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Abstract

In the paper we provide a personal review of the literature on nonpara-

metric and robust tools in the standard univariate and multivariate

location-scatter as well as linear regression problems with a special fo-

cus on sign and rank methods, their equivariance and invariance proper-

ties and their robustness and efficiency. Beyond parametric models the

population quantities of interest are then often formulated as location,

scatter, skewness, kurtosis and other functionals. Some old and recent

tools for model checking, dimension reduction and subspace estimation

in wide semiparametric models are discussed. We also discuss recent

extensions of procedures in certain non-standard semiparametric cases

including clustered data, time series, matrix valued observations and

functional data. Our personal list of important unsolved and future

issues is provided.
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1. INTRODUCTION

Classical multivariate statistical inference methods are based on the explicit or implicit as-

sumption that the observed data come from a multivariate normal (Gaussian) distribution.

See, for example, the monographs by Anderson (2003) and Mardia et al. (1979). The use of

the mean vector and covariance matrix for location and scatter problems are often optimal

under the assumption of multivariate normality but poor in efficiency for heavy-tailed dis-

tributions and highly sensitive to outlying observations. The robust approach to statistical

data analysis aims at finding reliable inference tools not only for the true parametric model

but also for other distributions close enough or similar enough to a target model, see e.g.

the books by Huber (1980), Hampel et al. (1986), and Maronna et al. (2006). The non-

parametric methods, often based on signs and ranks, tend to be robust in the global sense

and valid in wide semiparametric and nonparametric models. Univariate nonparametric

methods are treated in Hajek & Sidak (1967), Lehmann (1975), and Hettmansperger &

McKean (2011), for example. The classical book by Puri & Sen (1971) gives a complete

presentation of multivariate methods based on marginal signs and ranks. These methods

are not affine invariant or equivariant, however, and other equivariant notions of sign and

rank have been proposed in the literature. See Oja (1999) for a full description of affine

equivariant signs and ranks and their use in multivariate location problems. Oja (2010)

described analysis tools for multivariate data that are based on rotation equivariant spatial

signs and ranks. For robust and nonparametric statistics, see also Jurečková et al. (2013).

Robust and nonparametric analysis faces new challenges raised by highly complex mod-

ern data sets. The number of measured variables may be huge as compared to the number

of observations, the measurements on each individual are curves or figures rather than num-

bers, the variables are non-Gaussian, the dependence between the variables is not linear, the

observations may be cluster-dependent, time-dependent, spatially dependent, or dependent

in other ways, and so on. Nonparametric and robust tests and estimates in location, scatter

and linear regression problems are quite well developed for independent and identically dis-

tributed observations and are valid in wide semiparametric and nonparametric models, far

beyond the standard Gaussian model. The extensions of these tools to non-standard data

analyses are not straightforward and only sparse in the literature. Different goodness-of-fit

tests and tests for Gaussianity often help in the choice of the model and appropriate infer-

ence tools. Dimension reduction tools such as principal component analysis, independent

component analysis, invariant coordinate selection and sliced inverse regression can also

be formulated using scatter functionals in relevant semiparametric models and robustifying

these tools is necessary as well.

The paper is structured as follows. We first provide a highly personal and far from

complete review of the literature on nonparametric and robust tools in the standard uni-

variate (Chapter 2) and multivariate (Chapter 3) location and scatter as well as in linear

regression cases, with a special focus on the sign and rank methods, their equivariance and

invariance properties, and their robustness and efficiency properties. Beyond parametric

models, the procedures are then formulated as statistical, e.g. location and scatter, func-

tionals. In Chapter 4, some tools for dimension reduction and subspace estimations in wide

semiparametric models are discussed. Finally in Chapter 5, we provide some notions on re-

cent extensions of procedures in certain non-standard semiparametric cases including time

series, clustered data, matrix and tensor valued observations, and functional data. Our

personal lists of important unsolved and future issues are provided. Throughout the paper,

the variables of interest are assumed to be continuous.
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2. ROBUST NONPARAMETRIC METHODS - UNIVARIATE CASE

2.1. Location-Scale Models

We start with a simple univariate model and assume that y1, ..., yn is a random sample from

a distribution which can be expressed as

y = az + b,

where z is a continuous standardized random variable such that E(z) = 0 and V ar(z) = 1

and a, b ∈ < are unknown constants. The aim is to draw inference on location b and scale

|a|. How to do that depends strongly on what one can assume about the distribution of

z. One can for example assume that z has (i) a normal (Gaussian) distribution, (ii) a

symmetric distribution (−z ∼ z) or (iii) has any distribution with a finite second moment.

Model (i) is a parametric model while models (ii) and (iii) are nonparametric models of all

symmetric distributions or of all distributions, respectively, with finite second moments.

Models (ii) and (iii) may be seen also as semiparametric models with two parameters,

standard deviation |a| and mean b, due to the specific standardization of z. To avoid the

assumption that the second moment exists, the moment assumptions may be replaced for

example by the assumptions that the median and inter-quartile range of z are 0 and 1,

respectively. Inference on the distribution of z – often in terms of skewness and kurtosis –

is then helpful in the choice of estimation and testing methods.

If one does not trust in Gaussianity, it is of course possible to adopt a parametric model

with the normal distribution as a special or limiting case, such as the t-distribution family

or the skew-normal family of distributions. Another possibility is to consider models allow-

ing small deviations from the normal distributions, ε-neighborhood models of the N(0, 1)

density ϕ such as a mixture model {f : f ≥ (1− ε)ϕ}.

2.2. Descriptive Functionals and Statistics

In wide semiparametric and nonparametric models F , closed under linear transformations

(Fy ∈ F ⇒ Fay+b ∈ F) and large enough to include empirical distributions, the properties

of distributions may be be operationalized by descriptive functionals and corresponding

sample statistics. The characteristics of univariate distributions most commonly considered

are location, scale, skewness and kurtosis. Location is often most interesting and scale is

mainly needed for the accuracy of its estimate. Skewness and kurtosis have often, but not

always, a secondary role as tools for model checking. Kurtosis may sometimes be seen as

an accuracy measure for a scale estimate.

The comparison of two distributions could be made as follows. Let x ∼ F and y ∼ G

and let F and G be strictly increasing. The transport function R(·) := G−1(F (·)) then has

the property that R(x) ∼ y and it minimizes E[x−R(x)]2 or maximizes Cor(x,R(x)) over

all functions R for which R(x) ∼ G. See Chapter 2 in Santambrogio (2015). It provides

partial orderings for location (R(x) ≥ x is positive), scale (R(x) is increasing), skewness

(R(x) is convex) and kurtosis (R(x) is concave-convex for symmetrical distributions). See

Oja (1981) and references therein for original contributors to these ideas. The measures for

these properties are then hoped to preserve the corresponding partial orderings and they

should be location-scale or affine equivariant or invariant in a natural way.

Using affine equivariant location and scale functionals µ, µ1, µ2, ... and σ, σ1, σ2, ..., skew-

ness and kurtosis functionals can be found as ratios (µ1 − µ2)2/σ2 and σ2
2/σ

2
1 , respectively.
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Univariate Location and Scale Functionals

Univariate location and scale functionals are affine equivariant in the following way.

(i) For a location functional µ : F → <, µ(Fay+b) = aµ(Fy) + b for all a, b ∈ <.

(ii) For a scale functional σ : F → <+, σ(Fay+b) = |a|t(Fy) for all a, b ∈ <.

These functionals are affine invariant and can be used to check the assumptions on the

distribution of z.

The mean µ and standard deviation σ serve as first examples of location and scatter

functionals. Other moment based location and scale functionals are for example E(z2y)

(location) and E[z2(y − µ)2] (squared scale) where z = (y − µ)/σ, and these four measures

together provide the classical (moment based) measures of skewness and kurtosis, E[z3]

and E[z4]. In his celebrated system of frequency curves, Pearson (1895) identified different

parametric families of distributions and the classification was simply based on E[z3] and

E[z4]. For 0 < α < β < 0.5, location, scale, skewness and scatter functionals based on

quantiles are given e.g. by F−1(0.5), F−1(1 − α) − F−1(α), (F−1(1 − α) + F−1(α) −
2F−1(0.5))/(F−1(1− α)− F−1(α)) and (F−1(1− β)− F−1(β))/(F−1(1− α)− F−1(α)).

Consider next the tools for considering the robustness of a functional µ : F → <. First,

it is hoped that the functional is weakly continuous in the sense that Fn →d F implies

that µ(Fn) → µ(F ) guaranteeing the consistency of the sample statistic. Local robustness

properties are usually considered using the influence function (IF). The influence function

of µ at F is defined as

IF (x;µ, F ) = lim
ε→0

µ((1− ε)F + εδx)− µ(F )

ε

where δx is a distribution with the probability mass one at x. It is thus the Gâteaux deriva-

tive of µ at F in the direction of δx. The IF is bounded for robust functionals. For global

robustness one considers the ε-neighborhoods of F , say Fε, given by {g : g ≥ (1− ε)f} (‘ε-

mixture model’) or
{
g :
∫

(f − g)+ ≥ ε
}

(‘ε-replacement model’). We then say for example

that location functional µ breaks down in Fε if µ(Fε) = < as in this (close) neighborhood

of F it can be forced to have any value. The smallest ε for this to happen is called the

breakdown point of µ at F . The breakdown points of the mean and variance are zero and

those of F−1
(
1
2

)
and F−1(1 − α) − F−1(α) are 1

2
and α, respectively. For robustness of

the sample statistics, sensitivity curves and finite sample breakdown points are defined and

used in a similar way.

2.3. Inference on Location and Scale

2.3.1. M-functionals for location and scale. For known distribution F (or f) of z, symmetric

around zero, the maximum likelihood (ML) functionals for location and scale, say µ an σ,

maximize L(µ, σ) = E
[
log
(

1
σ
f
(
y−µ
σ

))]
and are then determined by implicit equations

E[w(|z|)z] = 0 and E[w(|z|)z2] = 1
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where z = y−µ
σ

and w(z) = l(z)
z

and l = −f ′/f is the optimal location score function. In the

N(0, 1)-case, µ and σ are the mean and variance (functionals) and in the double exponential

(Laplace) case µ is the median and σ = E [|y − µ|] is the mean deviation around the median.

