical data on all patients 
who received intravenous chemotherapy between January 
2010 and December 2017 at Turku University Hospital, 
Finland, covering the population of 480 000 inhabitants 
in Southwest Finland. This data included the patient's 
sex, age, time of death, weight, height, body temperatures, 
given diagnoses (ICD-10 codes), electronic prescriptions, 
intravenous chemotherapies and monoclonal antibodies, 
G-CSF therapies, laboratory values, and hospital in- and 
outpatient visits.

All patients aged at least 18  years with ICD-10 code 
C00-79 before receiving their first dose of intravenous 
chemotherapy, either in curative or palliative regimens, 
were included (Figure  1). Patients treated with investi-
gational products or non-chemotherapy regimens such 
as immune checkpoint inhibitors (232 patients), patients 
with nonmelanoma skin cancer (9 patients), and patients 
having multiple primary malignancies (511 patients) were 
excluded. This left a total of 5879 patients in the analyses. 
For model training and internal testing, the data were ran-
domized into separate training (N = 3920, two thirds of 
the data) and test (N = 1959, one third of the data) cohorts.

Using the same protocol, we collected an independent 
validation cohort from Tampere University Hospital with 
the catchment population of 515 100 inhabitants. In total, 
4594 patients treated between January 2014 and June 2019 
were identified.

The data gathering and analysis were performed 
with research permissions granted by institutional re-
view boards of Turku and Tampere University Hospitals. 
Additional information on data gathering and confidenti-
ality can be found in the Supplementary Material.

2.2  |  Study endpoint and 
candidate predictors

Febrile neutropenia is a classical endpoint in neutrope-
nia studies, but the definition of FN varies depending on 
the source.14,21 We designed neutropenic infection (NI) 
as primary endpoint, which was defined as grade IV neu-
tropenia (absolute neutrophil count (ANC) <0.5 × 109/l 
according to Common Terminology Criteria for Adverse 
Events (CTCAE) version 4.0) within 14 days of the first 
chemotherapy infusion combined with subsequent 
serum C-reactive protein (CRP) level >10  mg/l within 
5  days (of neutropenia). Patients who did not undergo 
any laboratory measurements within 14 days of the first 
chemotherapy infusion or failed to fulfill either of the 
two criteria were considered patients without NI. To 
further verify the selected primary study endpoint, the 
occurrence of NI was compared with admissions to any 
tertiary care hospital ward during the NI episode. We 
also tested FN as an endpoint, defined as body tempera-
ture ≥38°C and ANC <1.0 × 109/l according to CTCAE 
version 4.0 but ignoring the required 1-hour limit for 
fever. We focused on the first-cycle of chemotherapy 
when the patients are at highest risk of developing 
neutropenia.12,14

The candidate predictors for estimating the risk of NI 
are provided in Table 1 and in the Supplementary Material 
with additional details.

F I G U R E  1   Selection of patients into the Turku University 
Hospital cohort

6,631 Chemotherapy patients with solid
malignant tumors (C00-79, data
from 2010-2017)

752 Excluded
511
9

232

Multiple primary malignancies
Non-melanoma skin cancer
Investigational products and
clinical trial patients

5,879 Included in analysis

3,920 Training cohort

5,617
262

No neutropenic infection
Neutropenic infection

1,959 Test cohort

Randomised
in a 2:1 ratio



4  |      VENÄLÄINEN et al.

T A B L E  1   Characteristics of the Turku University Hospital cohort according to the occurrence of neutropenic infection during the first 
round of chemotherapy

Neutropenic infection Neutropenic infection

p valueb

No Yes

N = 5617 N = 262

Demographics

Sex, N (%) <0.001

Male 2228 (40) 41 (16)

Female 3389 (60) 221 (84)

Age, N (%) <0.001

<40 260 (5) 20 (8)

40–65 2691 (48) 173 (66)

>65 2658 (47) 69 (26)

