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Blood pressure (BP) is a major risk factor for cardiovascular disease and more than 200

genetic loci associated with BP are known. Here, we perform a multi-stage genome-wide

association study for BP (max N= 289,038) principally in East Asians and meta-analysis in

East Asians and Europeans. We report 19 new genetic loci and ancestry-specific BP variants,

conforming to a common ancestry-specific variant association model. At 10 unique loci,

distinct non-rare ancestry-specific variants colocalize within the same linkage disequilibrium

block despite the significantly discordant effects for the proxy shared variants between the

ethnic groups. The genome-wide transethnic correlation of causal-variant effect-sizes is

0.898 and 0.851 for systolic and diastolic BP, respectively. Some of the ancestry-specific

association signals are also influenced by a selective sweep. Our results provide new evi-

dence for the role of common ancestry-specific variants and natural selection in ethnic

differences in complex traits such as BP.
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H igh blood pressure is a major risk factor for cardiovascular
disorders such as coronary heart disease and stroke.
Approximately 10 million deaths each year can be

attributed to high blood pressure globally1,2. An individual’s risk
for high blood pressure is determined by genetic, environmental
and demographic factors and their interaction. Genome-wide
association studies (GWASs) and/or large-scale analyses by gene-
centric (or exome) variation arrays have identified over 200
genetic loci influencing blood pressure in predominantly
European-descent populations (henceforth referred to as Eur-
opeans)3–8. The prevalence of high blood pressure is increased in
people of East Asian ancestry, contributing to their increased risk
of stroke9. The reasons for such ethnic differences remain to be
clarified from the viewpoint of genetic susceptibility as well as
lifestyle. Although the recent progression of GWAS in East
Asians allows us to make a preliminary comparison of association
signals between the populations10,11, the sample sizes of GWAS
in East Asians have been generally much smaller than those in
Europeans and under-powered for the comprehensive interethnic
comparison at a genome-wide scale. Therefore, large-scale gen-
ome-wide association data in both ethnic groups are required for
systematic, genome-wide interethnic comparison.

Here, we perform a multi-stage GWAS with a discovery sample
of 130,777 East Asian individuals and follow-up meta-analyses
involving East Asians and Europeans (max N= 289,038), to seek
both transethnic and ancestry-specific genetic effects for five
blood pressure phenotypes: systolic blood pressure (SBP), dia-
stolic blood pressure (DBP), pulse pressure (PP), mean arterial
pressure (MAP), and hypertension. We then seek interethnic
genetic heterogeneity of GWAS results between East Asians and
Europeans, followed by examination of natural selection as a
potential mechanism underlying the ethnic differences in genetic
susceptibility for blood pressure as well as other complex traits.
We report ancestry-specific blood pressure variants and selection
signals in this study.

Results
Genome-wide association analysis and lookup for replication.
Adopting a joint analysis strategy12, we performed a GWAS,
which consisted of stage 1 (discovery) and stage 2 (follow-up),
and a replication study (Supplementary Fig. 1). In stage 1 of
GWAS, we used genome-wide association data from 130,777
individuals of Japanese ancestry. Characteristics of participants,
genotyping arrays, and imputation are summarized in Supple-
mentary Tables 1, 2. Genomic control and intercepts from linkage
disequilibrium (LD) score regression13 were calculated at each
study level (λGC= 0.89–1.24 and LD Score regression intercept=
0.94–1.06), indicating no residual confounding biases such as
population stratification (Supplementary Table 2). Since the LD
Score regression intercept can account for polygenic effects and
inflation due to large sample size13, we applied the LD Score
regression intercept as a correction factor for cohorts with a
sample size of >3000 individuals (BBJ in this study). Genomic
control λGC was used as a correction factor in the other studies.
Quantile−quantile plots for each of the five blood pressure traits
are presented in Supplementary Fig. 2. Phenotype-specific meta-
analysis was carried out in the two-stage approach for both the
East Asian-specific and transethnic meta-analyses (Supplemen-
tary Figs. 1, 3). Genome-wide association results in the stage-1
identified 13,003 SNPs with a P value < 1.6×10–5 against any
blood pressure phenotype in East Asians. This set of 13,003 SNPs
(sentinel SNPs listed in Supplementary Data 1) was followed up
in 53,008 East Asian individuals (stage 2). Additionally, these
13,003 SNPs were examined in the transethnic stage with
phenotype-specific results for Europeans (max N= 105,253) from

the International Consortium on Blood Pressure (ICBP) GWAS
(N= 69,909)3 and the International Genomics of Blood Pressure
(iGEN-BP) Consortium (N= 35,344)10; there was no overlap in
samples between the two data sets. Sentinel SNPs (smallest P
value against any blood pressure phenotype) that (i) reached P <
5×10–8 in combined meta-analysis of stages 1 and 2 and (ii)
showed evidence of support (P < 0.05) in the stage 2 meta-
analysis alone are reported as novel loci in this study. We iden-
tified 19 previously unreported loci; 15 loci in East Asian-specific
analyses and 4 additional loci in the transethnic meta-analysis
(Table 1 and Supplementary Data 2). By lookup in an indepen-
dent replication sample of Europeans from the UK Biobank (N=
422,771)14 plus East Asians from the China Kadoorie Biobank (N
= 94,201)15, we examined associations at our list of 19 sentinel
SNPs. With the exception of four SNPs, 15 sentinel SNPs showed
significant (P < 0.00263= 0.05/19) blood pressure association
with the concordant direction of allelic effects (Supplementary
Data 2), thus validating the loci.

Regional association plots are shown for the 19 newly identified
loci in Supplementary Fig. 4. Associations of the 19 sentinel SNPs
with other blood pressure phenotypes are demonstrated in
Supplementary Data 3. In the discovery stage, we also replicated
blood pressure associations at previously reported loci, which
included 36 loci at genome-wide significance and further 179 loci
at nominal significance (P < 0.05) (Supplementary Data 4).

Functional annotations for new loci. To identify candidate genes
at the newly identified blood pressure loci, we examined whether
any of the association signals (sentinel blood pressure SNP and
SNPs in East Asian LD r2 > 0.80) were coding or associated with
gene expression and other traits. At three loci, the sentinel SNPs
were nonsynonymous, and 4 of 19 novel loci contained SNPs (in
LD of r2 > 0.80 with the top eVariant) associated with expression
quantitative trait loci (eQTLs) in at least one tissue in the
Genotype-Tissue Expression (GTEx) database (Supplementary
Tables 3–5). At two candidate gene loci, proxy SNPs (rs760077 at
MTX1 and rs3825942 at LOXL1) were nonsynonymous and
associated with eQTLs. Furthermore, seven sentinel SNPs and/or
their proxy SNPs (r2 ≥ 0.95) were previously reported to be sig-
nificantly associated with non-blood pressure traits (Supple-
mentary Data 5), including a sentinel SNP (rs11642015) at the
FTO locus on 16q22, whose proxies (r2= 0.97–0.99) have been
reported to associate with body mass index and type 2 diabetes16.
In our study, rs11642015 was significantly associated with SBP,
MAP, and PP (P= 1.9×10–12–1.3×10–9) with consistent repro-
ducibility in both stages of East Asian analyses (Supplementary
Data 1, 3). In addition, rs11642015 was recently identified to be
significantly associated with SBP in multi-ancestry GWAS meta-
analysis incorporating gene−smoking interaction17.