The so called M-functionals µ and σ then satisfy, for any choices of positive weight functions

w1, w2 and w3 (not necessarily related to any distribution),

E[w1(|z|)z] = 0 and E[w2(|z|)z2] = E[w3(|z|)]. (1)

Note that the functionals µ and σ are location-scale equivariant and the above estimating

equations further suggest a fixed-point algorithm of the form

µ← E[w1(|z|)y]

E[w1(|z|)] and σ2 ← E[w2(|z|)(y − µ)2]

E[w3(|z|)] , (2)

as well as one-step functionals starting with z that is standardized by preliminary affine

equivariant functionals µ an σ. The influence functions of M-functionals are easily derived

from their weight functions. The highly robust Huber’s estimate for example uses weight

functions w1(r) = min(k/r, 1), w2(r) = min(k2/r2, 1) and w3(r) ≡ 1, and w1 provides in

the pure location case, with some choice k = k(ε), a minimax solution in an ε-mixture

neighborhood of a Gaussian model. For M-estimation, see e.g. Huber (1980) and Hampel

et al. (1986).

2.3.2. R-functionals for location. Rank based location functionals, R-functionals, use sign,

rank and signed-rank scores in the estimation. For a distribution F , the sign, centered rank

and signed-rank score functions, s, r and q are given by

s(z) := sign(z), r(z) := 2F (z)− 1 and q(z) := s(z) [F (|z|)− F (−|z|)] .

These are the scores corresponding to the three criterion functions

E(|z|) = E[s(z)z], E(|z1 − z2|) = E[r(z)z] and E(|z1 − z2|) +E(|z1 + z2|) = 4E[q(z)z],

for z and its independent copies z1 and z2, see Hettmansperger & Aubuchon (1988). Let

y, y1, y2 be independent observations (copies) from F . Median µ : F → < is then a func-

tional that minimizes E[|y − µ|] or solves E[s(y − µ)] = 0 while the Hodges-Lehmann (HL)

functional minimizes E[|y1 + y2− 2µ|] or solves E[q(y−µ)] = 0. To attain higher efficiency,

one sometimes uses rank scores h(r(z)) or s(z)h(|q(z)|) instead of r(z) and q(z) with some

additional score function h. See e.g. Hettmansperger & McKean (2011).

For the empirical distribution Fn from a random sample y1, ..., yn, we get the em-

pirical centered rank and signed-rank functions rn(z) = 2Fn(z) − 1 and qn(z) :=

s(z) [Fn(|z|)− Fn(−|z|)]. The sample median and HL-estimate µ̂ then center the observa-

tions so that, for zi = yi− µ̂, i = 1, ..., n,
∑n

i=1
s(zi) = 0 and

∑n

i=1
qn(zi) = 0, respectively.

Note that the HL estimate is the median of all pairwise averages 1
2
(yi + yj), 1 ≤ i ≤ j ≤ n.

2.3.3. Other functionals. Let y1:n, y2:n, ..., yn:n be an ordered sample of size n. The so

called L-estimate, linear combination of order statistics, is then
∑n

i=1
ci,nyi:n where often

ci:n = h
(

i
n+1

)
. For different choices for function h, a whole class of location and scale esti-

mates are obtained for the corresponding population quantities, L-functionals E[h(F (y))y].

Descriptive functionals may be created also by starting from the so called elemental es-

timates: Assume that k is the smallest sample size to find a (mean or median) unbiased
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estimate h(y1, ..., yk) of a population quantity. In the mean unbiased case, the sample statis-

tic is the U-statistic, the average of all elemental estimates h(yi1 , ..., yik ), i1 < ... < ik, with

a well developed asymptotic theory. See e.g. Serfling (1980). In the spirit of partial order-

ings for location, scale, skewness and kurtosis discussed in Section 2.1, one can define the

corresponding measures as the expected values of y1:1, y2:2 − y1:2, (y3:3 − y2:3)/(y3:3 − y1:3)

and (y4:4 − y1:4)/(y3:4 − y2:4) or use L-moments λ1 = E(y1:1), λ2 = 1
2
E(y2:2 − y1:2),

λ3 =
1

3
E(y3:3 − 2y2:3 + y1:3) and λ4 =

1

4
E(y4:4 − 3y3:4 + 3y2:4 − y1:4),

or their robustified trimmed versions. See Hosking (1990). The sample L-moments are then

L-estimates as well as U-statistics. Note that λ3/λ2 and λ4/λ2 are skewness and kurtosis

functionals. For the HL functional, k = 2 and the functional is the median of 1
2
(y1 + y2).

To obtain highly robust estimates, the subsamples can be used also in other ways: Find the

shortest interval covering at least half of the observations. The so called Shorth estimates

of location and scale are then the midpoint and length of that interval.

2.3.4. Location estimates and tests based on a score function. We next speak about the

asymptotic efficiency of the location estimates and companion tests that are based on a

monotone and odd score function k(y). The score function may come from M-estimation

(with known or estimated σ) or R-estimation, possibly with a rank score function. Let

y1, ..., yn be a random sample from a distribution f symmetric around µ. The estimate µ̂

centers the observed scores, that is, it solves the estimation equation
∑n

i=1
k(yi − µ̂) = 0.

Under general assumptions and with the true location center µ0, the limiting distribution

of
√
n(µ̂ − µ0) is N(0, τ) where τ = E[k2(z)]/E2[k(z)l(z))] with z = y − µ0. The asymp-

totic efficiency of the estimate with respect to the optimal ML-estimate is then simply

Cor(k(z), l(z)). With unknown l, the estimation of τ may be tricky but the bootstrap

ASYMPTOTIC
RELATIVE
EFFICIENCY (ARE):
In the normal case,

ARE of the median

with respect to the
mean is 0.64.

Roughly speaking,

this means that the
median with

n = 100 has the
same variance as the

mean with n = 64.

estimation of the variance of the estimate is easy to implement. For the estimation of the

limiting variance of the median and HL estimate, see e.g. Oja (1999) for a short review.

For the median and HL estimate, the efficiencies with respect to the mean are in the normal

case 0.64 and 0.95. In the t3 and t6 cases the efficiencies are 1.62 and 0.88 for the median

and 1.90 and 1.16 for the HL-estimate. Using the so called van der Waerden score gives an

estimate that is never outperformed by the mean.

The companion M-test statistic for H0 : µ = µ0 is Tn = n−1/2
∑n

i=1
k(yi−µ0) with the

limiting null distribution N(0, E[k2(z)]). Under a contiguous sequence of alternatives H1,n :

µ = µ0+ 1√
n
δ, the limiting distribution of

√
nTn is N(δE[k(z)l(z)], E[k2(z)]) (LeCam’s third

lemma) and then T 2
n/(

1
n

∑
i
k2(yi−µ0)) converges to a non-central chi-squared distribution

with non-centrality parameter δ2E2[k(z)l(z)]/E[k2(z)]. The Pitman efficiencies w.r.t. the

t-test then equal to the efficiencies of the corresponding estimate w.r.t. the mean. Note also

that the sign test and signed-rank test are in fact distribution-free, that is, their (finite-

sample as well as asymptotic) distribution does not depend on the symmetric f . Thus,

they also provide distribution-free confidence intervals for µ. Conditionally distribution-

free sign-change test versions are in fact available for any choice of an odd score function

k.

2.3.5. Tests for normality. Skewness and kurtosis statistics are often used to test for nor-

mality. Let zi = (yi− ȳ)/sy, be the observations standardized with the sample mean ȳ and

sample standard deviation sy. The third and fourth cumulants (for skewness and kurtosis)

6 Nordhausen and Oja



are then 1
n

∑n

i=1
z3i and 1

n

∑n

i=1
z4i − 3 and, for the observations from N(µ, σ2),

n

6

[
1

n

n∑
i=1

z3i

]2

+
n

24

[
1

n

n∑
i=1

z4i − 3

]2

→d χ
2
2 as n→∞.

Other skewness and kurtosis statistics can be used in model checking as well. Interesting

choices for the test statistics are also
∑n

i=1
zi:nΦ−1

(
i

n+1

)
and

∑n

i=1
s(yi − ȳ).

2.4. Linear Regression Analysis

2.4.1. Linear regression model. The conditional distribution of yi given xi ∈ <q. i =

1, ..., n, is now that of

yi = azi + b0 + b′xi,

where a, b0 ∈ <,b ∈ <q, z1, ..., zn is a random sample from the distribution of z with

E(z) = 0 and V ar(z) = 1. Again, one may assume that z has a normal distribution, a

symmetric distribution or a distribution in other families listed in the location-scale case.

The data set is given by the matrix (X,y) ∈ <n×(q+1). Note that the models for two and

several samples as well as for randomized blocks can also be written in this way. The vectors

xi may be design variables (preassigned in the experiment) or observational variables. In

the latter case, xi and zi should be independent and the distribution of xi should not

depend on the parameters of interest, |a|, b0 and b. The aim is to draw inference on these

parameters and the distribution of z has an crucial role in the choice of the method.

2.4.2. M-estimates of the regression coefficients. For known f symmetric around zero and

fixed x1, ...,xn, the maximum likelihood (ML) estimates for regression coefficients and scale,

say β̂0 ∈ <, β̂ ∈ <q and σ̂ ∈ <+ are determined by implicit equations

1

n

n∑
i=1

w(|zi|)zix̃i = 0 and
1

n

n∑
i=1

w(|zi|)z2i = 1

where x̃i = (1,x′i)
′, zi =

yi−β0−x′iβ
σ

and w(z) = l(z)
z

. In the normal error case β̂0 and β̂

are the so called least squares (LS) estimates and minimize
∑n

i=1
(yi − β0 − x′iβ)2. The

extended family of estimates, M-estimates for regression solve

n∑
i=1

w1(|zi|)zix̃i = 0 and

n∑
i=1

w2(|zi|)z2i =

n∑
i=1

w3(|zi|)

with some choices of positive weight functions w1, w2, w3.