Mean BMI, kg/m² (standard deviation) 26.6 (5.4) 26.3 (4.9) 0.7

Mean body surface area, m² (standard deviation) 1.9 (0.2) 1.8 (0.2) 0.009

Use of prophylactic G-CSFs, N (%) 306 (5) 8 (3) 0.1

Comorbidities [ICD−10], N (%)

COPD [J44, J96] 282 (5) 13 (5) 1.0

Coronary heart disease [I25] 369 (7) 10 (4) 0.1

Diabetes [E10-E14] 524 (9) 10 (4) 0.003

Heart failure [I50] 123 (2) 6 (2) 1.0

Renal impairment [N17-N19] 73 (1) 3 (1) 1.0

Liver failure [K70-K75] 64 (1) 3 (1) 1.0

Rheumatoid arthritis [M05-M07] 118 (2) 4 (2) 0.7

Ulcer disease [K25-K27] 89 (2) 2 (1) 0.4

Metastatic disease

C77-C79 detected, N (%) 791 (14) 17 (6) <0.001

Laboratory test results, mean (standard deviation)

Absolute neutrophil count [×109/l] 4.4 (2.4) 3.6 (2.8) <0.001

Alanine aminotransferase [U/l] 29.2 (31.1) 27.5 (21.4) 0.7

Alkaline phosphatase [U/l] 100.0 (126.8) 80.1 (64.0) <0.001

Average red blood cell size [fl] 89.8 (5.3) 90.4 (4.7) 0.2

Blood hematocrit [%] 39.7 (4.1) 40.2 (3.4) 0.05

Blood hemoglobin [g/l] 131.4 (15.3) 133.8 (12.8) 0.03

Hemoglobin amount per red blood cell [pg] 29.8 (2.3) 30.2 (1.9) 0.01

Leukocyte count [×109/l] 7.4 (5.4) 6.6 (3.1) <0.001

Plasma bilirubin [μmol/l] 9.5 (8.5) 9.4 (5.6) 0.2

Plasma potassium [mmol/l] 4.0 (0.4) 4.1 (0.3) 0.9

Plasma sodium [mmol/l] 140.3 (3.5) 140.8 (3.7) 0.002

Red blood cell count [×1012/l] 4.4 (0.5) 4.5 (0.4) 0.3

Serum creatinine [μmol/l] 73.1 (19.8) 71.7 (16.8) 0.5

Thrombocyte count [×109/l] 300.0 (104.8) 267.9 (69.5) <0.001

Planned relative dose intensity, N (%) <0.001

 < 85% 1103 (25) 24 (10)

≥ 85% 3224 (75) 205 (90)
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2.3  |  Statistical analysis and model 
development

We applied penalized logistic regression with least abso-
lute shrinkage and selection operator (Lasso) penalty to 
the training cohort to construct a multivariable model for 
predicting the individualized risk of NI. To identify the 
most influential predictors and to account for model vari-
ability due to random subsampling, the model construc-
tion was performed iteratively in multiple steps similarly 
as before.22-24 In previous studies, this approach has led to 
models with fewer variables but retaining the same predic-
tion accuracy as the more complex models. During model 

development and validation, only patients with complete 
data for the selected predictors were used.

The performance of the Lasso model was compared 
against previously introduced model for multiple cancer 
types by Lyman et al.14 as well as the revised version of 
the Lyman model introduced by Li et al.15 (Table S1). The 
comparisons were done using only those cancer types that 
were shared by all three studies (breast, ovarian, colorectal, 
small cell, and non-small cell lung cancer) and patients for 
whom all risk estimates could be determined. Furthermore, 
patients who received G-CSFs were excluded from this com-
parison since they were not included in the development 
of Li model. Finally, we compared the performance of the 

Neutropenic infection Neutropenic infection

p valueb

No Yes

N = 5617 N = 262

Intravenous treatment regimens, N (%)