Interethnic heterogeneity of GWAS results. In the present
study, the availability of genome-wide association data from
>100,000 individuals for both East Asians and Europeans sepa-
rately motivated us to perform additional analyses of systematic,
genome-wide interethnic comparison. We used transethnic
association summary statistics available for both East Asian (N=
158,645 from stage 1 and iGEN-BP) and European (max N=
105,253 from ICBP and iGEN-BP) GWAS results in the sub-
sequent analysis of interethnic heterogeneity. We defined inter-
ethnic heterogeneity as heterogeneity of genetic (or allelic) impact
on SBP between the ethnic groups. Using GWAS data sets, we
compared the genetic impact at transethnic SNPs and detected a
total of eight interethnic heterogeneity loci—two significant (P <
5×10–8) and six suggestive (5×10–8 ≤ P < 1×10–6) loci (Fig. 1a and
Supplementary Data 6). In this study we distinguished the allelic
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impact from allelic effect-sizes as previously defined by Brown
et al.18; allelic impact is the genotype−phenotype correlation
coefficient, which is approximately a product of allelic effect and
minor allele frequency (MAF). Seven of the eight loci with
interethnic heterogeneity were annotated to the previously
reported blood pressure loci; sentinel blood pressure SNPs at half
of them (i.e., four loci near the CACNB2, C10orf107, SH2B3 and
DPEP1 genes3,5) were found to be in LD (r2 ≥ 0.2) with the SNPs
showing some evidence for interethnic heterogeneity. The two
loci with significant interethnic heterogeneity were on 12q24 and
10q21 and both contained multiple association signals (Fig. 1b).
For the region on 12q24 spanning 1.5 Mb, two independent
association signals, each specific to Europeans (near rs3184504
at SH2B3) and East Asians (near rs671 at ALDH2), had been
identified19. We found that both of the signals were responsible
for the discordant direction of allelic effects on 12q24 (Fig. 1c and
Supplementary Fig. 5a, b). Similarly, we observed two indepen-
dent association signals near the C10orf107 transcript on 10q21.2
(Fig. 1c and Supplementary Fig. 5c, d). The derived alleles
of ancestry-specific sentinel SNPs on 10q21 (rs4590817 and
rs145193831 specific to Europeans3 and East Asians respectively)
arose from a haplotype shared between ethnic groups, containing
multiple transethnic SNPs. The discordant direction of effects
for the shared haplotypes could be explained by alternation of
effects attributable to the derived alleles of rs4590817 (decreasing
in Europeans) and rs145193831 (increasing in East Asians)
(Supplementary Fig. 6 and Supplementary Data 7).

Ancestry-specific SNP loci. A total of 750 previously reported
SNPs (listed in Supplementary Data 4) plus 19 newly identified
SNPs could be classified into 485 loci by regarding two SNPs at
most 500 kb apart to belong to the same locus. After exclusion of
39 loci (MAF < 0.01 in both East Asians and Europeans, or no
data available in GWAS data sets for both populations), 446 loci
were retained and categorized into two groups—group 1 and
group 2. Group 1 consisted of 382 loci with MAF ≥ 0.01 in both
populations and group 2 consisted of 64 loci with potential ethnic

specificity, i.e., MAF < 0.01 in either East Asians or Europeans.
Group 2 was further classified into group 2a (46 loci with MAF <
0.01 in one population and MAF ≥ 0.05 in the other) and group
2b (18 loci with MAF < 0.01 in one population and 0.01 ≤MAF <
0.05 in the other) (Supplementary Fig. 7).

With regards to interethnic heterogeneity of association
signals, we assumed two distinct scenarios: whether the under-
lying causal variants are shared between the ethnic groups or not.
However, due to substantial interethnic differences in LD
structure, it is not always feasible to distinguish between the
two. First, as an example of the potential nonshared causal variant
(or ancestry specificity), we examined interethnic comparability
of genetic impact on blood pressure at 48 loci (46 loci in group 2a
plus 2 target loci with potential ancestry specificity—C10orf107
and CACNB2—included in group 1; Supplementary Fig. 7), where
sentinel common (MAF ≥ 0.05) blood pressure SNPs originally
reported in a given ethnic group were monomorphic or MAF <
0.01 in the second ethnic group3–8,19. Then, we investigated
interethnic heterogeneity at non-rare (MAF ≥ 0.01 in both ethnic
groups) blood pressure loci (group 1 in Supplementary Fig. 7)
that might be shared between the ethnic groups as described later.

Considering the observations on 12q24 and 10q21, we explored
common proxy SNPs forming a haplotype shared between ethnic
groups at the locus (denoted as haplo-SNPs), for which the most
significant interethnic heterogeneity of genetic impact was
detected (Supplementary Fig. 8a–c). At a total of 11 loci (or 10
unique loci when the ALDH2 and SH2B3 loci on 12q24 were
combined) (Supplementary Figs. 6, 9 and Supplementary Data 7),
haplo-SNPs showed significant (P < 1.5×10–4 under region-wise
correction) heterogeneity between two ethnic groups. At 8 of 11
loci, we found that distinct common ancestry-specific variants
colocalized within the same LD block and that the direction of
effects for the proxy shared SNPs was discordant between the
ethnic groups, similar to 12q24 and 10q21. On 5q14, for instance,
a genome-wide significant association of rs112862634 with SBP,
DBP, and MAP was detected in East Asians of this study
(Supplementary Data 1), while SBP association of rs10059921
was previously reported in its vicinity (456 kb apart from