2.4.3. R-estimates of the regression coefficients. The estimates based on signs and ranks

minimize the mean deviation and the mean difference of the residuals, that is,

n∑
i=1

|yi − β0 − x′iβ| and
∑
i<j

|(yj − yi)− (xj − xi)
′β|,

respectively. They then also solve the corresponding estimation equations

n∑
i=1

s(zi)x̃i = 0 and

n∑
i=1

rn(zi)xi = 0.

www.annualreviews.org • Robust Nonparametric Inference 7



(The rank function rn is for the estimated residuals z1, ..., zn.) Note that the rank estimate

is only for b and, if needed, b0 must be estimated separately by using the residuals yi−x′iβ̂,

i = 1, ..., n. For the sign method, the signs of the residuals and the components of x

are uncorrelated while, for the rank method, the centered ranks of the residuals and the

components are uncorrelated. Note also that simultaneous estimation of |a| is not needed.

In the rank case, assumption on the symmetry of the residuals is not needed. Again, using

rank scores instead of pure ranks in the second estimation equation, may yield gains in

efficiency of the corresponding estimate (and test).

2.4.4. Other estimates of the regression coefficients. We discuss the use of elemental es-

timates in the regression and first consider the simple regression model y = az + b0 + bx,

The elemental estimates based on the ith and jth observations, 1 ≤ i < j ≤ n, are then

b̂0;ij =
yixj − yjxi
xj − xi

and b̂ij =
yj − yi
xj − xi

.

The LS estimate is then weighted average of all
(
n
2

)
elemental estimates with weights (xj −

xi)
2. In the simple linear regression, the classical slope and intercept estimates of Theil

and Maritz are just medians of the b̂ij ’s and the b̂0;ij ’s. The rank regression estimate of the

slope is the weighted median of the b̂ij ’s, the weights being proportional to |xj − xi|. See

Hettmansperger & McKean (2011). For the elemental estimates in the general multivariate

multiple linear regression case, see Chapter 3.

2.4.5. Properties of the regression estimates based on a location score function. Con-

sider next the limiting distribution of β̂ for a general score function. As in the loca-

tion case, the score function k(z) is from the M-estimation (with known or estimated

|a|) or in R-estimation with sign or rank scores. Write X = (x1, ...,xn)′ ∈ <n×q and

assume that 1
n
X′X → Σx ∈ <q×q as n → ∞. Then, under general assumptions,√

n(β̂ − b) → Nq(0, τΣ
−1
x ) with the same τ as in the location case. This means that

the relative efficiencies are inherited from the simple location case. Note that the asymp-

totic tests for regression coefficients can be based on this result. In the several sample

location problem, also conditionally distribution-free permutation tests are available. For

a thorough discussion on robustness in linear regression, see Chapters 4 and 5 in Maronna

et al. (2006).

2.5. R Packages for Univariate Methods

We list some R packages for nonparametric tools in the univariate case. Our short list is

subjective and not comprehensive. The basic installation of R (R Core Team 2016) already

contains many nonparametric estimates and tests. Further R packages are exactRankTests

(Hothorn & Hornik 2017) and gMWT (Fischer & Oja 2015). Linear regression based on signs

and ranks can be done for example using the packages quantreg (Koenker 2016) and Rfit

(Kloke & McKean 2012). Many robust methods are implemented in the packages MASS

(Venables & Ripley 2002) and robustbase (Mächler et al. 2016).
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3. ROBUST NONPARAMETRIC METHODS - MULTIVARIATE CASE

3.1. Location-Scatter Model

In the multivariate location-scatter model we assume that y1, ...,yn is a random sample

from a p-variate distribution of

y = Az + b

where A ∈ <p×p,b ∈ <p and z is a p-variate random vectors standardized so that E(z) = 0

and Cov(z) = Ip. We may further assume that z ∈ <p has (i) a multivariate normal

distribution, (ii) a spherical distribution or (iii) has any distribution with finite second

moments. One can also avoid the silent assumption on the existence of second moments with

another standardization. Note that if z is spherical or spherically symmetric then Uz ∼ z for

all orthogonal matrices U ∈ <p×p. Weaker extensions of symmetry are marginal symmetry

and (regular) symmetry, that is, (±z1, ...,±zp)′ ∼ (z1, ..., zp)
′ and −z ∼ z, respectively.

Model (i) is parametric, models (ii) and (iii) are examples of semiparametric elliptical and

fully nonparametric models. In the semiparametric independent component (IC) model one

assumes that the components z1, ..., zp of z are mutually independent. In all cases the aim

is to make inference on location b and scatter AA′. In the IC model, one also wishes to

estimate the mixing matrix A or its inverse.

As in the univariate case, mixture neighborhood models of Np(0, Ip) with the density

functions ϕ can be given as {f : f ≥ (1− ε)ϕ}. Parametric multivariate models with multi-

variate normality as a special or limiting case are, for example, multivariate skew-normal or

multivariate t-distribution families. Copulas provide semiparametric models with unspeci-

fied marginal distributions and parameters to control the dependence.

3.2. Descriptive Functionals and Statistics

In the univariate case, one could define partial orderings for location, scale, skewness and

kurtosis by using the transport function R = G−1F . In the multivariate case, the Monge-

Brenier transport function R : <p → <p similarly minimizes E‖x − R(x)‖2 under the

conditions that x ∼ F ⇒ R(x) ∼ G. It is still an open question whether R could be used

in the comparison of the distributions F and G. Recently, Chernozhukov et al. (2017) used

this transport function for data depth construction. See also Santambrogio (2015).

Let F be a family of p-variate distributions that is closed under affine transformations

and large enough to include all finite sample distributions. Location and scatter functionals

µ : F → <p and Σ : F → <p×p+ are functionals that satisfy natural affine equivariant (AE)

conditions.

Multivariate Location and Scatter Functionals

Multivariate location and scatter functionals satisfy the AE conditions

µ(FAy+b) = Aµ(Fy) + b and Σ(FAy+b) = AΣ(Fy)A′.

The mean vector E(y) and the covariance matrix Cov(y) = E[(y − E(y))(y − E(y))′]

serve as first examples. A scatter functional Σ possesses the so called independence property
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if it is diagonal at random vectors with independent components. This does not follow

from the AE property but it is true for the covariance matrix. Starting from any scatter

matrix Σ, a scatter matrix with independence property is obtained via symmetrization:

Σsym(Fy) := Σ(Fy1−y2) where y1 and y2 are independent copies of y (Nordhausen &

Tyler 2015).

Let Σ = UΛU′ be the eigendecomposition of Σ. The eigenvalues in Λ and eigenvectors

in U provide important tools to consider the multivariate dependence and variation of a

random vector. The first two moments and the variance of the eigenvalues are given by

m1(Σ) =
1

p
tr(Σ), m2(Σ) =

1

p
tr(Σ2) and s2(Σ) = m2(Σ)−m2

1(Σ).

The arithmetic mean of the eigenvalues m1(Σ) and the geometric mean of the eigenvalues,

the generalized variance det(Σ)1/p, are global measures of variation while s2(Σ) measures

the deviation from sphericity in the elliptic case. Matrix U is sometimes called orientation

of the distribution (and the data cloud) and the rotated random vector U′z has uncorrelated

components, the so called principal components.

As in the univariate case, location functionals µ1,µ2 and scatter functionals Σ,Σ1,Σ2

can be used to build measures of multivariate skewness and kurtosis such as (µ1 −
µ2)′Σ−1(µ1−µ2) and tr

(
Σ−1

1 Σ2

)
. All third and fourth moments of the standardized z can

be collected into p vectors and p2 matrices E(ziz), i = 1, ..., p and E(zizjzz′), i, j = 1, ..., p,

and summing over i and i = j, respectively gives vector- and matrix-valued skewness and

kurtosis measures E(zz′z) and E(zz′zz′).

The sample mean vector and sample covariance matrix are ȳ = 1
n

∑n

i=1
yi and Sy =

1
n

∑n

i=1
(yi− ȳ)(yi− ȳ)′, respectively. For invertible Sy, the squared Mahalanobis distances

between yi and ȳ and between yi and yj are given by (yi − ȳ)′S−1
y (yi − ȳ) and (yi −

yj)
′S−1
y (yi − yj), respectively.

Maximal Invariant Statistics

For the data matrix Y = (y1, ...,yn)′ ∈ <n×p, the matrix D = (Y − 1nȳ′)S−1
y (Y − 1nȳ′)′ ∈ <n×n is

maximal invariant under affine transformations Y → YA′ + 1nb′.

D = (Y − 1nȳ′)S−1
y (Y − 1nȳ′)′ provides all squared Mahalanobis distances (dii) as

well as squared Mahalanobis distances between the observations (dii + djj − 2dij). In

fact, (Y − 1nµ̂
′)Σ̂
−1

(Y − 1nµ̂
′)′ is maximal invariant for any choices of location and

scatter functionals µ and Σ. Moreover, starting with a location functional µ and two

scatter functionals Σ1 and Σ2, the data matrix can be moved to an invariant coordinate

system (ICS) by Ẑ ← (Y − 1nµ̂
′)Ŵ where the transformation matrix Ŵ ∈ <p×p satisfies

Ŵ′Σ̂1Ŵ = Ip and Ŵ′Σ̂2Ŵ = Λ̂, where Λ̂ is a diagonal matrix with the diagonal elements

in decreasing order. The matrix Ẑ ∈ <n×p is again maximal invariant and the z-observations

are centered with µ, standardized w.r.t Σ1 and also ‘uncorrelated’ w.r.t. Σ2 (Tyler et al.

2009; Ilmonen et al. 2012).
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The Large-p-small-n Case

Tyler (2010) has shown that, if n ≤ p + 1, all AE location statistics are equal to the sample mean vector,

and all AE scatter statistics are proportional to the sample covariance matrix. For n = p + 1, the sample

covariance matrix Sy is still invertible (w.p.1) and the maximal invariant statistic (Y − 1nȳ′)S−1
y (Y −

1nȳ′)′ = nIn − 1n1′n is a constant matrix and all pairwise Mahalanobis distances are the same. Therefore

when n ≤ p+ 1, one cannot construct any affine invariant (coordinate-free) multivariate location tests, for

example, and the requirement of affine equivariance/invariance must be relaxed.

3.3. Inference on Location and Scatter

3.3.1. M-estimation. Corresponding to any choices of positive weight functions w1, w2

and w3 (not necessarily related to any distribution) the values of location and scatter M-

functionals µ ∈ <p and Σ ∈ <p×p+ at the distribution of y satisfy the estimating equations

E[w1(|z|)z] = 0 and E[w2(|z|)zz′] = E[w3(|z|)]Ip

with z = Σ−1/2(y−µ). Note that the functionals µ and Σ are affine equivariant (AE) and,

as in the univariate case, the above equations further suggest a fixed-point algorithm as well

as corresponding one-step functionals. One has often w3(r) ≡ 1 and the following choices.