Alkylating agents 880 (16) 15 (6) <0.001

Anthracyclines 909 (16) 14 (5) <0.001

Antimetabolites 2591 (46) 40 (15) <0.001

Antitumor antibiotics 126 (2) 3 (1) 0.3

Monoclonal antibodies 439 (8) 81 (31) <0.001

Platinum 2154 (38) 40 (15) <0.001

Taxanes 1733 (31) 199 (76) <0.001

Topoisomerase inhibitors 419 (7) 28 (11) 0.07

Vinca alkaloids 188 (3) 3 (1) 0.07

Cancer group [ICD−10], N (%) <0.001

Breast [C50] 1845 (33) 204 (78)

Central nervous system [C70-72] 80 (1) 0 (0)

Colorectal [C18-20] 692 (12) 6 (2)

Female reproductive [C51-57] 436 (8) 3 (1)

Gastric [C15-16] 241 (4) 0 (0)

Head and neck [C00-14, C30-32] 376 (7) 0 (0)

Lung, non-small cell [C33-35] 530 (10) 20 (8)

Lung, small cell [C33-35] 161 (3) 11 (4)

Melanoma [C43] 49 (1) 0 (0)

Other gastrointestinal [C17, C21, C22, C26] 78 (1) 1 (0)

Pancreas and gallbladder [C23-25] 301 (5) 2 (1)

Prostate [C61] 286 (5) 2 (1)

Sarcoma [C40-41, C46-49] 69 (1) 5 (2)

Testicular [C62] 93 (2) 3 (1)

Urinary tract [C65-68] 261 (5) 3 (1)

Othera 119 (2) 2 (1)
a Category includes all remaining ICD-10 codes from C00-79.
b Comparisons between the groups either having or not having NI were tested using the Mann–Whitney test for continuous variables and the chi-squared test 
or Fisher's exact test (N < 5) for categorical variables.

T A B L E  1   (Continued)
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Lasso model also with a model developed using the conven-
tional stepwise variable selection procedure.

All statistical analyses and modeling were carried out 
using the R statistical computing environment version 
3.4.3 (R Core Team, 2016. R: A language and environment 
for statistical computing. R Foundation for Statistical 
Computing, Vienna, Austria. URL https://www.R-proje​
ct.org/). For penalized regression, implementation avail-
able in the R package glmnet (version 2.0–16)25 was used. 
The discrimination performances of the risk assessment 
models were evaluated in terms of area under the receiver 
operating characteristic curve (AUROC) and compared 
using the DeLong test26 implemented in the R package 
pROC (version 1.12.1). Comparisons between the groups 
either having or not having NI were tested using the 
Mann–Whitney test for continuous variables and the chi-
squared test or Fisher's exact test (N < 5) for categorical 
variables. The level of significance was set at p  <  0.05. 
Additional details on model development and statistical 
analyses can be found in the Supplementary Material.

3   |   RESULTS

3.1  |  Study populations

In total, the Turku University Hospital cohort consisted of 
5879 patients (Table 1). Among these, NI occurred in 262 
(4%) of the patients, of whom 225 (86%) were also subse-
quently admitted to a hospital ward. Out of 5879 patients, 
314 (5%) received G-CSFs as primary prophylaxis, of whom 
eight (3%) developed NI. The patients who had NI were 
typically women (p < 0.001) with breast cancer (p < 0.001) 
treated with higher relative dose intensity (RDI) (p < 0.001) 
and had lower levels of blood ANC (p < 0.001), leukocytes 
(p  <  0.001), and thrombocytes (p  <  0.001) in the begin-
ning of the treatment (Table 1). Despite the lower ANC and 
thrombocyte counts, for nearly all patients (98%) these were 
above the lower limit of the reference (>1.5 × 109/l for ANC 
and >150 × 109/l for thrombocyte count).

The validation cohort from Tampere University 
Hospital included 4594 patients who showed similar dis-
tributions in age, sex, comorbidities, cancer types, and RDI 
compared to the Turku University Hospital cohort (Table 
S2). The increased risk of NI associated with lower ANC 
and thrombocyte counts, however, were not observed in 
the validation cohort.