Table 1 Genetic loci newly identified to be associated with blood pressure

Sentinel SNP Chr Position EA/NEA EAF Trait N Effect P

Genome-wide significant and replicated
rs2990220 1 155,190,254 A/T 0.83 MAP 183,654a −0.41 (0.06) 2.2×10−12

rs6772151 3 46,896,499 A/C 0.29 DBP 156,503a 0.28 (0.05) 7.8×10−9

rs17622152 3 183,520,112 A/G 0.47 MAP 183,759a −0.25 (0.04) 2.0×10−8

rs12209106 6 1,621,042 T/G 0.68 DBP 160,436a 0.28 (0.05) 6.4×10−9

rs78399431 7 1,141,470 A/G 0.24 MAP 179,411a 0.30 (0.05) 9.6×10−9

rs2125067 10 48,434,420 C/G 0.12 SBP 179,003a 0.60 (0.10) 4.8×10−9

rs2305013 11 120,340,060 A/T 0.85 SBP 180,894a −0.59 (0.09) 5.6×10−10

rs5006548 12 32,692,233 T/G 0.16 HT 71,847a 0.09 (0.02) 2.2×10−8

rs1535464 14 100,793,431 A/G 0.10 SBP 183,690a −0.61 (0.10) 3.5×10−9

rs66978877 19 18,455,657 T/C 0.55 HT 68,850a 0.07 (0.01) 4.5×10−9

rs6021247 20 50,108,980 A/G 0.58 SBP 183,785a 0.37 (0.06) 5.0×10−9

rs3853476 5 141,817,754 A/G 0.58 MAP 244,831b −0.20 (0.03) 6.0×10−9

rs10821808 10 62,390,646 A/G 0.58 SBP 288,917b −0.29 (0.05) 3.4×10−9

rs4418728 10 94,839,724 T/G 0.62 DBP 256,118b −0.20 (0.03) 1.5×10−8

rs1078967 15 74,222,987 T/C 0.15 SBP 265,280b 0.42 (0.07) 5.6×10−9

Genome-wide significant but not replicated
rs2076460 1 27,972,058 C/G 0.30 SBP 174,846a −0.42 (0.07) 3.6×10−9

rs11642015 16 53,802,494 T/C 0.21 SBP 174,917a 0.58 (0.08) 1.9×10−12

rs9303509 17 64,530,887 A/C 0.40 SBP 183,769a 0.37 (0.06) 3.9×10−9

rs66658258 20 61,462,502 C/G 0.58 DBP 164,638a 0.28 (0.05) 1.0×10−8

Position is Build 37; EA: effect allele; NEA: non-effect allele; EAF: effect allele frequency; N: sample size (aEast Asians only; bwith European follow-up samples); Effect: as unit change in blood pressure
(SE) per effect allele copy (SBP, DBP, PP, MAP) or as log odds ratio per effect allele (HT)
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Fig. 1 Interethnic heterogeneity of genetic impact of SBP. a Manhattan plot showing results for genome-wide scan of genetic impact heterogeneity. The
genetic impact at transethnic SNPs were compared between two populations of different ancestries using GWAS data sets. b Regional plots on 12q24 and
10q21, where there were multiple SNPs with significant (P < 5×10–8) evidence for interethnic heterogeneity (see Supplementary Data 6). Bordered circles
represent SNPs with significant interethnic heterogeneity. Transethnic SNPs were plotted in two panels at each locus; genetic impacts of each SNP are
denoted separately for Europeans (EUR, top panel) and East Asians (EAS, bottom panel) on 12q24 (left) and 10q21 (right) such that genetic impacts in
Europeans are positive. In the individual regional plots, the correlation of ancestry-specific sentinel SNP to other SNPs at the locus is shown on a scale from
minimal (blue) to maximal (red); the sentinel SNPs thus benchmarked are rs3184504 (EUR specific) and rs671 (EAS specific) on 12q24 and rs4590817
(EUR specific) and rs145193831 (EAS specific) on 10q21. The position of ancestry-specific sentinel SNP is indicated by an arrow head. c Phylogenetic
relationships of ancestry-specific sentinel SNPs with transethnic haplotypes detectable in Europeans (top) and East Asians (bottom) on 12q24 (left) and
10q21 (right). Each node corresponds to a haplotype and the SNPs appear on the edges. The edge width reflects the haplotype frequency in the
corresponding ethnic groups. At each locus, blood pressure increasing and decreasing haplotypes and derived, ancestry-specific alleles are colored in red
and blue, respectively
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rs112862634) in Europeans8. It turned out that rs112862634 was
in strong LD (East Asian LD r2= 0.95) with a haplo-SNP
(rs6882046) at this locus and distinct common ancestry-specific
variants with mutually inverted genetic effects—European-
specific rs10059921 (MAF= 0.09 in EUR) and East Asian-
specific rs78245349 (MAF= 0.46 in EAS)—did colocalize in this
region (Supplementary Fig. 8a and Supplementary Data 7). At the
remaining 3 (of 11) loci, alternate rare ancestry-specific SNPs
were likely to exist in the second ethnic group, although they were
not detectable in our search of public databases. We designated
these as a common ancestry-specific variant association model as
discussed below.

We hypothesized that there were three major combinations of
East Asian-/European-specific SNPs and their resultant direction
of effects for haplo-SNPs forming a shared haplotype at the locus,
as schematically shown in Supplementary Fig. 6b. In accordance
with this notion, we detected three types in this study
(Supplementary Fig. 9), among which the first and major type
(32 of 48 loci in group 2a) consisted of the cases with mutually
inverted genetic effects as explained above. The second type
consisted of those with distinct ancestry-specific variants showing
concordant directions of effect such as the FGR locus (Supple-
mentary Figs. 8b, 9). The third type consisted of those with
distinct ancestry-specific variants showing discordant genetic
effects, one of which appeared to be almost neutral such as the
GNAS/EDN3 locus (Supplementary Fig. 8c). However, without
using larger sample sizes, it appeared to be difficult to show
statistically significant interethnic heterogeneity in particular, for
those in the second or third type. At one locus (near HSD17B1 on
17q21), a haplo-SNP could not be selected (Supplementary
Fig. 8d and Supplementary Data 7), presumably because of the
ancestry-specific LD structure and the modest strength of
association in the index ethnic group (Europeans at the locus)
of this study.

For loci with potential ancestry specificity (i.e., MAF < 0.01 in
one population and 0.01 ≤MAF < 0.05 in the other; 18 loci
classified as group 2b in Supplementary Fig. 7), we did not
investigate interethnic heterogeneity of association signals
because of difficulties in the relevant test for rare (MAF < 0.01)
and low-frequency (0.01 ≤MAF < 0.05) genetic variants by using
imputed GWAS results20.