(i) w1(r) = w2(r) = 1 gives the mean vector and the covariance matrix. (ii) w1(r) = 1/r

and w2(r) = p/r2 gives the AE spatial median and the so called Tyler’s scatter matrix. (iii)

For f(z) = exp(−ρ(||z||) and ψ(r) = ρ′(r) then the ML functional is obtained as w1(r) =

w2(r) =
∣∣ψ(r)

r

∣∣. (iv) Huber’s estimate w1(r) = min(k/r, 1) and w2(r) = min(k2/r2, 1).

The efficiency and robustness properties of M-functionals are determined by the weight

functions. For a review and computation details see Dümbgen et al. (2015, 2016).

For a general discussion of the M-functionals, closely related S-functionals, the minimum

covariance determinant (MCD) and the minimum volume ellipsoid (MVE), a multivariate

extension of the Shorth, see Chapter 6 in Maronna et al. (2006) and the references therein. In

the following we discuss the estimates and tests that are based on three different multivariate

extensions of the concepts of sign, rank and signed-rank.

Multivariate Signs and Ranks

There is no natural ordering of multivariate observations. The multivariate notions of sign, rank and

signed-rank are based on the multivariate extensions of the mean deviation and mean difference. The affine

equivariance and invariance of the sign and rank methods then depend on the norm used in these extensions.

3.3.2. R-estimation and testing: Marginal sign and ranks. The univariate concepts of sign

and rank are based on the complete ordering of univariate data points manifested with

the univariate sign function. In the multivariate case there is no natural ordering but the

concepts of sign and rank can be extended using certain objective or criterion functions. Let

Y = (y1, ...,yn)′ be a random sample from a p-variate distribution of y. The first extensions
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are obtained using the so called Manhattan norm or L1 norm ||y||1 = |y1|+ ...+ |yp|. The

multivariate empirical signs, centered ranks, and signed-ranks may be implicitly defined

through multivariate L1 type objective functions

n∑
i=1

||yi||1,
n∑
i=1

n∑
j=1

||yi − yj ||1 and

n∑
i=1

n∑
j=1

(||yi − yj ||1 + ||yi + yj ||1)

It is easy to see that the resulting scores si, ri and qi, i = 1, ..., n, are simply the vectors of

marginal (univariate) signs, centered ranks, and signed-ranks. The population sign, centered

rank and signed-rank functions s(z), r(z) and q(z) are vectors of corresponding marginal

functions. For a complete treatment of this approach consult Puri & Sen (1971).

The vectors of marginal signs, ranks and centered ranks are not affine invariant or equiv-

ariant as their behavior under rotations yi → Uyi with orthogonal U ∈ <p×p is unpre-

dictable. The vector of marginal ranks is however invariant under componentwise monotone

transformations. The multivariate median µ̂ = µ(Y), that is, the vector of the marginal me-

dians, minimizes
∑n

i=1
||yi−µ||1 and centers the observations so that

∑n

i=1
s(yi− µ̂) = 0.

Similarly, the vector of marginal HL estimates is the choice µ̂ for which the signed-ranks q̂i
of centered observations yi− µ̂, i = 1, ..., n, satisfy

∑n

i=1
q̂i = 0. The median is equivariant

under monotone componentwise transformations but not affine equivariant. An affine equiv-

ariant median is obtained by using the so called transformation retransformation technique

proposed by Chakraborty & Chaudhuri (1998). If Ŵ ∈ <p×p is the ICS transformation

matrix, the AE median (similarly HL estimate) is obtained as (Ŵ′)−1µ(YŴ). Invariant

sign and rank based location tests are obtained using the marginal sign and ranks in the

invariant coordinate system (Nordhausen et al. 2006).

Consistent estimation of the covariance matrix using the marginal signs and ranks is not

possible but, in the elliptic case, 1
n
ŝiŝ
′
i and

(
n
2

)−1∑
i<j

s(yj−yi)s(yj−yi)
′ (Kendall’s tau)

are consistent to 2
π

sin−1(Cor(yi,yj)) and 1
n

∑n

i=1
rir
′
i (Spearman’s rho) and 1

n

∑n

i=1
q̂iq̂
′
i

are consistent to 6
π

sin−1 (Cor(yi,yj)/2) which then surprisingly allows consistent estima-

tion of the correlation matrix. See Visuri et al. (2000) and references therein.

3.3.3. R- estimation and testing: Spatial signs and ranks. Let y1, ...,yn be again a random

sample for a p-variate distribution Fy. This approach is based on the use of Euclidean or

L2 norm

||y||2 =
(
y21 + ...+ y2p

)1/2
.

The multivariate concepts of spatial sign, spatial rank and spatial signed-rank functions at

Fy are then s(y) = ||y||−1
2 y for y 6= 0 and s(0) = 0, and

r(y) = E [s(y − y1)] and q(y) =
1

2
E [s(y − y1) + s(y + y1)] ,

respectively. The observed spatial signs, spatial ranks and spatial signed-ranks are si =

s(yi), ri = 1
n

∑n

j=1
s(yi − yj) and qi = 1

2n

∑n

j=1
[s(yi − yj) + s(yi + yj)], i = 1, ..., n.

Again, the signs, ranks, and signed-ranks are scores corresponding to the objective functions

n∑
i=1

||yi||2,
n∑
i=1

n∑
j=1

||yi − yj ||2 and

n∑
i=1

n∑
j=1

(||yi − yj ||2 + ||yi + yj ||2) .

See Oja (2010) for a complete discussion of this approach and for further references.
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The spatial sign si is just a direction vector of length one whenever yi 6= 0. The

centered ranks ri and signed-ranks qi have the lengths at most 1 and therefore lie in the

unit p-ball. Roughly speaking, the direction of ri tells in which direction yi is from the

center of the data cloud, and its length tells how far away this point is from the center.

qi is the rank of yi among ±y1, ...,±yn. The spatial signs, ranks and signed-ranks are

orthogonal equivariant, that is, for any orthogonal U ∈ <p×p, transformations yi → Uyi,

i = 1, ..., n, induce transformations si → Usi, ri → Uri and qi → Uqi, i = 1, ..., n. Note

also that the spatial ranks are invariant under location shifts yi → yi + b, i = 1, ..., n.

To estimate µ, let ŝi and q̂i be the signs and signed ranks of the shifted observations

yi − µ̂, i = 1, ..., n. The spatial median and spatial HL estimate are then choices of µ̂

for which
∑n

i=1
ŝi = 0 and

∑n

i=1
q̂i = 0, respectively. They are shift and orthogonal

equivariant. For fully affine equivariant estimation of µ, a simultaneous estimate of Σ is

needed. Let then ŝi and q̂i be the signs and signed ranks of the standardized observations

ẑi = Σ̂
−1

(yi − µ̂), i = 1, ..., n. The spatial median µ̂ and Tyler’s scatter estimate Σ̂ then

satisfy 1
n

∑n

i=1
ŝi = 0 and p

n

∑n

i=1
ŝiŝ
′
i = Ip, and together give the so called Hettmansperger-

Randles estimate (Hettmansperger & Randles 2002). Similarly, for the affine equivariant

spatial HL estimate and the related scatter estimate, the signed-ranks are standardized

so that 1
n

∑n

i=1
q̂i = 0 and 1

n

∑n

i=1
q̂iq̂
′
i ∝ Ip. See Tyler (1987) and Hettmansperger &

Randles (2002). Dümbgen’s scatter estimate (Dümbgen 1998), avoids location estimation

and finds Σ̂ and ẑi = Σ̂
−1

yi, i = 1, ..., n such that
(
n
2

)−1∑
i<j

s(ẑj − ẑi))s(ẑj − ẑi))
′ ∝ Ip.

Note that, in these approaches, Σ is estimated only up to its size, i.e., if Σ̂ is a solution, so

is cΣ̂, for any c > 0.

If spatial sign and ranks are used to analyze the data, the spatial sign and signed-

rank covariance matrices E [s(y − µ)s(y − µ)′] and E [q(y − µ)q(y − µ)′], as well as the

spatial Spearman’s rho and spatial Kendall’s tau matrices E [s(y1 − y2)s(y1 − y3)′] and

E [s(y1 − y2)s(y1 − y2)′], where y1,y2,y3 are independent copies of y, provide simple and

robust tools to estimate the eigenvectors of the covariance matrix. For an elliptical distri-

bution, they have the same eigenvectors with the covariance matrix and, for the spatial sign

and Kendall’s tau matrices for example, there is a one-to-one correspondence between their

eigenvalues and the eigenvalues of the covariance matrix. See again Visuri et al. (2000).

Finally, we mention that Chaudhuri (1996) considered the inverse of the spatial rank

function and called it the spatial quantile function. Serfling (2004) gives a review of the

inference methods based on the concept of the spatial quantile, and studies nonparametric

measures of multivariate location, spread, skewness and kurtosis in terms of these quantiles.

3.3.4. R-estimation and testing: Affine equivariant signs and ranks. The previous exten-

sions of the sign and rank concepts were based on the mean deviation and mean difference

with the L1 and L2 norms, and the behavior of the signs and ranks were not predictable

under affine transformations. In this section we discuss alternative criterion functions, also

multivariate extensions of the mean deviation and mean difference yielding affine equivariant

signs and ranks for the location and scatter problems. See Oja (1999) for a review.

Assume that y1, ...,yn is a random sample from a distribution of y. The volume of the

simplex with p+ 1 vertices y1, ...,yp+1 ∈ <p is

V (y1, ...,yp+1) =
1

p!
|det(ỹ1, ..., ỹp+1)| ,

where ỹ = (1,y′)′ ∈ <p+1. The mean vector E(y) then minimizes E[V 2(y1, ...,yp,µ)]
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and the generalized variance [det(Cov(y))]1/p is a constant times the minimum value

E[V 2(y1, ...,yp, E(y))]. This suggests the use of the averages of the volumes

V (0, zi1 , ..., zip) or V (zi1 , zi1 , ..., zip+1)

over all subsets of the residuals z1, ..., zn as multivariate extensions of the mean deviation

and the mean difference, respectively.

