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Abstract: Baltic herring (Clupea harengus membras) is one of the most abundant commercially caught
fish species from the Baltic Sea. Despite the high content of fat and omega-3 fatty acids, the con-
sumption of Baltic herring has decreased dramatically over the last four decades, mostly due to the
small sizes and difficulty in processing. At the same time there is an increasing global demand for
fish and fish oil rich in omega-3 fatty acids. This study aimed to investigate enzyme-assisted oil
extraction as an environmentally friendly process for valorizing the underutilized fish species and
by-products to high quality fish oil for human consumption. Three different commercially available
proteolytic enzymes (Alcalase®, Neutrase® and Protamex®) and two treatment times (35 and 70 min)
were investigated in the extraction of fish oil from whole fish and by-products from filleting of Baltic
herring. The oil quality and stability were studied with peroxide- and p-anisidine value analyses,
fatty acid analysis with GC-FID, and volatile compounds with HS-SPME-GC-MS. Overall, longer
extraction times led to better oil yields but also increased oxidation of the oil. For whole fish, the
highest oil yields were from the 70-min extractions with Neutrase and Protamex. Protamex extraction
with 35 min resulted in the best fatty acid composition with the highest content of eicosapentaenoic
acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) but also increased oxidation compared
to treatment with other enzymes. For by-products, the highest oil yield was obtained from the 70-min
extraction with Protamex without significant differences in EPA and DHA contents among the oils
extracted with different enzymes. Oxidation was lowest in the oil produced with 35-min treatment
using Neutrase and Protamex. This study showed the potential of using proteolytic enzymes in the
extraction of crude oil from Baltic herring and its by-products. However, further research is needed
to optimize enzymatic processing of Baltic herring and its by-products to improve yield and quality
of crude oil.

Keywords: enzymatic hydrolysis; by-products; fish oil; green technologies

1. Introduction

Baltic herring (Clupea harengus membras) belongs to the Clupeidae family which also
include sardines, shads, hilsa and menhadens. Many of the fishes in this family are
recognized as the most important food fishes in the world. Furthermore, Atlantic herring
(Clupea harengus harengus), which belongs to herrings, is the world’s most abundant fish
species. Baltic herring is a subspecies of Atlantic herring, and it is the most important
fished species in Finland both in value and volume [1].

The consumption of Baltic herring in Finland has dropped from over 30 million kg in
the beginning of the 1980s to 3.5–4 million kg in 2019. The total catch, however, is approx.
100 million kg annually. This amount comprises approx. 90% of the catch from the Finnish
sea areas, but most of it is used as feed for animals and in the production of fish meal
and fish oil for fish farms [1]. The low domestic consumption of Baltic herring can be
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linked to at least two main reasons. Firstly, the amounts of dioxins and polychlorinated
biphenyls (PCBs) exceeded the maximum limits set by the EU for a long time, which led
to national recommendations for maximum intake. However, the latest research shows
that dioxins remain under the maximum limits (3.5 pg/g WHO-PCDD/F-TEQ [2]) for
Baltic herring which is under 19 cm long [3]. The reason for the lowered amounts is due
to legislative restrictions in the Baltic Sea region, which have significantly lowered the
pollution of these substances into the Baltic Sea. Secondly, the Baltic herring is a small fish
which makes filleting processes more difficult. Due to the small size, approx. only 10%
of the fish is suitable for automated filleting processes [4]. Seasonal differences in catch
are also seen as low accessibility of fresh fish for consumers. There is an urgent need to
improve the processing and value-addition of Baltic herring, as the feed market for fur
animals is decreasing and the global market for high-quality fish oil and a sustainable
source of proteins is rapidly growing.

The fat content of Baltic herring varies between 4–11% depending on the season, and
the oil is especially rich in polyunsaturated omega-3 (n-3) fatty acids (FAs). Monounsatu-
rated FAs (MUFAs) and polyunsaturated FAs (PUFAs) comprise approx. 39% and 25–29%
of the Baltic herring lipids, respectively [5]. Moreover, Baltic herring is abundant in n-3
FAs eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), found
in concentrations of around 3 and 4 mg/g fresh weight (fw), respectively [6]. EPA and
DHA have many beneficial functions in the human body, such as in cardiovascular, brain,
neuronal, retinal and immune functions [7,8]. Due to the rapidly increasing demand, the
price of fish oil for human consumption has risen threefold since the beginning of the 21st
century [9]. Given the abundance of Baltic herring and its high content of EPA and DHA,
valorization of the oil for human consumption is a path that should be explored.