Heterogeneity at variants polymorphic in both ancestries. In
addition to the ancestry-specific loci, we investigated interethnic
heterogeneity at non-rare (MAF ≥ 0.01 in both ethnic groups)
blood pressure loci that might be shared between the ethnic
groups; 382 tested loci were either previously reported or newly
identified in the present study (denoted as group 1 in Supple-
mentary Fig. 7a). Since ICBP and iGEN-BP (European) data were
imputed with HapMap SNPs, approximately one-third of group-1
SNPs were unavailable in our European GWAS data sets. Thus,
242 (out of 382) loci in group 1 were subjected to interethnic
comparison of genetic impact on a lead blood pressure trait
(Supplementary Data 8). Although majority of them appeared to
show concordant effects (correlation coefficient r= 0.754), nine
sentinel SNPs (3.7%) showed significant (Phetero < 2.1×10–4)
interethnic heterogeneity (Supplementary Fig. 10). Genetic
impacts were more prominent in Europeans than in East Asians
at eight of nine loci apart from rs1451538 in SLC28A1, at which
genetic impacts were prominent in East Asians but not in Eur-
opeans (Supplementary Data 8). There were no proxy SNPs near
each of the eight loci in the same LD block (Supplementary
Fig. 11), which could have shown stronger association signals in
East Asians than the sentinel SNPs originally reported in Eur-
opeans due to potential interethnic differences in LD structure, if

any. Of note is the finding on 10q23 near PLCE1, there was
another SBP association signal at rs7080472 in East Asians (P=
3.9×10–8 in the combined samples; Supplementary Data 1)
despite the absence of prominent association at rs932764, whose
association was previously reported4 and prominent in Europeans
(Supplementary Fig. 11). rs7080472 was located in the LD block
next to the one for rs932764 (East Asian LD r2= 0.003 between
rs7080472 and rs932764). On 10q21 near C10orf107, a DBP
association signal was previously reported at rs153044021, which
we found to be in LD (European LD r2= 0.48) with an ancestry-
specific SNP at the locus, rs4590817, aforementioned (Supple-
mentary Data 7). Also, on 10p12 near CACNB2, a DBP associa-
tion signal was previously reported at rs18133533, which we
found to be in LD (European LD r2= 0.56) with an ancestry-
specific SNP at the locus, rs12258967. These indicated that
interethnic heterogeneities identified for non-rare transethnic
variants on 10q21 and 10p12 were the cases for which common
ancestry-specific variants were actually responsible.

By calibrating the proportion in the group-1 subset, in which
blood pressure GWAS results for interethnic comparison were
available for 242 (of 382) loci, we estimated the proportion of loci
showing significant interethnic heterogeneity within the total
blood pressure loci tested (N= 446). The estimated proportion
was 2.5% each in group 1 and group 2a, where the C10orf107 and
CACNB2 loci were counted in group 2a (Supplementary Fig. 7b).

Genetic correlation and power of GWAS. As an approach to
quantitatively evaluating the interethnic differences in blood
pressure GWAS results, we estimated the genetic correlation
using summary statistics of the entire spectrum of GWAS asso-
ciations18. We first estimated the SNP-based heritability (h2) of
SBP and DBP (Fig. 2). For SBP, h2 estimates in our study were
0.107 (SE 0.007) for East Asians and 0.086 (SE 0.009) for Eur-
opeans and lower than a previously reported UK Biobank esti-
mate of 0.156 (SE 0.004)22 calculated by the moment-matching
method in Europeans. This discrepancy was likely due to the
methodological differences in SNP-based heritability analyses
between the studies but does not appear to affect genetic-
correlation estimates themselves23. Also, the h2 of DBP was
almost comparable between the ethnic groups in this study. Then,
we found that the genetic correlations in SBP and DBP were 0.898
(SE 0.040) and 0.851 (SE 0.046) respectively, and significantly
different from 1 (P= 0.005 for SBP and P= 0.0007 for DBP).
This indicated that the allele-substitution effect-sizes differed
significantly between the two ethnic groups despite the reportedly
substantial genetic overlap in blood pressure traits (Supplemen-
tary Data 4).

To estimate the degree of interethnic overlap and nonoverlap
of blood pressure loci, we further calculated the power of GWAS
of different sample sizes (i.e., 100K, 200K, and 500K) based on
heritability parameters (see details in Supplementary Methods)
via modeling, computing and random sampling (Fig. 3 and
Supplementary Figs. 12, 13). Similar to Europeans, the recent
progresses of GWAS in East Asians prompted us to investigate
different sample sizes in preparation for much-larger transethnic
meta-analysis. When GWASs of the same size were carried out
for SBP and DBP, it was expected that an almost equivalent
number of genome-wide significant loci could be identified in
both East Asians and Europeans but the number of overlap was
less than half.

We extended the interethnic analyses to other complex traits
such as plasma lipid level, anthropometric measurement, and
type 2 diabetes using published GWAS summary statistics of
relatively large number of samples (Supplementary Table 6).
Although genetic correlation appeared to be varied among the
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complex traits examined (Fig. 2), we found that the proportion of
nonoverlap [(nonoverlap) / (overlap+ nonoverlap)] was rela-
tively consistent across the traits for the same sample size;
0.71–0.82 for 100K, 0.65–0.78 for 200K and 0.46–0.70 for 500K
(Fig. 3 and Supplementary Fig. 12). As the sample sizes in both
ethnic groups become larger, we can expect a higher proportion
of interethnic overlap; nevertheless, more than or nearly half of
the genome-wide significant loci may not overlap between the
ethnic groups for GWAS of the same sample size.

Selective sweeps at ancestry-specific loci. Subsequently, we cre-
ated a list of ancestry-specific loci for SBP, DBP and other
complex traits in which an SNP-trait association was genome-
wide significant in one ethnic group (e.g., East Asians) but no
significant association signal was detectable in another (e.g.,
Europeans) due to low allele frequency (MAF < 0.05) (Supple-
mentary Data 9). For the loci with the same SNPs being mono-
morphic in the second ethnic group, our selection criteria for
ancestry-specific loci could be regarded stringent in that the
absence of locus-wide significant association signals in the vicinity
(≤500 kb) of the tested SNPs was required.

A larger number of significant loci had been reported in
Europeans compared to East Asians, reflecting the differences in
sample size of GWAS conducted to date (mean for five traits was
81,991 in East Asians vs. 202,390 in Europeans) (Fig. 4 and
Supplementary Fig. 14). Thus, the total number of ancestry-
specific loci across the examined traits was smaller in East Asians
(10 loci) than in Europeans (63 loci). While it was most
prominent for height, the sentinel SNPs at the ancestry-specific
loci tended to have both lower MAF (0.20 ± 0.04 in East Asians,
0.16 ± 0.01 in Europeans) and genetic impact (0.020 ± 0.002 in
East Asians, 0.014 ± 0.0004 in Europeans) across the traits.