Write I = (i1, ..., ip−1), 1 ≤ i1 < i2 < ... < ip−1 ≤ n, for the p − 1 vector of separate

indices. Index I then refers to a (p−1)-set of observations or to a hyperplane going through

the origin and p−1 data points, that is, {y ∈ <p : det
(

yi1 ... yip−1 y
)

= 0}. Let next the

vector e(I) ∈ <p be implicitly defined as cofactors of y in det
(

yi1 ... yip−1 y
)

= e′(I)y.

The mean deviation is then a constant times
(
n
p−1

)−1∑
I
|e′(I)y| and its gradient at yi

gives the p-variate affine equivariant sign or Oja sign

si =

(
n

p− 1

)−1∑
I

sign(e′(I)yi)e(I), i = 1, ..., n.

The sign vectors are affine equivariant in the sense that the affine transformations yi → Ayi,

i = 1, ..., n, induce the transformations si → |det(A)|(A−1)′si, i = 1, ..., n. The affine

equivariant multivariate median µ̂, called Oja median, is the choice to minimize the mean

deviation of the residuals yi − µ, i = 1, ..., n and then again
∑n

i=1
ŝi = 0.

Find next in the similar way the affine equivariant multivariate ranks or Oja ranks

of the observation vectors y1, ...,yn. In this case we need the p-subsets of observation

with index sets J = (i1, ..., ip), 1 ≤ i1 < i2 < ... < ip ≤ n. The hyperplane going

through the observations listed in J is {y ∈ <p : det
(

ỹi1 ... ỹip ỹ
)

= 0}. Define next

d(J) = (d0(J),d1(J)′)′ ∈ <p+1 by the implicit equation det
(

ỹi1 ... ỹip ỹ
)

= d′(J)ỹ. The

multivariate mean difference is then a constant times
(
n
p

)−1∑
J
|d′(J)ỹ| and its gradient

at yi gives the p-variate rank vector

ri =

(
n

p

)−1∑
J

sign(d′(J)ỹi)d1(J), i = 1, ..., n.

The rank vectors are affine equivariant and location invariant so that the affine transforma-

tions yi → Ayi+b, i = 1, ..., n, induce transformations ri → |det(A)|(A−1)′ri, i = 1, ..., n.

As in other extensions of signs and ranks, the signed-rank vector qi for the ith observation

yi can be found as its rank among 2n-set of observations ±y1, ...,±yn, that is, among the

original observations and their reflections. The affine equivariant HL estimate µ̂ is the

choice for which the sum of signed-ranks of the estimated residuals is zero.

Due to the peculiar type of affine equivariance of signs and ranks and signed-ranks,

the sign and rank covariance matrices 1
n

∑n

i=1
ŝiŝ
′
i,

1
n

∑n

i=1
rir
′
i and 1

n

∑n

i=1
q̂iq̂
′
i are, in

the elliptic case, consistent estimates of population quantities that are proportional to

the inverse of the covariance matrix. This means for example that the eigenvector and

proportional eigenvalues of the covariance matrix can be consistently estimated by them.

For the influence functions and limiting distributions of these estimates, see Ollila et al.

(2003a, 2004). Estimation of the sign covariance matrix, for example, is equivalent to finding

µ̂ and Σ̂ such that if ŝi is the sign of ẑi = Σ̂
−1/2

(yi − µ̂) among the ẑj ’s, i = 1, ..., n, then
1
n

∑n

i=1
ŝi = 0 and 1

n

∑n

i=1
ŝiŝ
′
i ∝ Ip
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How to Choose Between Multivariate Signs and Ranks?

Marginal signs and ranks are easiest to compute and their transformation re-transformation versions are

most natural in an IC model. Affine equivariant spatial sign and rank methods are preferable in the

elliptic case and easily applied using the R package MNM. The Oja sign and ranks have nice geometrical and

theoretical properties but with highest computational burden. Our favourite location-scatter estimate is the

Hettmansperger-Randles estimate.

We end this section with a discussion on related approaches in the literature. It is

interesting that the mean deviation and the mean difference are proportional to the volumes

of the zonotope and lift zonotope of Y = (y1, ...,yn)′, that is, the Minkowski averages

Z(Y) = 1
n

∑n

i=1
[−yi,yi] and LZ(Y) = 1

n

∑n

i=1
[−ỹi, ỹi], respectively. See Koshevoy

et al. (2004) for the duality between Oja signs and ranks and zonotopes and lift zonotopes.

Randles (1989) developed an affine invariant sign tests for the one and two sample cases

based on interdirection counts, angular distances between yi and yj relative to the rest of

data given, using our notation, by
∑

I
sign(e′(I)yi)sign(e′(I)yj). In a similar way, the

distance between yi and yj can be defined by counting the number of data hyperplanes

separating them,
∑

J
sign(d′(J)ỹi)sign(d′(J)ỹj), see Oja & Paindaveine (2005). A related

and important approach is to combine Randles’ interdirections (or spatial signs) and the

univariate rank scores for the Mahalanobis distances from the origin. In this way, Hallin

& Paindaveine (2002) developed optimal signed-rank location tests in the elliptic model.

See Nordhausen et al. (2009) for a similar development in the independent component

model. Related affine equivariant multivariate generalizations of the median working with

hyperplanes and simplices are the half-space median by Tukey (1975) and Liu’s median

(Liu 1990).

3.3.5. Location estimates and tests based on a score function. Let y1, ...,yn be a random

sample from a p-variate distribution f(y − µ) where f is symmetric around 0. Let l(z) =

−∇ log f(z) be the optimal multivariate location score. We use an odd score function

k : <p → <p, coming for example from M- or R-estimation to draw inference on the

unknown µ. For efficiency comparisons we need the matrices Ω = E[k(z)k(z)′] ∈ <p×p and

Γ = E[k(z)l(z)′] ∈ <p×p.
Let µ̂ center the observed scores by solving the estimation equation

∑n

i=1
k(yi−µ̂) = 0.

Under general assumptions and with the true location center µ0, the limiting distribution of√
n(µ̂−µ0) is Np(0,Γ

−1Ω(Γ−1)′). The geometrical mean of the eigenvalues of Γ−1Ω(Γ−1)′

is a global measure of variation that can be used to compare the estimates. The asymptotic

relative efficiencies of the AE spatial median (resp. the AE spatial HL estimate) with

respect to the mean vector are in 2-, 4- and 10-variate normal case are 0.78, 0.88 and 0.95

(resp. 0.97, 0.98 and 0.99). In the multivariate t3 case, for example, the efficiencies are

2.00, 2.25 and 2.42 (resp. 1.95, 2.02 and 2.09). For other sign and rank based estimates

and other distributions, see e.g. Oja (1999, 2010).

The companion M-test statistic for H0 : µ = µ0 is Tn = 1
n

∑n

i=1
k(yi−µ0) with the null

distribution Np(0,Ω). Under a contiguous sequence of alternatives H1,n : µ = µ0 + 1√
n
δ,

the limiting distribution of
√
nTn is Np(Γδ,Ω) and then nT′nΩ−1Tn converges to a
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non-central chi-squared distribution with p degrees of freedom non-centrality parameter

δ′Γ′Ω−1Γδ. The Pitman efficiency with respect to Hotelling’s T 2 test is then the ratio

δ′Γ′Ω−1Γδ/δ′Σ−1δ providing the same efficiencies as in the estimation case. The multivari-

ate sign and signed-rank tests are not distribution-free but conditionally distribution-free

sign-change test versions are naturally available for any choice of the odd score function k.

3.3.6. Testing for multivariate normality. Classical Mardia’s test statistics for testing mul-

tivariate normality (Mardia 1970) are based on the maximal invariant statistic D = (dij) =

(Y− 1nȳ′)Ŝ−1
y (Y− 1nȳ′)′ and computed as follows. First, multivariate measures of skew-

ness and kurtosis are given by b1 = 1
n2

∑n

i=1

∑n

j=1
d3ij and b2 = 1

n

∑n

i=1
d4ii Then, under

the null hypothesis of multinormality, the limiting distribution of nb1/6 is a chi-square

distribution with p(p + 1)(p + 2)/6 degrees of freedom and the limiting distribution of√
n(b2 − p(kp+ 2))/

√
8k(k + 2) is N(0, 1).

Starting from location functionals µ1 and µ1 and scatter functionals Σ, Σ1 and Σ2,

(rescaled to give the covariance matrix in the multivariate normal case), skewness and kur-

tosis statistics (µ̂1−µ̂2)′Σ̂
−1

(µ̂1−µ̂2) and m2(Σ̂
−1

1 Σ̂2−Ip) can also be used to test for mul-

tivariate normality. For testing ellipticity, the kurtosis should be replaced by s2(Σ̂
−1

1 Σ̂2).

See Kankainen et al. (2007).

Also univariate tests of normality can be utilized in testing for multivariate normality.

Then for zi = S
−1/2
y (yi − ȳ), i = 1, ..., n, the test statistic can be for example

sup
u:u′u=1

(
n

6

[
n∑
i=1

(u′zi)
3

]2

+
n

24

[
n∑
i=1

(u′zi)
4 − 3

]2)
.

3.4. Multivariate Linear Regression

3.4.1. Linear regression model. The conditional distribution of yi ∈ <p given xi ∈ <q,
i = 1, ..., n, is that of

yi = Azi + b0 + B′xi

where A ∈ <p×p,b0 ∈ <p,B ∈ <q×p, z1, ..., zn is a random sample from the p-variate

distribution of z, E(z) = 0 and Cov(z) = Ip. Again, one may assume that z has a

Np(0, Ip)-distribution or a distribution in other models listed in the location-scatter case.

The data matrix is now (X,Y) ∈ <n×(q+p) where X is a design matrix or the matrix of

observational explaining variables with the same assumptions as in the univariate response

variable case. The aim is to make inference on regression parameters b0 and B and scatter

matrix AA′ based on the knowledge or assumptions on the distribution of z.