Conventional methods for fish oil extraction, typically wet rendering, can include
heating and the use of organic solvents in the process. The former induces oxidation and
degradation of heat-labile substances, the latter poses a risk for health and the environment.
Within the frame of a more sustainable production, energy saving and safer green methods
have been investigated for the extraction of fish oils [10] and protein isolates [11]. Examples of
these methods include supercritical fluid extraction using carbon dioxide (SFE-CO2) [11,12],
subcritical water extraction [13], enzymatic hydrolysis [14], fermentation [15], pH-shift
processing, as well as ultrasound and microwave-assisted extractions [16,17]. Typically, the
extraction methods focus primarily on either the protein or oil fraction, whereas the other
is considered a secondary product. However, some methods, such as enzymatic hydrolysis
using specific enzymes, allow the simultaneous extraction of both fractions from, e.g.,
whole fish or fish by-products, such as skin, heads, fins and viscera [18]. For example, a
two-stage processing using mild thermal treatment together with enzymatic treatment
allows the separation of high-quality oil and protein fractions [19]. Additionally, pH-shift
processing can be used to extract proteins while removing up to 50% of the lipids [20].

Although enzyme-assisted extraction has been investigated for extracting oil from
other fish species, to the best knowledge of the authors, no previous research has been
reported on whole fish and by-products of Baltic herring. In this paper, we compared
different enzymatic treatments in the extraction of fish oil from whole fish and by-products
(side streams from filleting) of Baltic herring. The study focused on three different com-
mercial enzymes, which were used with different hydrolysis times. Additionally, solvent
extraction was used as a reference method to assess the performance of the enzymatic ex-
traction. The obtained crudes were characterized in terms of yield and various parameters
as quality indicators, including primary (peroxide value, PV) and secondary oxidation
products (p-anisidine value, AV), fatty acid composition, and profiles of relevant volatile
compounds. Our research provides not only novel scientific findings, but also guidance for
green processing of Baltic herring as the most abundant yet underutilized fish species in
the Baltic Sea.
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2. Materials and Methods
2.1. Raw Materials and Chemicals

The raw materials used in the study were whole Baltic herring and filleting by-
products consisting of heads, fins, tails and viscera from Martin Kala Oy (Turku, Finland).
The fish was caught in November 2019 and frozen at −20 ◦C until analysis. The fish for
pre-testing was gutted and beheaded Baltic herring from Martin Kala Oy, caught in October
2018. The fish and fish parts were received fresh, within one to two days after fishing (and
filleting) and frozen immediately upon arrival.

Proteolytic enzymes Alcalase®, Neutrase® and Protamex® were donated by Novozymes
(Bagsvaerd, Denmark). Methanol for the solvent extraction was purchased from Honeywell
Riedel-de Haën Co. (Seelze, Germany) and chloroform from Thermo Fisher Scientific Inc.
(Waltham, MA, USA). The reagents used in PV analysis were starch “Stärke 33615” from
Honeywell Riedel-de Haën Co. (Seelze, Germany), glacial acetic acid and potassium iodate
from VWR Chemicals (Leuven, Belgium) and sodium thiosulfate (Na2S2O3) from J.T.
Baker Chemicals N.V. (Deventer, Holland). Reagents for the AV were p-anisidine from
Sigma-Aldrich Co. (St. Louis, MO, USA) and iso-octane from Merck KGaA (Darmstadt,
Germany). Methyl acetate and sodium for fatty acid methylation were purchased from
Sigma-Aldrich Co. (St. Louis, MO, USA). The n-Hexane used in fatty acid analysis with
GC-FID was purchased from VWR Chemicals (Leuven, Belgium). The internal standards
used in fatty acid analysis were heptadecanoic acid (TG C:17) and triheneicosanoin (TG
C:19) from Larodan AB (Solna, Sweden). The external standards used in volatile analysis
were a homologous series of n-alkane standards (C7-C30 Saturated Alkanes) from Supelco
(Bellefonte, PA, USA), 1-penten-3-ol and (E)-2-pentenal from Fluka (Buchs, Switzerland),
acetaldehyde, acetic acid, propanal, hexanal, heptanal, octanal, nonanal, 2-ethylfuran,
2-pentylfuran and (E,E)-2,4-hexadienal from Sigma-Aldrich Co., and butanal and (E)-2-
hexenal from Acros Organics (Carlsbad, CA, USA).