Among a list of ancestry-specific loci for multiple traits, we
identified evidence of a positive selection at five unique loci using
a highly sensitive algorithm, haploPS24 (Fig. 5 and Supplementary
Data 9). For blood pressure, a sentinel SNP rs56174355 on 17q23
previously reported to be associated with DBP only in Europeans8

was localized to a region with evidence of positive selection in
East Asians (Fig. 5d). In this region, we observed the long
haplotypes at high frequencies (i.e., 70–80%) to be selected
exclusively in East Asians, on which the present-day major allele
(G of rs56174355) could reside, whereas the minor allele (T of
rs56174355) was associated with lower DBP in Europeans. Thus,

a selective sweep in the region is considered to have retained the
major allele that was likely beneficial in the populations of East
Asian ancestry; conversely, this has reduced MAF in East Asians
(T allele: 0.03 in East Asians vs. 0.10 in Europeans). We found
similar examples for the traits other than blood pressure in four
regions: rs12748152 for LDL-C and triglycerides, rs17031005 for
T2D, rs11862222 for height and rs4253772 for total cholesterol
(Fig. 5a−c, e). There was a significant (PBinomial= 4.2 × 10–5)
increase in the incidence of recent selection signals at the
ancestry-specific loci, given that a total of 405 distinct genomic
regions were identified to show evidence of positive selection
across 14 populations worldwide24.

Discussion
Our GWAS in 183,785 East Asian individuals identified 15 new
genetic loci influencing blood pressure phenotypes and 4 addi-
tional loci when combined with European individuals (max N=
289,038) (Table 1). Of the 19 newly identified loci, 15 loci were
replicated in an independent sample of Europeans (N= 422,771)
plus East Asians (N= 94,201) (Supplementary Data 2). A notable
feature of this study is the use of a relatively large discovery-stage
sample size in populations of non-European descent, thereby
enabling us to identify a number of genetic loci that have not been
reported by GWAS meta-analysis in Europeans (Fig. 3). By
combining the East Asian data with European data, we were also
able to seek interethnic genetic heterogeneity of GWAS results for
blood pressure between the two ancestries (Fig. 1) as well as other
complex traits. In particular, the present study provides examples
for interethnic genetic heterogeneity, although the incidence may
not be high, discovering two remarkable phenomena: (1) the
colocalization of distinct ancestry-specific variants that are not
rare and can exert mutually inverted genetic effects between the
ethnic groups and (2) the potential involvement of natural
selection in the occurrence of ancestry-specific association signals.

Among genetic loci identified in East Asians, of note is the
finding that at two loci on 1p35 and 3p21, the latter of which
resides near the association signal previously reported in Chi-
nese25, sentinel SNPs (rs2076460 and rs3774447) appear to be
specific to East Asians; i.e., in Europeans the corresponding SNPs
were monomorphic and no significant association signals were
detectable in the vicinity (Supplementary Data 7). These support
the possible presence of multiple East Asian-specific associations
as well as European-specific ones.
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It has been suggested that GWAS signals are produced by
causal variants that are common and shared between ancestry
groups26, with evidence for alternative rare variant association
models (e.g., synthetic association27) that are assumed to be
restricted to a limited number of loci. Apart from these models,
we have discovered a new model in which genetic effects for

transethnic SNPs that form a shared haplotype at a locus are
driven by causal variants that are ancestry-specific but are not
rare, which can be called a common ancestry-specific variant
association model. We previously reported on 12q24 the East
Asian-specific association signal at ALDH2 with blood pressure,
which was located near the association signal at SH2B3 identified
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in Europeans19. We also reported that these two association
signals were phylogenetically independent, although a distance
between the sentinel SNPs (rs671 and rs3184504) was relatively
close (357 kb apart). Moreover, in the present study we have
detected a number of transethnic SNPs in the 12q24 region to
show highly significant heterogeneity of genetic impact on SBP
between the ethnic groups (e.g., βEAS=−0.73 and βEUR= 0.37,
Phet= 9.74×10–21 at rs4766566), where inverted genetic effects
are attributable to each of the ancestry-specific sentinel SNPs; a
similar situation was also observed on 10q21 to reproduce this
phenomenon (Fig. 1 and Supplementary Data 6). Using ancestry-
specific SNPs that are reported to reach genome-wide significance
in either of the ethnic groups, we have found further evidence
supporting the common ancestry-specific variant association
model at 11 of 48 loci (23%) examined (Supplementary Data 7).
This corresponds to 2.5% of total non-rare genome-wide sig-
nificant blood pressure loci reported to date in populations of
European and/or East Asian descent3–8,19 (Supplementary Fig. 7).
Although it is beyond the scope of this study, part of the low-
frequency variants at group-2b loci (which constitute 4.0% of the
tested blood pressure loci) may also be ancestry-specific20. These
findings are important and should be kept in mind in the two
well-known applications of transethnic GWAS, i.e., meta-analyses
to increase the power for detecting new susceptibility loci and fine
mapping.

With the increase in sample size used for GWAS meta-analysis,
it is expected that a larger number of genetic loci will be detected,
and the distribution of such loci in the genome will become
denser. Association signals annotated to the same locus are
empirically defined such that a set of SNPs are bounded by
pairwise correlation with the index SNP of r2 ≥ 0.1−0.3 within
±250–500 kb of the index SNP26,28. This is usually discussed in
the context of locus heterogeneity rather than allelic hetero-
geneity. Apart from extreme cases in which an index SNP is
monomorphic in the second ethnic group as above-mentioned,
the cases in which a common variant in question is less common
or even rare in the second ethnic group necessitate a greater
sample size to achieve comparable statistical power for detecting a
significant association. We should be careful in setting appro-
priate significance thresholds to maintain a balance between
generating spurious associations and missing true modest asso-
ciations in the second ethnic group. Hence, we chose ancestry-
specific loci based on the P value thresholds adjusted for the
number of SNPs located ≤500 kb from the sentinel SNP. This set
of loci may not exclude some cases with insufficient statistical
power but can include the cases in which genetic impact at the
locus is largely regarded as specific to the original ethnic group.
Evidence of positive selection was observed at five unique loci
among the list of ancestry-specific loci (Fig. 5 and Supplementary
Data 9).

In addition to ancestry-specific loci, although the proportion
appears to be relatively modest (approximately 2.5%), we have
found significant interethnic heterogeneity of genetic impact at a
number of blood pressure loci that are non-rare in both

ancestries, with most of them originally reported in Europeans to
date. It is assumed that the potential presence of modifier genes
and/or gene−environment interactions can contribute to such
interethnic heterogeneity but the overall influences and under-
lying mechanisms remain to be investigated. When combined
with ancestry-specific variant associations (at group-2a or group-
2b loci in Supplementary Fig. 7), >5% of blood pressure loci are
likely to show significant interethnic heterogeneity between East
Asians and Europeans.

According to our SNP-based heritability analysis, the genome-
wide correlation of causal-variant effect-sizes at SNPs common in
both ancestry groups is 0.898 and 0.851 for SBP and DBP,
respectively (Fig. 2). Part of the reduced interethnic correlation is
attributable to transethnic variants that are common across
populations but show substantial interethnic heterogeneity,
although the proportion of such variants may not be high (e.g., 9
loci with interethnic heterogeneity detected in group-1; Supple-
mentary Fig. 7). Even though they are not included in the SNP-
based heritability analysis, ancestry-specific variants (at group-2a
loci in Supplementary Fig. 7) can influence the per-allele effect-
sizes for a number of transethnic SNPs at the corresponding loci
via LD, e.g., at the C10orf107 and CACNB2 loci.