3.4.2. M-estimates of the regression coefficients. Write zi = Σ−1/2(yi − β0 − β′xi), i =

1, ..., n.. The M-estimates for multivariate regression then solve

n∑
i=1

w1(|zi|)x̃iz′i = 0 and

n∑
i=1

w2(|zi|)ziz′i =

n∑
i=1

w3(|zi|)Ip

with some choices of positive weight functions w1, w2, w3. One-step estimates are(
β′0
β

)
←

[
n∑
i=1

w1(|zi|)x̃ix̃′i

]−1 n∑
i=1

w1(|zi|)x̃iy′i

16 Nordhausen and Oja



and

Σ←
∑n

i=1
w2(|zi|)(yi − β0 − β′xi)(yi − β0 − β′xi)

′∑n

i=1
w3(|zi|)

.

3.4.3. R-estimates of the regression coefficients. Regression R-estimates in the first two

sign-rank approaches are based on the objective functions

n∑
i=1

‖yi − β0 − β′xi‖ and
∑
i<j

‖(yj − yi)− β′(xj − xi)‖

with L1 or L2 norms as in the location case. The estimates then solve the estimation

equations
n∑
i=1

x̃is(zi)
′ = 0 and

n∑
i=1

xirn(zi)
′ = 0

with a corresponding notion of sign and rank. Note that the rank estimate is only for B

and, if needed, b0 must be estimated separately from the residuals yi − β′x′i, i = 1, ..., n

(Puri & Sen 1971; Oja 2010). Similar results for the Oja signs and ranks are still missing.

3.4.4. Elemental estimates of the regression coefficients. We briefly discuss the use of

elemental estimates in the multivariate multiple regression. The hyperplane (fit) going

through p+ q observations listed in K = (i1, ..., ip+q), i1 < ... < ip+q, is now

det

 1 1 ... 1 1

xi1 xi2 ... xip+q x

yi1 yi2 ... yip+q y

 = (d0(K),d′1(K),d′2(K))

 1

x

y

 = 0.

The elemental estimate, unbiased for b0 and B(K) are then

b0(K) = −d0(K)d2(K)

||d2(K)|| and B(K) = −d1(K)d′2(K)

||d2(K)|| .

The estimate may then be a weighted average of the elemental estimate such as[∑
K

B(K)W(K)

][∑
K

W(K)

]−1

.

The LS estimate for example is obtained using W(K) = d2(K)d2(K)′ (Ollila et al. 2003b).

3.5. R Packages for Multivariate Methods with an Example

Most multivariate methods based on the mean vector and covariance matrix and classical

multivariate regression are a part of the default R installation. Various M-estimates of

location and scatter as well as MVE and MCD are found in the packages ICS (Nordhausen

et al. 2008b), ICSNP (Nordhausen et al. 2015), fastM (Dümbgen et al. 2014), MASS and

robustbase for example. Methods based on marginal signs and ranks are for example in

the package ICSNP. Spatial sign and rank methods are provided in MNM (Nordhausen & Oja

2011), which is almost a full implementation of all methods described in Oja (2010). The

package OjaNP (Fischer et al. 2016) has several algorithms for the Oja median, signs and

ranks.
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Figure 1

On the left, the colored curves describe how the medians move when the data points are rotated
around the cross. On the right, the lines describe how the medians move when the x-axis is

multiplied by a positive scalar.

In Figure 1 we visualize the equivariance properties of the three multivariate medians.

The left panel shows how the medians move when the original data points shown in the figure

are rotated around the cross by an orthogonal matrix. Orthogonal invariant estimators

move along circles whereas the marginal median, which does not have this property, takes

an unpredictable path. Similarly, in the right panel, the observed x-values are rescaled by

a positive constant and scale equivariant estimators then move along parallel lines. The

spatial median fails in an unpredictable way. We strongly encourage the use of affine

equivariant methods and affine equivariant versions of spatial signs and rank methods for

example are accessible in R package MNM.

In Figure 2 we compare the robustness of three affine equivariant location-scatter esti-

mates: (i) Hettmansperger-Randles estimate based on spatial signs, (ii) AE spatial Hodges-

Lehmann estimate with as a companion scatter estimate based on spatial signed-ranks, and

(iii) the regular mean vector and covariance matrix. On the left panel, for a sample of size

200 from bivariate normal distribution, the three pairs of estimators are plotted and there

is hardly any difference visible. Then, in the right panel, three points have been moved to

the top left corner. While this clearly affects the regular mean and covariance matrix, the

nonparametric robust estimates are only slightly affected by this change. Note the scatter

matrix estimates are here visualized using the corresponding tolerance ellipses.

4. SUBSPACE ESTIMATION AND SCATTER MATRICES

4.1. Principal Component Analysis

4.1.1. Estimation of principal components. Assume that y1, ...,yn is a random sample from

a p-variate distribution of y = Az + b where A ∈ <p×p,b ∈ <p E(z) = 0 and Cov(z) = Ip.

Write then Σ = AA′ for the covariance matrix of y. In the principal component analysis

the idea is to replace (without losing too much information) the original p variables in y

by a much smaller number of uncorrelated linear combinations v′iy, i = 1, ..., q, such that
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Figure 2

Behaviour of mean vector and covariance matrix and affine equivariant location-scatter estimates
based on spatial signs and spatial signed-ranks, respectively, for the original (left panel) and

contaminated (right panel) data.

v′ivi = 1, i = 1, ..., q. If Σ = UΛU′ =
∑p

i=1
λiuiu

′
i is the eigendecomposition of Σ with

λ1 ≥ ... ≥ λq > λq+1 ≥ ... ≥ λp. then the sum of the variances
∑q

i=1
V ar(v′iy) (and the

amount of information in this sense) is maximized if we choose vi = ui, i = 1, ..., q. For

general review of PCA see for example Jolliffe (2002).

In the following assume that z ∈ <p has a spherical distribution, that is Uz ∼ z for all

orthogonal U ∈ <p×p. It then holds under general assumptions that, if Σ̂z is the scatter

matrix estimate obtained from z1, ..., zn, the limiting distribution of
√
n vec(Σ̂z − Ip) is

Np2
(
0, σ1(Ip2 + Kp,p) + σ2vec(Ip)vec(Ip)

′)
where Kp,p =

∑p

i=1

∑p

j=1
(eie

′
j)⊗ (eje

′
i) is the so called commutation matrix. The limiting

distribution depends only on two constants σ1 = AsV ar(Σ12) and σ2 = AsCov(Σ11,Σ22)

and then AsV ar(Σ11) = 2σ1 +σ2. As vec(Σy) = (A⊗A)vec(Σ)z, the limiting distribution

of Σ̂y is easily derived from that of Σ̂z (see e.g. Oja 2010).

Let next Σ̂ = ÛΛ̂Û′ =
∑p

i=1
λ̂iûiû

′
i. be the eigendecomposition of Σ̂. Assume that the

ith eigenvalue λi of Σ is distinct from other eigenvalues. Then
√
n(ûi − ui) has a limiting

p-variate normal distribution with zero mean vector and covariance matrix

AsCov(ûi) = σ1

∑
j 6=i

λiλj
(λi − λj)2

uiu
′
i, i = 1, ..., q,

and the limiting distribution of
√
n(λ̂i − λi) is a normal distribution with zero mean and

variance 2σ1 +σ2. For the regular covariance matrix and z ∼ Np(0, Ip), σ1 = 1 and σ2 = 0.

The influence function of the scatter functional Σ at a spherical Fz is

IF (z; Σ, F ) = α(||z||) zz′

||z||2 − β(||z||)Ip

and, if function α is known, σ1 = E(α2(||z)||)/(p(p+ 2)) can be consistently estimated from

the data y1, ...,yn. See e.g. Tyler (1983); Croux & Haesbrock (2000). For details about
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PCA using multivariate sign and rank covariance matrices see for example Locantore et al.

(1999),Croux et al. (2002), Oja (2010) and Taskinen et al. (2012).

4.1.2. Testing for dimension. Write Σ = UΛU for the eigendecomposition of Σ where the

diagonal elements of Λ are λ1 ≥ ... ≥ λp > 0. We wish to test the null hypothesis of

subsphericity,

H0q : λ1 ≥ ... ≥ λq > λq+1 = ... = λp = λ for some unknown λ.

It is then thought that the q first principal components carry all the information and the

last p− q components represent spherical noise. To test the null hypothesis, a natural test

statistic is the variance of the p− q smallest eigenvalues of Σ̂, that is,

Tq := s2(Û′qΣ̂Ûq), where Ûq := arg min
U∈Op×(p−q)

s2(U′Σ̂U)

and Op×(p−q) is the set of p × (p − q) matrices with orthonormal columns. For the test

construction we also need to estimate one population constant σ1, namely, the limiting

variance of the off-diagonal element of Σ̂ in a spherical case; see the discussion above. The

unknown λ must be estimated as well; a consistent estimate is given by λ̂ = m1(Û′qΣ̂Ûq).

Then, under H0q,
n(p− q)Tq

2λ̂2σ̂1

→d χ
2
(p−q−1)(p−q+2)/2.

For these results, estimation of q and bootstrap testing for the same problem, see for example

Nordhausen et al. (2016) and references therein.

4.2. Independent Component Analysis and Related Methods

4.2.1. Estimation of the unmixing matrix. In the semiparametric independent component

(IC) model it is assumed that y1, ...,yn is a random sample from a distribution of

y = Az + b,

where A ∈ <p×p is non-singular, b ∈ <p, and z is a random p-vector with independent

and standardized components, that is, E(z) = 0 and Cov(z) = Ip. We assume that q

components of z are non-Gaussian (signal), and p− q components Gaussian (noise). In the

classical IC model, at most one component is Gaussian, that is, q ≥ p− 1. The idea is then

to estimate the transformations back to the non-Gaussian components and to test for the

dimension.

In classical fourth order blind identification (FOBI) (Cardoso 1989) one uses two moment

based scatter matrices,

Σ1 = E
[
(y − E(y))(y − E(y))′

]
and Σ2 = E

[
r2(y − E(y))(y − E(y))′

]
,

where r2 = (y − E(y))′Σ−1
1 (y − E(y)). Then a matrix W = (w1, ...,wp) ∈ <p×p and a

diagonal matrix Λ ∈ <p×p are found such that

W′Σ1W = Ip and W′Σ2W = Λ.