2.2. Enzyme-Assisted Extraction

The raw material was defrosted at 4 ◦C for 18–24 h. For each treatment, 200 g of fish
was chopped into approx. 2 cm cubes and placed in a 1 L volumetric bottle, followed by
the addition of 200 mL of tap water. Each treatment was conducted in triplicate. One of the
proteolytic enzymes Alcalase®, Neutrase® or Protamex® was added in a concentration of
0.4 g/100 g fish. The enzyme dosage was chosen between the recommended concentration
by Novozymes (0.1–0.2%) and the dosage commonly used in earlier research, i.e., 0.5%
w/w [18]. The samples were kept in a water bath at 55 ◦C for 35 or 70 min, after which the
water was heated to 90 ◦C and held for 15 min to inactivate the enzymes. The processing
temperatures were recommended by the enzyme producer. The recommended reaction
time for fish hydrolysate was 25–45 min, and therefore, two hydrolysis time points were
chosen: one within the recommended time (35 min) and one extended time (70 min). The
samples were cooled in an ice bath for 1 h. The samples were centrifuged at 4500 rpm for
20 min while cooling was set to 4 ◦C (Avanti jxn-26, Beckman Coulter, Brea, CA, USA).
The oil layers from each triplicate were pooled together to limit the number of samples for
analyses. The combined oil sample was centrifuged again at 3000 rpm for 5 min (Eppendorf
Centrifuge 5804, Eppendorf AG, Hamburg, Germany). The sample tubes were flushed
with nitrogen gas and stored at −80 ◦C. The pre-testing was conducted with the same
conditions as mentioned before, but only the extraction time of 35 min was used. For the
pre-testing, each treatment was conducted in triplicate.

2.3. Solvent Extraction

Modified Bligh and Dyer extraction using chloroform and methanol as solvents was
used as a reference extraction method [21]. The changes made to the original method
were: centrifugation at 4500 rpm for 10 min, and the solvent layers were evaporated with a
rotary evaporator.



Foods 2021, 10, 1811 4 of 25

2.4. Yield

The amounts of crude oil from each extraction were measured gravimetrically. The
crude oil fractions from triplicates were pooled together, and the yield was calculated as
percentage of the raw material used.

2.5. Peroxide Value

The peroxide values (PVs) of the oil samples were determined according to the AOCS
Cd 8-53 method (AOCS, 2004) using acetic acid and chloroform. For each analysis, 2.0 g of
oil was weighed. An amount of 0.01 N Na2S2O3 was used as the titrant because the PVs
of the crude oils were expected to be over 12. The starch indicator (10 g/L) was freshly
prepared. Each sample was analyzed in triplicate.

2.6. p-Anisidine Value

The p-anisidine values (AVs) were determined by the AOCS Cd 18-90 method (AOCS,
2004), using 0.5 g of the extracted oil for each analysis. A blank was prepared for each
sample using analytical-grade iso-octane. The samples were read at 350 nm with a spec-
trophotometer. Each oil sample was analyzed in duplicate.

2.7. Fatty Acid Analysis

The fatty acid analysis was conducted from the oil samples after converting FAs to
fatty acid methyl esters (FAMEs) using the sodium methoxide catalyzed method [22] with a
slight modification: the reaction was stopped with glacial acetic acid instead of oxalic acid.
FAMEs dissolved in hexane were analysed with a gas chromatograph (Shimadzu GC-2010
equipped with AOC-20i auto injector, flame ionization detector, Shimadzu corporation,
Kyoto, Japan). The injection (0.5 µL) was operated in a splitless mode with a sampling time
of 1 min. Helium was used as the carrier gas. The column was a DB-23 (60 m × 0.25 mm
i.d., liquid film 0.25 µm, Agilent Technologies, J.W. Scientific Santa Clara, CA, USA). The
following temperatures were used: inlet temperature 270 ◦C; oven temperature 130 ◦C for
1 min, followed by increases of 6.5 ◦C/min to 170 ◦C, 2.75 ◦C/min to 205 ◦C (held 18 min)
and 30 ◦C/min to 230 ◦C (held 2 min); detector 280 ◦C. The enzymatically extracted samples
included triheptadecanoin and the solvent extracted samples included triheneicosanoin as
internal standards. FAs were identified using external standards Supelco 37 Component
FAME mix (Supelco, St. Louis, MO, USA) and 68D and GLC-490 (Nu-Check-Prep, Elysian,
MN, USA). Correction factors were calculated using the external standards. The quantifi-
cation of the FAs was conducted based on the internal standard area, concentration and
correction factors. Each sample was analyzed in triplicate.