3.2  |  Model development and validation

Of the more than 30 variables included (Table 1), a sub-
set of 10 variables (Table  2) were selected by the Lasso 

model for accurate NI risk predictions in the training 
cohort (AUROC 0.87, 95% confidence interval [CI] 0.84–
0.89). The selected model showed similar performance 
also in the internal test cohort indicating good generaliz-
ability (AUROC 0.85, 95% CI 0.80–0.90). As expected, use 
of prophylactic G-CSFs and reduced RDI were among the 
most influential predictors decreasing NI risk (Table  2). 
Intravenous treatment regimens involving antimetabo-
lites demonstrated also decreased NI risk compared to 
other treatment regimens. Of all cancer types, breast 
cancer and sarcoma patients showed increased NI risk. 
The other variables increasing NI risk were use of taxa-
nes alone or in combination with monoclonal antibodies, 
use of topoisomerase inhibitors, and low pre-treatment 
ANC and thrombocyte counts. The majority of taxanes 
used were docetaxel 80 mg/m2 Q3W to treat breast can-
cer (65%), docetaxel 50  mg/m2 Q2W to treat metastatic 
castration-resistant prostate cancer (14%), and paclitaxel 
to treat gynecological cancers (11%). We observed that 
among patients treated with taxanes at full RDI, NI risk 
was 12%, compared to 3% in those treated with reduced 
RDI.

Overall, the Lasso model predicted NI risk with high ac-
curacy in the Turku University Hospital cohort (AUROC 
0.86, 95% CI 0.84–0.89) as well as with fair accuracy in the 
Tampere University Hospital validation cohort (AUROC 
0.73, 95% CI 0.69–0.77). For cancer types included in 
the development of previous models, the Lasso model 
significantly outperformed the previous models in both 
Turku University Hospital (Lyman model AUROC 0.47, 
p < 0.001; Li model AUROC 0.78, p < 0.001) and Tampere 
University Hospital cohorts (Lyman model AUROC 0.53, 
p < 0.001; Li model AUROC 0.70, p = 0.01), with AUROCs 
of 0.84 and 0.75, respectively (Table 3). The discrimination 
performance of the model developed using the conven-
tional stepwise variable selection procedure was compa-
rable to the Lasso model in the Turku University Hospital 
cohort but significantly worse in the Tampere University 
Hospital cohort (Supplementary Material).

In Turku University Hospital cohort, 56% of the pa-
tients with NI also met the criteria for FN. Overall, FN 
was observed in 221 (4%) of patients. When applied to pre-
dict the potential FN cases, the Lasso model significantly 
outperformed (AUROC 0.77) the previously introduced 
Lyman (AUROC 0.50, p < 0.001) and Li models (AUROC 
0.73, p = 0.007) (Table 3).

3.3  |  Assessing the effect of G-CSFs on 
predicted NI risk

We observed that, especially in the Turku University 
Hospital cohort, the higher the predicted risk of NI, the 

https://www.R-project.org/
https://www.R-project.org/
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greater benefits from G-CSFs can be expected in terms 
of reducing the risk (Figure 2). Among patients with the 
highest predicted NI risk (>20%), the observed NI rate 
was 29% (79 out of 270 patients) without the use of G-CSF 
but roughly 3% when G-CSF was used (2 out of 59 pa-
tients). The proportion of patients receiving G-CSFs was 
also highest in this category (18%) compared to categories 
with predicted risk of 5–20% or <5% with 116 out of 850 
patients (14%) or 52 out of 2502 patients (2%) receiving G-
CSFs, respectively. A practical example on how to apply 
the fitted Lasso model to evaluate the effect of G-CSFs on 
NI risk is provided in the Supplementary Material.

4   |   DISCUSSION

The decision whether to use prophylactic G-CSFs during 
chemotherapy is a daily question in oncological practice. 
Our study introduces a novel machine learning-based model 
to predict NI risk when initiating chemotherapy for cancer 
patients. The Lasso model uses a limited number of routinely 
used variables and showed excellent capabilities in predict-
ing NI risk in both training and external validation real-
world data cohorts, indicating good model generalizability.