In summary, we identify a total of 19 genetic loci that have not
been reported previously by GWAS meta-analysis, using rela-
tively large discovery-stage sample size in East Asian populations.
By comparing GWAS data for two ethnic groups, we have newly
defined, so to speak, a common ancestry-specific variant asso-
ciation model, which should be brought to attention in the
applications of transethnic GWAS.

Methods
Populations and genotyping. Description of the study design and phenotype
measurement for each East Asian study (or cohort) participating in GWAS meta-
analysis is provided in the Supplementary Methods. Descriptive statistics of the
individuals, genotyping arrays, quality control filters, and genotype imputation
applied to the individual studies are provided in Supplementary Tables 1, 2; 1000
Genomes Phase 3 reference panel was used for imputation in all studies except BBJ
(1000 Genomes Phase 1) and TMM CommCohort Study (ToMMo 2KJPN panel
plus 1000 Genomes Phase 3). SNP alleles were oriented to the forward strand of the
GRCh37/hg19 reference sequence of the human genome. Collection of data and
samples by the cohorts participating in the study was approved by respective
research ethics committees, and written consent for participation was provided by
all research participants.

Phenotype modeling and SNP association analysis. For individuals taking
antihypertensive therapies, blood pressure was imputed by adding 15 mmHg and
10 mmHg to SBP and DBP values, respectively. MAP and PP were calculated as
MAP= (2 DBP+ SBP)/3 and PP= SBP –DBP. In each study, the association of
blood pressure (SBP, DBP, MAP or PP) with SNP allele dose was tested using
linear regression adjusted for age, sex, and any study-specific covariates. Hyper-
tensive cases were defined as follows: (i) SBP ≥ 160 mmHg and/or DBP ≥ 100
mmHg and/or on antihypertensive treatment and (ii) age of onset ≤65 years.
Normotensive controls were defined as follows: (i) SBP < 130 mmHg and DBP < 85
mmHg and not on antihypertensive treatment and (ii) age ≥50 years. In each study,
the association of a dichotomous trait of hypertension status with SNP allele dose
was tested using logistic regression adjusted for sex and any study-specific cov-
ariates. The effect-sizes and standard errors estimated in linear and logistic
regressions were used in subsequent meta-analysis.

Fig. 3 Distribution of SNP effect-size in GWAS and power of GWAS. They are compared between East Asians and Europeans for DBP, low-density
lipoprotein cholesterol (LDL-C), type 2 diabetes (T2D), body mass index (BMI) and height. a Distribution of SNP effect-size in actual GWAS conducted in
East Asians (x-axis) and Europeans (y-axis). The effect-size of an SNP was standardized such that each of the trait and allele has a unit variance. The
standardized effect-size equals the genetic impact. A positive effect-size indicates a higher trait value for the ALT allele compared to the REF allele of the
1000 Genomes (1000G) phase-3 data set. The horizontal and vertical bars to the bottom and right of the plots indicate the range of effect-sizes, in which
genome-wide significant SNPs are localized. b The expected numbers of genome-wide significant loci detectable in a single GWAS and their interethnic
overlap. The number of SNPs was scaled to 1000G SNPs even for GWAS in which HapMap-derived SNPs were assayed. SNPs located ≤500 kb were
regarded to be at the same susceptibility locus. The numbers of loci were inferred from the heritability model shown in Supplementary Fig. 13, where true
observable effect-sizes were computed based on 100 trials of random sampling under the assumed heritability parameters (see Methods)
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Fig. 4 Interethnic compatibility of GWAS results for DBP, LDL-C, T2D, BMI, and height. Each point in the plots represents a sentinel SNP with genome-wide
significance in the GWAS summary statistics (Supplementary Table 6), plotted with its standardized effect-size (in y-axis) against minor allele frequency
(in x-axis) for East Asians (EAS in the left column) and Europeans (EUR in the right column). SNPs specific to either of the ethnic groups are colored in red;
ancestry-specific association was defined such that the sentinel SNPs at the corresponding loci reached genome-wide significance (P < 5×10–8) in one
ethnic group but were non-polymorphic or rare (MAF < 0.05) in another ethnic group
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Fig. 5 Examples of positive selection in East Asians. Selected haplotype forms are shown at five loci positively selected in East Asians. The five loci are near
the following SNPs (or genes): a rs12748152 (ZDHHC18), b rs17031005 (THADA), c rs3868143 (KCTD19), d rs1548740 (TANC2) and e rs4253772
(PPARA). Selected haplotypes were identified by haploPS24 at five sentinel SNPs out of 63 ancestry-specific loci that were identified for complex traits. In
the five chromosomal regions each containing the SNP (or locus) of interest, haploPS analyses were performed across a range of core haplotype
frequencies from 5 to 95%, with a frequency step size of 5%, in East Asians (including JPT, MAS, CHB, CHS and CHD) as well as Europeans (CEU) and
Nigerians in West Africa (YRI) of the HapMap Phase III populations. This yielded the longest haplotype exclusively in East Asians and provided an estimate
for the selected allele in its respective population, as shown in the top of each panel. For each locus, haploPS additionally located on the haplotype form on
which the advantageous allele is likely to reside; each nucleotide was colored differently, adenine in green, cytosine in blue, guanine in yellow and thymine
in red. In each panel, the red vertical bar indicates the position of target SNP, and gene locations (green horizontal bars) are superimposed at the bottom.
At two loci, proxy SNPs in complete LD (r2= 1.00 in EAS) with the sentinel SNPs were used for the analysis; rs3868143 and rs1548740 were used instead
of rs11862222 and rs56174355, respectively, because of the genotype data unavailability
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Quality control. Before meta-analysis, quality control was applied to each study.
SNPs were excluded if they had study-specific call rate < 0.95, imputation quality
R2 < 0.5 or MAF < 0.01. If a SNP from a study did not fit the quality standards, we
regarded it as missing from that study for the purpose of meta-analysis. Results for
an SNP that failed to pass the quality control filters in a given study were pooled
among the other contributing studies. To detect studies with inflated GWAS sig-
nificance, which can be caused by confounding biases such as population stratifi-
cation, we computed the genomic control lambda (λGC)29 and the intercept of LD
Score regression13. A study showing a score of >1.1 for both measures was regarded
as inflated. Since the LD Score regression intercept was shown to be a more
powerful and accurate correction factor estimate than genomic control for GWAS
with large sample size13, we used the LD Score regression intercept as a correction
factor for GWAS with a sample size of >3000 (BBJ in this study). Otherwise, λGC
was used as a correction factor.