2.8. Volatile Analysis

The volatile compounds of the extracted crude oils were analyzed with head-space
solid-phase micro extraction combined with gas chromatography and mass spectrometry
(HS-HPME-GC-MS). For the analysis, 0.2 g of each oil sample was diluted in 2 mL of
hexane. A volume of 0.5 mL of the dilution was pipetted into a 10 mL SPME headspace vial
and the solvent was evaporated under nitrogen gas. The volatile compounds were collected
with a divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS, 50/30 µm)
fibre from Supelco at 45 ◦C for 30 min under agitation using a TriPlus RSH multipurpose
autosampler (Thermo Scientific, Waltham, MA, USA). The GC–MS analyses were conducted
using a Trace 1310 Gas Chromatograph (Thermo Scientific™) with an SPB®-624 Fused Silica
Capillary Column 60 m × 0.25 mm × 1.4 µm (Merck KGaA, Darmstadt, Germany). The GC
was coupled to an ISQ 7000 Single Quadrupole Mass Spectrometer (Thermo Scientific™).
Each analysis was carried out as a triplicate.

The incubation and extraction times of the samples were 20 min and 30 min, respec-
tively. The samples were agitated at 40 ◦C. The fiber was cleaned at 250 ◦C for 2 min prior
to extraction and 5 min after extraction. The volatiles were desorbed from the GC injector
port for 5 min at 240 ◦C (splitless mode). Helium was used as a carrier gas in the gas
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chromatography at a flow rate of 1.4 mL/min. The oven temperature was programmed to
hold at 40 ◦C for 6 min, after which it was increased to 200 ◦C at a rate of 5 ◦C/min and
held at 200 ◦C for 10 min. Mass spectra were recorded in electron-impact (EI) mode at
70 eV within the mass range m/z 40−300. Chromeleon 7.0 (Thermo Scientific™) was used
to operate the system. The main volatile compounds formed as products of lipid oxidation
were tentatively identified based on retention index (RI) calculated using a homologous se-
ries of n-alkane standards from Supelco and NIST MS Search library (version 2.3, National
Institute of Standards and Technology, Gaithersburg, MD, USA).

2.9. Statistical Methods

The differences in PV and AV were compared with one-way analysis of variance
(ANOVA) and Tukey’s test in SPSS (IBM SPSS Statistics, version 25.0.0.1, IBM, New York,
NY, USA). The FA data were analyzed with two-way ANOVA to discriminate the effects
of hydrolysis times and enzymes. Further, the FA compositions of different enzymatic
treatments were compared to solvent-extracted oil with one-way ANOVA. Significant
differences for one-way ANOVA are reported for p < 0.05 and significant differences for
both p < 0.05 and p < 0.001 are reported. Principal Component Analysis (PCA) using the
Unscrambler® X version 10.4.1 (Camo Process AS, Oslo, Norway) was applied to peak area
data to determine differences in volatile profiles and to average data of selected measured
parameters to determine the overall correlation between treatments and materials. The
data were mean-centered and weighed (1/sdev) for PCA using Unscrambler.