The Lasso model outperformed both previously in-
troduced models as well as a model based on stepwise 

T A B L E  2   Coefficients and covariates in the Lasso risk assessment model for the occurrence of neutropenic infection during the first 
round of chemotherapy in the training cohort

Covariate Coefficienta Effect OR (95% CI)b
p 
value

Intercept 0.477 Baseline risk – –

Cancer type

Breast cancer 2.361 Increased risk 7.20 (5.39–9.77) <0.001

Sarcoma 3.694 Increased risk 1.57 (0.55–3.55) 0.34

Laboratory test results

Neutrophil count [×109/l] (per ln increase) −0.282 Decreased risk 0.41 (0.31–0.56) <0.001

Thrombocyte count [×109/l] (per ln 
increase)

−0.966 Decreased risk 0.44 (0.30–0.64) <0.001

Treatment regimen

Use of taxanes 1.262 Increased risk 7.10 (5.35–9.54) <0.001

Combined use of taxanes and monoclonal 
antibodies

0.871 Increased risk 8.53 (6.37–11.35) <0.001

Use of topoisomerase inhibitors 3.305 Increased risk 1.49 (0.97–2.19) 0.05

Use of antimetabolites −0.787 Decreased risk 0.21 (0.15–0.29) <0.001

Actions to reduce risk

Use of G-CSF −1.780 Decreased risk 0.55 (0.25–1.04) 0.10

Relative dose intensity <85% −0.814 Decreased risk 0.34 (0.22–0.51) <0.001
aCoefficients indicate the impact of a 1-unit change in a predictor variable on the response variable when the other predictors are held constant.
bThe odds ratios (OR) and corresponding p values were estimated separately using univariable logistic regression without penalization. CI denotes confidence 
interval.

T A B L E  3   Comparison of the discrimination performances of the developed Lasso model, Lyman model,14 and Li model15 in Turku 
University Hospital and Tampere University Hospital validation cohorts for the occurrence of neutropenic infection and febrile neutropenia

Model

Turku University Hospital (N = 2101)
Tampere University Hospital 
Validation cohort (N = 1937)

Outcome: Neutropenic infection Outcome: Febrile neutropenia Outcome: Neutropenic infection

AUROC (95% CI) p valuea AUROC (95% CI) p valuea AUROC (95% CI) p valuea

Lasso 0.84 (0.81–0.86) – 0.77 (0.73–0.81) – 0.75 (0.69–0.77) –

Lyman 0.47 (0.43–0.50)  < 0.001 0.50 (0.46–0.54)  < 0.001 0.53 (0.47–0.59)  < 0.001

Li 0.78 (0.75–0.80)  < 0.001 0.73 (0.70–0.76) 0.007 0.70 (0.66–0.74) 0.01

Note: Abbreviations: AUROC, area under the receiver operating characteristic curve; CI, confidence interval.
ap values are reported for comparisons with the Lasso model.
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variable selection procedure in predicting NI risk with 
even fewer required input variables suggesting that ma-
chine learning-based modeling can improve both usabil-
ity and predictive performance over more conventional 
approaches. This finding held true also in the validation 
cohort. Lack of external validation is a common problem 
in neutropenia prediction studies, limiting their imple-
mentation in clinical practice.

The improved performance is explained by the different 
input variables resulting from the applied iterative vari-
able selection procedure used successfully also before.22-24 
Alternatively, poorly adjusted regression coefficients due 
to inherent differences between patient populations and 
local healthcare practices or overfitting may explain the 
worse performance of previous models. For example, the 
Lyman model had drastically different coefficients for 
different treatment regimens compared to Lasso and Li 
models (Table  2, Table S1) which might explain its un-
derperformance. This highlights also the importance of 
model validation in the target population before use.