The matrix W is called an unmixing matrix as, under certain assumptions (including that

there is at most one gaussian component), W′y = z up to the order, shifts and signs of the
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components. The eigenvalues in Λ measure the kurtoses of the marginal variables in Wy

and equal p + 2 for gaussian components. The eigenvalues can then be used to separate

the Gaussian and non-Gaussian components. Notice that if U ∈ <p×p is the matrix of

eigenvectors of R := Σ
−1/2
1 Σ2Σ

−1/2
1 then W′ = U′Σ

−1/2
1 . FOBI can be robustified by

replacing the moment based scatter matrices by any robust scatter matrices Σ1 and Σ2

possessing the independence property (Oja et al. 2006; Nordhausen et al. 2008a).

In the Joint Approximate Diagonalization of Eigenmatrices (JADE) (Cardoso &

Souloumiac 1993) all possible fourth order cumulants are used. The fourth order cumu-

lants of z = Cov(y)−1/2(y − E(y)) are given in the matrices Cij = E
(
zz′Eijzz′

)
− Eij −

Eji − tr(Eij)Ip, where Eij = eie
′
j , i, j = 1, . . . , p. If an orthogonal U is chosen to max-

imize
∑p

i=1

∑p

j=1

∥∥diag (U′CijU
)∥∥2, the independent components are surprisingly found

in U′Cov(y)−1/2y. For a throughout discussion of FOBI and JADE, see Miettinen et al.

(2015b). The third main approach is the so called projection pursuit or fastICA (Huber

1985; Hyvärinen & Oja 1997): Choose a affine invariant measure G(y) of non-gaussianity

of a univariate random variable y such as

G(y) = αE2

[(
y − E(y)

V ar(y)1/2

)3
]

+ (1− α)E2

[(
y − E(y)

V ar(y)1/2

)4

− 3

]

and then find W = (w1, ...,wq)
′ ∈ <q×p to maximize

∑q

i=1
G(w′iy) under the constraint

WΣW′ = Iq. For more details, see Virta et al. (2016); Miettinen et al. (2017a). For the

use of signs and ranks in ICA, see Ilmonen & Paindaveine (2011); Hallin & Mehta (2015).

Finally, for a general overview of ICA, see Comon & Jutten (2010).

4.2.2. Inference on the dimension of non-Gaussian subspace. In this section we discuss

the use of the eigenvalues of the estimated FOBI matrix R̂ = Σ̂
−1/2

1 Σ̂2Σ̂
−1/2

1 for the

inference on unknown q. We then need to assume that, for the q-subvector of non-Gaussian

components of z, say zNG, the fourth moments exist and E[(u′zNG)4] 6= 3 for all u′u = 1,

u ∈ <q. We wish to test the null hypothesis

H0,q : exactly p− q eigenvalues of R equal p+ 2 ,

stating that the dimension of the signal space is q. To test the null hypothesis H0,q, we use

the test statistic

Tq = min
U∈Op×(p−q)

m2

(
U′(R̂− (p+ 2)Ip)U

)
,

that is, the smallest sum of squared distances of p − k eigenvalues from p + 2. If H0,q is

true, then under general assumptions

n(p− q)Tq →d∼ 2σ1χ
2
(p−q−1)(p−q+2)/2 + (2σ1 + σ2(p− q))χ2

1

with independent chi-squared variables χ2
(p−q−1)(p−q+2)/2 and χ2

1 and σ1 = V ar
(
‖z‖2

)
+ 8

and σ2 = 4. Further, if (ck,n) is a sequence such that ck,n → ∞ and
ck,n

n
→ 0 as n → ∞,

then q̂ = min{k : n(p − k)Tk < ck,n} →P q. For bootstrap testing strategies and more

details, see Nordhausen et al. (2016, 2017).

Recall that FOBI is just a simple special case of the so called two-scatter method; Σ1

and Σ2 are then replaced by any two scatter matrices. Deriving asymptotic tests or using

bootstrap testing strategy with Tq = minU∈Op×(p−q) s2
(
U′R̂U

)
is then also an option for
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testing H0,q. The test above is valid also in the wider Non-Gaussian Component Analysis

(NGCA) model where the non-Gaussian and Gaussian parts are still independent but the

Gaussian components are allowed to be mutually dependent. See Nordhausen et al. (2017).

4.3. Sliced Inverse Regression and Related Methods

4.3.1. Subspace estimation with known dimension. In a regression context, let

(y,X) =

((
y1
x1

)
, ...,

(
yn
xn

))′
∈ <n×(p+1)

be a random sample from a distribution of (y,x′)′ where now x = Az+b, with non-singular

A ∈ <p×p, b ∈ <p and random z = (z′1, z
′
2)′ such that E(z) = 0, Cov(z) = Ip and (y, z′1)′

and z2 are independent. We assume that the partition z = (z′1, z
′
2)′ is the unique one with

the smallest q (up to inner rotations). The aim is to estimate the projections to the signal

subspace of x determined by z1. Our assumption on the independence between (y, z′1)′ and

z2 is stronger than the regular assumptions in sliced inverse regression and therefore allows

easier derivations of the results sketched below. For more details, see Nordhausen et al.

(2017).

The sliced inverse regression (SIR) (Li 1991) again uses two scatter matrices, namely,

Σ1 := E
[
(x− E(x))(x− E(x))′

]
and Σ2 := E

[
E(x− E(x)|y)E(x− E(x)|y)′

]
.

Note that the second scatter matrix is supervised in the sense that it depends on the joint

distribution of x and y. One then finds a transformation matrix W ∈ <p×p and a diagonal

matrix Λ ∈ <p×p such that W′Σ1W = Iq and W′Σ1W = Λ where the diagonal elements

of Λ are in a decreasing order. Again, W′ = U′Σ
−1/2
1 with an orthogonal U ∈ <p×p that

is the matrix of eigenvectors of R := Σ
−1/2
1 Σ2Σ

−1/2
1 . In practice, the random variable y

is replaced by its discrete approximation
∑H

h=1
yh1y∈Sh for some disjoint intervals (slices)

S1, . . . , SH such that < = S1 + . . . + SH and for some choices yh ∈ Sh, h = 1, . . . , H. The

first q columns of W give the transformation to z1 (up to rotation).

In the sliced average variance estimate (SAVE) (Cook & Weisberg 1991) one uses

the variation in conditional covariance matrices to find the subspace and the second

scatter matrix is then Σ2 = E
[
(Cov(x|y)− Cov(x))Cov(x)−1 (Cov(x|y)− Cov(x))

]
.

In the canonical correlation analysis (CCA) for example the second scatter matrix is

Σ2 = Cov(x,y)Cov(y)−1Cov(y,x). The directional regression (DR) (Li & Wang 2007)

approach and principal Hessian directions (PHD) (Li 1992) can be written as well using

the regular covariance matrix and a supervised scatter matrix (Liski et al. 2014). For the

influence functions of these approaches see for example Prendergast & Smith (2010) and

references therein and a robust version of SIR was suggested in Gather et al. (2001).

4.3.2. Inference on unknown dimension. We wish to test the null hypothesis

H0q : exactly p− q eigenvalues of R are zero,

stating that the dimension of the signal space is exactly q. Let again R̂ = Σ̂
−1/2

1 Σ̂2Σ̂
−1/2

1 .

The number of slices in the estimation is assumed to be large enough so that H > q+ 1 To

test the null hypothesis, we use the test statistic that is the average of the p − q smallest

eigenvalues, that is,

Tq := min
U∈Op×(p−q)

m1(Û′R̂Û).
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Then, under Hq and under general assumptions (including that H > q + 1), we have

n(p− q)Tq →d χ
2
(p−q)(H−q−1). For further details and a bootstrapping testing strategy, see

for example Li (1991), Bura & Cook (2001) and Nordhausen et al. (2016).

4.4. R Packages for Subspace Estimation with an Example

PCA has many implementations in R, already the standard R has two functions for it. Our

preferred packages in R for ICA are ICS, JADE (Miettinen et al. 2017b) and fICA (Miettinen

et al. 2015a). For many ICA estimators in these packages asymptotic quantities can be

computed using the package BSSasymp (Miettinen et al. 2017b). Supervised dimension

reductions methods like SIR, SAVE and PHD are available in the package dr (Weisberg

2002). The subspace dimension estimation methods as discussed here are implemented in

ICtest (Nordhausen et al. 2016).

Using these packages we first visualize the different subspaces. Figure 3 shows in the

left panel a random sample from an IC model with one uniform and one Gaussian com-

ponent. The next three panels then show the data after standardization, the principal
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Figure 3

The left panel shows observations from a bivariate IC model with one uniform and one Gaussian component. The next

three panels are then (from left to right) the standardized components, the principal components and the independent
components.

components based on the regular covariance matrix and the independent components using

FOBI. Recall that the independent components are found just by rotating and/or reflecting

the standardized data until the observations are correlated also w.r.t. the second scatter

matrix.

To conclude this section we consider the data in the left panel of Figure 4 which looks

like well behaving Gaussian or elliptic data. Regular PCA gives the principal components

in the middle panel showing some tendency towards non-Gaussiniaty. The FOBI solution in

the right panel fully recovers the hidden structure of non-Gaussian and Gaussian parts. The

asymptotic test described in Section 4.2.2 yields for the null hypotheses of four Gaussian

components and that of three Gaussian components p-values< 0.001 and 0.281, respectively,

indicating that there are indeed three normal components independent from the bivariate

signal.
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Figure 4

The left scatter plot matrix shows the observed data, the middle one the principle components and the right one
independent components from the FOBI approach.

5. ANALYSIS OF DEPENDENT AND FUNCTIONAL DATA

5.1. Clustered Data

Clustered data problems are encountered almost everywhere in applied research. A typical

situation is that instead of sampling n independent and identically distributed random

variables, the observations come inm clusters with known cluster memberships. To state the

assumptions to model clustered data, we write yi1, ...,yini for the ni p-variate observations

in the ith cluster, i = 1, ...,m. Let xij be a possible vector of (design or observational)

explanatory variables for the response yij , i = 1, ...,m; j = 1, ..., ni. Assume first that the

cluster sizes n1, . . . , nm are fixed design constants. In the linear regression model it is then

often assumed that,

(i) the p-variate distributions of zij = yij − b0 −B′xij are all the same,

(ii) all the joint 2p-variate distributions of zij and zij′ , j 6= j′ are the same, and

(iii) zij and zi′j′ , i 6= i′ are independent.