GWAS and replication meta-analyses. Genome-wide association and replication
studies were carried out in the multistage approach. The discovery stage (stage 1) of
GWAS was carried out in a total of 130,777 East Asian individuals from five studies
(Supplementary Table 1). The association results of each SNP across the studies
were combined within METAL software30 using the fixed-effects inverse-variance-
weighted method. Heterogeneity of effect-sizes was tested using Cochran’s Q sta-
tistic. For the stage-1 of GWAS, there were 6.2 million SNPs with heterogeneity P
> 10–6 and the sample size being at least half of the total. The Q−Q plots and
Manhattan plots are shown in Supplementary Figs. 2, 3.

In the follow-up stage (stage 2) of GWAS, we considered for follow-up any
SNPs with P < 1.6×10–5 for any of the five blood pressure traits. We used two
follow-up data sets for the East Asian-specific analyses and transethnic meta-
analysis (Supplementary Fig. 1). First, we recruited additional East Asian cohorts
with 1000 Genomes data and the Tohoku Medical Megabank cohort, all of which
had not contributed to the GWAS stage-1 meta-analysis (max N= 53,008). Second,
we sought further replication from two European GWAS data sets: the
International Consortium of Blood Pressure (ICBP) (max N= 69,909)3 and the
International Genomics of Blood Pressure (iGEN-BP) Consortium (N= 35,344)10.
This gave a total of N= 158,261 independent follow-up samples for the GWAS
analysis. Combined meta-analyses of stages 1+2 data were carried out for East
Asians alone (N= 183,785) as well as across the two ancestral population groups
(N= 289,038). We used P < 5×10–8 to denote genome-wide significance in the
combined (stages 1+2) meta-analyses. Additionally, the sentinel SNPs with P <
5×10–8 were subjected to lookups in European plus East Asian samples, including
large-scale data sets for blood pressure (SBP and DBP) GWAS of the UK Biobank
(N= 422,771)14, which are publicly available via https://doi.org/10.1038/s41588-
018-0144-6, and the China Kadoorie Biobank (N= 94,201)15.

In the present study, an association signal was declared to be validated if it
satisfied all four of the following criteria: (i) the sentinel SNP was genome-wide
significant (P < 5×10–8) in the combined meta-analysis (stages 1+2) for any of
the five blood pressure traits; (ii) the sentinel SNP showed evidence of support
(P < 0.05) in the GWAS stage-2 alone for association with the most significantly
associated blood pressure trait from the combined meta-analysis; (iii) the sentinel
SNP showed further evidence of support (P < 0.00263 = 0.05/19) in association
results for either SBP or DBP of lookup variants (n= 19 in this study); and (iv) the
sentinel SNP had concordant directions of effect across the discovery and
replication stages.

Nomination of novel loci. We reported novel loci in a unified way across the blood
pressure traits. For each trait, we listed SNPs reaching genome-wide significance
and filtered them by regarding two SNPs at most 500 kb apart to belong to the
same locus. A blood pressure locus was defined as a chromosomal region, where a
group of significant SNPs are localized ≤500 kb to the adjacent ones. For each
locus, the SNP with the lowest P value was selected as a trait-specific sentinel SNP.
Across the traits, all sentinel SNPs were annotated to distinct loci according to the
SNP-to-SNP distance of >500 kb. Moreover, the SNP with the lowest P value across
the traits was selected as a cross-trait sentinel SNP at that locus. We nominated
novel loci when such cross-trait sentinel SNPs were >500 kb and not in LD (r2 < 0.1
in East Asians of 1000 Genomes samples) from previously reported blood pressure
SNPs at the time of analysis.

Functional annotations and candidate gene identification. To prioritize asso-
ciated SNPs at the novel loci, we took a series of bioinformatics approaches in order
to collate functional annotation (Supplementary Tables 3–5 and Supplementary
Data 5). We first evaluated the sentinel SNPs for mediation of eQTLs in 14 tissues
(such as the adrenal gland, artery, heart, and hypothalamus) that were considered
relevant to blood pressure regulation using the GTEx v7 database31. We evaluated
top genetic variants (eVariants) in LD (r2 > 0.8) with the sentinel SNPs for evidence
of mediation of eQTLs in 14 tissues using the GTEx database, to identify loci that
are highly expressed and to highlight specific tissue types that show eQTLs for a
large proportion of the loci. Other annotations were applied to all SNPs in LD (r2 >
0.8 in East Asians) with the sentinel SNPs. We used the SNPnexus32 to provide an
aggregate set of functional annotations for the SNPs, including gene location,
conservation, amino acid substitution impact based on prediction tools, SIFT and
PolyPhen. Previously reported association signals with other traits were looked up
in the GWAS Catalogue (https://www.ebi.ac.uk/gwas/). We thus identified a list of

candidate genes at the 19 novel loci, to which ≥1 line(s) of evidence (eQTL,
nonsynonymous SNP or SNP-gene colocalization) could indicate a biological link
of the blood pressure SNPs.

Interethnic heterogeneity of blood pressure GWAS results. To examine whe-
ther genetic variants have the same phenotypic effects in different populations, we
used the method for estimating the transethnic genetic correlation18. Briefly, in the
case where two GWASs conducted on the same phenotype (i.e., blood pressure in
this study) in different populations, we can consider both the correlation of allele
effect-sizes and the correlation of allelic impact. The latter is defined as (per-allele
effect-sizes, β) × sqrt(allele variances, σ2), where σ2= 2 ×MAF × (1−MAF). The
genetic impact at non-rare (MAF ≥ 0.01) SNPs were compared between two
populations of different ancestries using GWAS data sets available in this study:
East Asian samples (N= 158,645) and European samples (N= 105,253). Hetero-
geneity of genetic impact was tested using Cochran’s Q statistic. We used genome-
wide significance P < 5×10–8 to denote significant SNPs in evaluating the inter-
ethnic heterogeneity of genetic impact on SBP.

Transethnic haplotype SNPs versus ancestry-specific SNPs. Starting from
ancestry-specific common (MAF ≥;0.05) SNPs that were reported to reach genome-
wide significance in either of the ethnic groups, we explored transethnic SNPs
forming a haplotype shared between ethnic groups (denoted as haplo-SNPs) and
alternate ancestry-specific SNPs in the following three steps: (i) select a sentinel
SNP that was associated with blood pressure in the index ethnic group and
monomorphic or MAF < 0.01 in the second ethnic group (corresponding to a
group-2a SNP described below), (ii) select a haplo-SNP showing the smallest P
value for interethnic heterogeneity of genetic impact on a lead blood pressure trait
within ±500 kb (an interval of 1 Mb) of and r2 ≥ 0.1 to the sentinel SNP, and (iii)
select an alternate ancestry-specific SNP showing the largest genetic impact on
blood pressure (i.e., the smallest P value for SNP−blood pressure association) in
the second ethnic group within ±500 kb of and r2 ≥ 0.1 to the haplo-SNP. A dis-
tance of ±500 kb and r2 ≥ 0.1 were set by assuming the limited recombination and
LD at the locus. Interethnic differences at the haplo-SNP were considered to be
significant at P < 1.5×10–4≃ 5×10–8 × [3 Gb/1Mb] (Supplementary Data 7).