The most common clinically monitored neutropenic 
complication is FN, for which several different diagnos-
tic criteria can be found in the literature.10,14,21 However, 
FN was a challenging outcome measure in a real world, 
retrospective study setting, as comprehensive body tem-
perature information is usually unavailable. Body tem-
perature is not always documented or unreliable due to 
fever-lowering medication. Therefore, we chose CRP 
(>10 mg/l) accompanied with severe neutropenia (ANC 
<0.5 × 109/l) as the primary endpoint. In clinical practice, 
it is considered that these laboratory values are always 

available when initiating antimicrobial treatment, even if 
the body temperature is below 38.0°C. Notably, the ma-
jority (86%) of the patients identified as having NI were 
also admitted to a hospital ward, supporting the validity 
of our primary endpoint. The occurrence of first-cycle NI 
(4%) was close to the occurrence of first-cycle FN reported 
in the literature.14,15 We also tested our risk assessment 
model for predicting FN, and observed a high level of ac-
curacy, thus supporting the utility of our model for both 
FN and NI risk prediction.

Of the more than 30 risk factors studied, the Lasso 
model eventually required only a subset of 10 variables. 
As expected, the use of G-CSFs showed a similar risk-
reducing effect against neutropenic complications as re-
ported previously.1,2,14 Overall, patients receiving taxanes, 
with or without monoclonal antibodies to treat breast can-
cer formed the largest group of patients with increased NI 
risk. This is line with a recent meta-analysis that demon-
strated a significantly increased risk of FN with the use 
of trastuzumab,27 the most commonly used monoclonal 
antibody in our study cohort. The second risk group iden-
tified consisted of heterogeneous sarcoma patients, often 
treated with aggressive chemotherapy. Topoisomerase in-
hibitors, such as etoposide used in small-cell lung cancer 
and irinotecan used in gastrointestinal cancers, increased 
risk of NI. However, antimetabolites including fluoroura-
cil commonly used in several types of cancer, were asso-
ciated with reduced relative NI risk. These chemotherapy 
regimens remained as important predictors for NI regard-
less of the RDI used.

Reduced RDI, another mechanism to reduce neutro-
penia risk along with G-CSFs, was also identified as an 
important variable and could explain why age or comor-
bidities did not influence the Lasso model. This further 
reflects the oncology practice in Finland, where older and 
comorbid patients seem to be treated with reduced doses 
of chemotherapy. The risk-reducing effect of reduced RDI 
was consistent with previous reports.14,15 Finally, among 
all the pre-treatment laboratory test results, only lower 
ANC and thrombocyte counts were associated with ele-
vated NI risk in the final model. Similar effects of ANC 
and thrombocyte counts on the risk of neutropenic com-
plications have been reported also before.14,28 Lower 
thrombocyte count may reflect bone marrow dysfunction 
and could therefore be linked to simultaneous leukope-
nia, but this was not observed in the validation cohort and 
should be interpreted with caution.

In conclusion, morbidity due to neutropenic complica-
tions affects the patient's quality of life, creates substantial 
costs, and may even threaten the outcome of cancer treat-
ment if the treatment schedule is postponed because of 
infection. To improve the targeted use of prophylactic G-
CSFs, well-calibrated risk models applicable to real-world 

F I G U R E  2   Observed rates of NI (y-axis) for patients with 
and without G-CSFs in different categories of predicted risk (x-
axis) in the Turku University Hospital cohort. The risk of NI was 
determined only for patients with complete baseline information 
for variables included in the Lasso risk assessment model 
(N = 3861)
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data are needed. Here, we demonstrate that risk prediction 
of neutropenic complications can be improved with ma-
chine learning and that even previously validated models 
do not necessarily lead to correct predictions in all patient 
populations. Our novel machine learning-based model 
outperformed both previously introduced models and can 
be easily applied to identify individuals at high risk of neu-
tropenic complications especially in countries with simi-
lar clinical practices. These findings were confirmed in an 
external validation cohort thus supporting the generaliz-
ability and clinical applicability of our model. Overall, the 
presented method holds potential for avoiding resource-
intensive and life-threatening neutropenic complications 
and could facilitate the proper use of G-CSFs in the future.
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