If joint multivariate normality of the random errors zij can be assumed (parametric model),

regular multivariate mixed models with cluster random effects can be employed. Alterna-

tively, for sign and rank based methods for example, variance adjusted test and estimating

procedures based on different weighting schemes all provide valid statistical inference. If

n1, ..., nm are random and the joint distribution of the random errors zij does not depend

on n1, ..., nm, it is still reasonable to assume that (i)–(iii) hold conditionally on n1, ..., nm.

For sign and rank tests, see for example Kloke et al. (2009), Konietschke & Brunner (2009)

and Nevalainen et al. (2010) and references therein.

A much more complex setting arises when the random cluster size ni may have an

influence on the measured values xij and yij , or vice versa, possibly due to an unobservable

latent variable. The setting is termed informative cluster size, because the cluster size

could then carry information about the quantities or parameters of interest. The standard

approaches are not sufficient any more if the cluster size is informative. Nevalainen et al.

(2014) introduced extensions of common population quantities of interest—such as location

and scale functionals, and regression coefficients including M-functionals and R-functionals
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and discussed their sample counterparts as well. Nevalainen et al. (2017) considered the

problem of testing for informative cluster size.

R packages useful in clustered data analysis are for example lme4 (Bates et al. 2015),

robustlmm (Koller 2016), lqmm (Geraci 2014), ClusterRankTest (Dutta & Datta 2016) and

mvctm (Larocque 2017).

5.2. Matrix Valued Data

In some applications, the independent and identically distributed random variables

Y1, ...,Yn are structured as p × q matrices rather than as pq vectors. For multivariate

clustered data with p measurements on q individuals in each cluster, for example, the mea-

surements in a single cluster may be seen as a random matrix Y ∈ <p×q. For repeated

measures design with p variables and q repetitions, the observations for each individual

are p × q matrices. In applications of matrix and, more generally, tensor valued data, the

problem itself often suggests the Kronecker structure in modelling so that

Y = ALZA′R + B ∈ <p×q,

where AL ∈ <p×p, AR ∈ <q×q, B ∈ <p×q and Z ∈ <p×q is a standardized matrix valued

random variable with E(Z) = 0 and Cov(vec(Z)) = Ipq. Thus, E(Y) = B and the

covariance matrix of the vectorized observation has the Kronecker covariance structure,

Cov(vec(Y)) = (ARA′R)⊗ (ALA′L). If the columns of Y are exchangeable random vectors,

as is the case with clustered data, then ARA′R ∝ (1−ρ)Iq+ρ1q1
T
q (the intraclass correlation

structure).

The parametric multivariate normal model or the semiparametric elliptical model are

obtained if one assumes that vec(Z) has theNpq(0, Ipq) distribution or a spherically symmet-

ric distribution, respectively. In the independent component model, one again assumes that

the elements of Z are independent. See for example Gupta & Nagar (2010) for an overview

of matrix-valued distributions. In the multivariate normal case Srivastava et al. (2008)

introduced likelihood ratio test for the null hypotheses of Kronecker covariance structure.

For other approaches to this estimation problem, see Wiesel (2012) and Ros et al. (2016).

Sun et al. (2016) for example considered robust estimation of a structured covariance ma-

trix, including Kronecker covariance structure, under heavy-tailed elliptical distributions.

Analysis tools for matrix and tensor valued observations such as principal component anal-

ysis, independent component analysis and sliced inverse regression have been increasingly

discussed in the literature. See e.g. Virta et al. (2016,a,b); Virta & Nordhausen (2017) and

the discussions and references therein.

5.3. Multivariate Time Series

In this section we consider p-variate time series y = (yt)t=0,±1,±2. For a full-rank matrix

A ∈ <p×p and a vector b ∈ <p, Ay+b is then a time series with values (Ay+b)t = Ayt+b,

t = 0,±1,±2, ... We assume that the observed p-variate time series y1, ...,yT follows the

model y = Az + b, where b ∈ <p is a location vector, A ∈ <p×p is a mixing matrix, and

the components of the p-variate marginal time series in z are uncorrelated and stationary

with E(zt) = 0 and Cov(zt) = Ip. The goal in the so called blind source separation (BSS)

is to find an unmixing matrix functional W = W(y) ∈ <p×p such that the marginal time

series in W(y)y are standardized and uncorrelated.
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The most popular BSS methods designed for time series is SOBI (Second Order Blind

Identification) (Belouchrani et al. 1997). SOBI uses the cross-autocovariance matrices

Στ (y) = E [(yt − E(yt))(yt+τ − E(yt))
′] , τ = 0, 1, . . . ,K, and finds W that maximizes∑K

τ=1

∑p

i=1
(Στ (Wy))2ii under the constraint Σ0(Wy) = Ip. Different algorithms for this

so called joint diagonalization and the statistical properties of the resulting estimates are

discussed for example Miettinen et al. (2014, 2016). SOBI is a valid procedure if the la-

tent time series are linear processes but does not work for times series exhibiting stochastic

volatility. For such cases, time series extensions of FOBI and JADE using fourth order

cross-moment matrices were suggested in Matilainen et al. (2015). For BSS methods that

work with spatial signs of yt, see Nordhausen (2014); Ilmonen et al. (2015).

5.4. Functional Data

Functional observations are often assumed to belong to H = L2(0, 1), a separable Hilbert

space with the scalar product scalar product 〈f, g〉 =
∫ 1

0
f(t)g(t)dt, and norm ||f || =

〈f, f〉1/2 . In the separable Hilbert space H = L2(0, 1), there exists an orthonormal basis

(fj), that is, 〈fj , fk〉 = δjk such that H = {y : y =
∑∞

j=1
yjfj}. In practice, one chooses

orthonormal basis functions (gj) such as (i) Fourier basis functions, (ii) spline functions,

(iii) wavelets, (iv) basis functions based on kernel smoothing of data functions, etc. The

final data to be analyzed is then often located in a truncated space {y : y =
∑q

j=1
yjgj}.

In functional data analysis, one speaks about linear operators rather than matrices. The

class of Hilbert-Schmidt operators is particularly interesting: A linear operator A : H → H is

Hilbert-Schmidt if it allows a singular value decomposition (SVD) Ay =
∑∞

j=1
λj 〈gj , y〉 fj

with two orthonormal bases (gj) and (fj) and a sequence (λj) of non-negative real numbers

such that
∑∞

j=1
λ2
j <∞. Operator A is then an infinite weighted sum of elemental (tensor

product) operators f ⊗ e : y → 〈e, y〉 f .

By the Riesz representation theorem, there is a function E(y) ∈ H, called the mean

function, such that 〈f,E(y)〉 = E 〈f, y〉 , f ∈ H. The covariance operator Cov(y) : H →
H is defined by Cov(y)(f) = E (〈f, y − E(y)〉 (y − E(y))) , f ∈ H. We can also write

Cov(y) = E ((y − E(y))⊗ (y − E(y))) . The covariance operator Cov(y) is also an integral

operator as (Cov(y)f)(t) =
∫
K(t, s)f(s)ds with K(t, s) = Cov(y(t), y(s)). It is easy to see

that E(y) and Cov(y) are affine equivariant in the sense that E(Ay + b) = AE(y) + b and

Cov(Ay + b) = ACov(y)A∗ for all functions b ∈ H and for all linear operators A : H → H.

Our conjecture is that there is no other location function or scatter operator possessing

the affine equivariant property. For recent extensions of (unitary equivariant/invariant)

spatial sign and ranks methods for the data in infinite-dimensional Banach spaces, see e.g.

Chakraborty & Chaudhuri (2014) and the references therein.

The covariance operator Cov(y) is symmetric and positive definite and, if λj , ej , j =

1, 2, ..., are the eigenvalues and eigenfunctions of Cov(y), λ1 ≥ λ2 ≥ ... and
∑

j
λj <∞, the

eigendecomposition of Cov(y) is
∑∞

j=1
λjej ⊗ ej . Further, by Karhunen-Loeve expansion,

y =
∑∞

i=1
ziei where zi = 〈ei, y〉 are uncorrelated random variables, that is, functional

principal components with variances λi, i = 1, 2, .... Many statistical methods, such as

linear regression, principal component analysis, canonical correlation and sliced inverse

regression have been extended to the functional setting as well. See, for example, Ramsay

& Silverman (2005) , Yao et al. (2005a,b), Ferraty & Vieu (2006), Horvath & Kokoszka

(2012), Ferre & Yao (2003, 2005), Hsing & Ren (2009) and Li & Song (2017).
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SUMMARY POINTS

1. In the univariate case, the concepts of sign and rank may be seen as location scores

corresponding to the mean deviation and mean difference. The tests are often

distribution-free in wide nonparametric models. Most methods are implemented in

R and are easy to apply in practice.

2. Multivariate signs, ranks and signed-ranks are based on multivariate extensions of

the mean deviation and mean difference. They offer efficient and fairly robust al-

ternatives to analyze multivariate data. The choice between different extensions

depend on the model assumptions and required equivariance/invariance properties.

The tests are conditionally distribution-free with known asymptotics. The R pack-

age MNM is available for the computation of the spatial procedures for example.

3. The model assumptions can be tested using skewness and kurtosis statistics which

are often based on simultaneous uses of several location and scatter statistics. It is

discussed how scatter statistics can be used in PCA, ICA, SIR and in estimating

spherical or Gaussian subspaces and their dimensions.

4. Recent extensions of semiparametric methods to clustered, matrix valued, time

series and functional data analysis are briefly discussed.

FUTURE ISSUES

1. Robust methods have been developed mainly for neighboring models in the iid

case. In the multivariate case, ellipticity is often assumed. The literature on robust

methods for ICA, BSS, time series, clustered, matrix valued or functional data is

still sparse and the proper theory is often missing. Robust and efficient tools are

needed for dimension reduction and subspace estimation as well.

2. There are huge challenges in the analysis of high dimensional and functional data:

What is for example the role of affine equivariance/invariance in the case of func-

tional data? What can we say about affine equivariance of the covariance operator

in the ‘true’ functional space if the observed functions are in practice in a truncated

finite dimensional space?

3. Asymptotics in the small-n-large-p case: It is easy to understand the idea of con-

sistency and limiting normality of an estimate for fixed p and n→∞. The normal

approximation is then good if n� p. However, we often have data sets with p� n

but there is no logical way of choosing the convergence rates for n and p or the

families of distributions with increasing dimension p.
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