Ancestry-specific association with complex traits. As an approach to investi-
gating interethnic comparability of GWAS results for complex traits, we created a
list of ancestry-specific loci by using the published GWAS summary statistics
(Supplementary Table 6). It was defined that at the loci, a SNP−trait association
was genome-wide significant in one ethnic group (e.g., East Asians) but no asso-
ciation signal was detectable in another (e.g., Europeans), in which the SNP was
rare (MAF < 0.05) and did not show significant association (P > 0.05/the number of
SNPs located ≤500 kb from the sentinel SNP), considering the possible interethnic
differences in genetic architecture or LD structure.

Interethnic heterogeneity at non-rare variant loci. We also investigated inter-
ethnic heterogeneity of genetic impact on a lead blood pressure trait at non-rare
(MAF ≥ 0.01 in both ethnic groups) blood pressure loci previously reported and
newly identified (Supplementary Data 8). A total of 750 previously reported SNPs
(listed in Supplementary Data 4) and 19 newly identified SNPs could be classified
into 485 loci by regarding two SNPs at most 500 kb apart to belong to the same
locus. After exclusion of 39 loci (MAF < 0.01 in both East Asians and Europeans or
no data available in GWAS data sets for both populations), 446 loci were retained
and categorized into two groups—group 1 and group 2. Group 1 consisted of 382
loci with MAF ≥ 0.01 in both populations and group 2 consisted of 64 loci with
potential ethnic specificity, i.e., MAF < 0.01 in either East Asians or Europeans.
Group 2 was further classified into group 2a (46 loci with MAF < 0.01 in one
population and MAF ≥ 0.05 in the other) and group 2b (18 loci with MAF < 0.01 in
one population and 0.01 ≤MAF < 0.05 in the other). Since ICBP and iGEN-BP
(European) data were imputed with HapMap SNPs, approximately one-third of
group-1 SNPs were unavailable in European GWAS data sets. Thus, 242 (out of
382) loci in group 1 were subjected to interethnic comparison of genetic impact on
a lead blood pressure trait (Supplementary Fig. 7a and Supplementary Data 8). In
case that there existed >1 non-rare SNPs at a locus, the SNP showing smallest P
value was chosen for the analysis. Also, in case that there coexisted two types—
group 1 and group 2a—of SNPs at a locus, except for the C10orf107 and CACNB2
loci, a group-2a SNP was chosen when the remaining group-1 SNP(s) did not show
significant association with blood pressure. At C10orf107 and CACNB2, rs4590817
and rs12258967 (group 2a) were examined in addition to rs1530440 and rs1813353
(group 1) respectively, since the former variants were considered to be responsible
for the latter association signals. Interethnic heterogeneity of genetic impact was
tested using Cochran’s Q statistic, where we used Phetero < 0.05/242= 2.1×10–4 to
denote significant SNPs.

SNP-based heritability analysis. We modified the method for estimating the
transethnic genetic correlation that was implemented in the Popcorn program18

(https://github.com/brielin/popcorn). Genetic correlation measures the con-
cordance of allele-substitution effects of causal SNPs between two populations.
Popcorn is shown to use the entire spectrum of GWAS associations without raw
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genotype data, while accounting for LD with the use of external reference panels
(e.g., 1000 Genomes phase-3 samples) to avoid filtering correlated SNPs. Popcorn
creates unbiased approximations of the genetic correlation and the population-
specific heritability. We employed our method modified from Popcorn to estimate
SNP-based heritability in two populations of different ancestries and to quantify
transethnic genetic correlation using only summary statistics. It used to be assumed
that per-SNP heritability should be equally distributed for all SNPs in a chromo-
somal region, but it has recently become apparent that per-SNP heritability can
depend on allele frequency33, and LD-related34 or other functional annotations35.
Hence we modified Popcorn by incorporating the dependence of per-SNP herit-
ability on allele frequency and LD-related functional annotations (see details in
Supplementary Methods).

We estimated SNP-based heritability of complex disease and phenotype traits
including blood pressure (SBP and DBP), plasma lipid level (LDL-cholesterol,
HDL-cholesterol, total cholesterol and triglycerides)36,37, type 2 diabetes38,39,
and anthropometric measurement (BMI40,41 and height42,43), for which
summary statistics of relatively large (N > 25,000 individuals per ethnic group)
GWAS meta-analysis are available for both East Asians and Europeans at the
time of analysis.

Power calculation of GWAS based on heritability parameters. We estimated
the power of a GWAS of different sample sizes (i.e., 100K, 200K, and 500K) based
on heritability parameters (see details in Supplementary Methods). Briefly, we first
computed the distribution of standardized effect-sizes of SNPs, which are the
correlation between the SNP genotype and the phenotype and observable as the
Z-statistics divided by the square root of sample size in GWAS. We modeled the
effect-size distribution based on the observed heritability parameters. By iterative
computing and random sampling, we could obtain one possible instance of true
observable effect-size for the significant SNPs under the assumed heritability
parameters. For this true effect-size, we computed the expected number of genome-
wide significant SNPs (or loci) showing equal to or larger than the given value
in a GWAS of a given sample size (Supplementary Fig. 13). For a pair of
GWASs, we then calculated the number of overlapping genome-wide significant
loci (Fig. 3 and Supplementary Fig. 12).

Testing selection signals at ancestry-specific loci. We tested the hypothesis that
natural selection could play a role in ancestry-specific association signals of com-
plex traits, by using the findings in the previous HaploPS analysis24. HaploPS is a
highly sensitive algorithm to locate genomic signatures of positive selection and to
allow for the detection of the founder haplotype form that carries the selected allele.
HaploPS had successfully identified 405 distinct genomic regions exhibiting evi-
dence of positive selection across 14 populations worldwide. We compared this list
of 405 regions with 63 ancestry-specific loci (or the respective sentinel SNPs)
identified for complex traits in search of their colocalization.

Code availability. The source code for SNP-based heritability analysis is publicly
available (https://github.com/fumi-github/Popcorn-t).

Data availability
Full summary statistics relating to the GWAS meta-analysis has been deposited at
the European Genome-phenome Archive (EGA), which is hosted by the EBI and
the CRG, under accession number EGAS00001002991. Further information about
EGA can be found on https://ega-archive.org “The European Genome-phenome
Archive of human data consented for biomedical research” (http://www.nature.
com/ng/journal/v47/n7/full/ng.3312.html). All relevant data are available from the
authors.
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