3. Results and Discussion
3.1. Yield

The lipid yields of solvent and enzymatically extracted oils from pre-testing with
gutted and beheaded Baltic herring and actual study samples with whole fish and by-
products are presented in Table 1. The Bligh and Dyer solvent extraction is assumed to
result in the recovery of more than 95% of the total lipids present in the raw materials, and
therefore the total lipid contents were estimated to be 9.0% and 9.5% for whole fish and by-
products, respectively. The fat content of the fish caught in autumn 2018 was similar to the
levels reported in the literature [23]. In contrast, the oil content of the fish caught in autumn
2019 was higher than those reported in most previous studies, especially considering the
findings of Rajasilta et al. (2018), who reported a decrease in the oil content of Baltic herring
from 5–6% to 1.5% from 1987–2014. However, the oil contents were comparable to the oil
content of Baltic herring fillets produced from fish caught in autumn [5]. The fish used was
also caught in autumn, when Baltic herring has a higher fat content compared to the spring
season [23,24]. The lipid content is also significantly higher than 4.5 g/100 g fw extracted
from a catch from October 2020, which was analyzed by the authors (data not published).
There seems to be a high variation in fat content of Baltic herring not only between seasons,
but also between years.

Table 1. Oil yield/recovery from Baltic herring whole fish and by-products from solvent (reference) and enzymatic
extractions. The oil yields (g/100 g fw) for pre-tests are presented as mean ± standard deviation and oil recovery as
percentage of the solvent-extracted oil. Actual test samples are presented as g/100 g fw and percentage of the solvent-
extracted oil.

Solvent
Extraction

g

Alcalase Neutrase Protamex
35 min

g/%
70 min

g/%
35 min

g/%
70 min

g/%
35 min

g/%
70 min

g/%

Pre-test
(whole fish) 4.89 ± 1.28 2.24 ± 0.56/45.8 - 2.11 ± 0.25/43.1 - 2.47 ± 0.71/50.5 -

Whole fish * 9.00 ± 0.46 4.09/45.4 3.85/42.8 5.39/59.9 6.25/69.4 4.52/50.2 6.08/67.6
By-products * 9.46 ± 0.23 4.57/48.3 5.13/54.2 5.17/54.7 5.44/57.5 4.57/48.3 6.14/64.9

* In the actual test, the oil yield and recovery were determined after pooling of the triplicates of each enzymatic treatment to take into
consideration the differences among different batches and to limit the total number of analyses.
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The oil recoveries achieved by enzymatic extractions ranged from 3.9 to 6.3 g/100 g
and 4.6 to 6.1 g/100 g for whole fish and by-products, respectively. The corresponding
recovery percentages ranged from 43–69% for whole fish and 48–65% for by-products.
Based on our results (Table 1), a longer extraction time gives higher results with Neutrase
and Protamex, but this is not so evident for Alcalase. The best results were achieved
with Neutrase using an extraction time of 70 min for whole fish, and Protamex with an
extraction time of 70 min for by-products. The oil recoveries were similar to the results
from the pre-test, except for Neutrase with 35 min extraction, which gave significantly
lower results in the pre-test than in the actual extraction trial. This may have been related
to the differences in total lipid content between the two batches of fish used, although this
effect was not seen in the extractions using other enzymes. According to previous research,
oil recovery from enzymatic hydrolysis has been reported as 72% from salmon by-products
using 5% Alcalase [25], 51% from Catfish using 0.91% Alcalase [26], 76% from head, and
76% from whole mackerel using 2% Alcalase [27]. Neutrase has also been investigated,
resulting in a lower recovery of oil compared to corresponding extraction with Alcalase.
For example, treatment with Neutrase resulted in 36% oil recovery from cod by-products
when the raw material was mixed with water (1:1 w/w) prior to extraction but increased
to 64% when the raw material was hydrolyzed without added water. The water addition
often enhances formation of an emulsion layer, which trapped some of the lipids [28]. In
comparison, the best oil recovery reported in our study was 69% using 0.4% Neutrase,
which is a smaller enzyme concentration than used in the studies mentioned above.

3.2. Fatty Acid Composition

The FA composition of different enzymatically extracted oils and solvent-extracted
oil from whole fish are presented in Table 2. The FA composition of the oils extracted
from by-products are presented in Table 3. Differences between the different enzymes and
hydrolysis times were studied with two-way ANOVA, whereas the differences between
different enzymatic treatments and solvent extraction were studied with one-way ANOVA.

The amount of saturated fatty acids (SFAs) was 26% of total fatty acids, MUFAs 38%,
and PUFAs 36%. Further, the contents of n-3 and n-6 PUFAs were 28% and 8%, respectively.
The lipid composition of whole Baltic herring is similar to those reported in the literature,
where the proportions of n-3 PUFAs ranged from 25 to 28% and n-6 PUFAs from 8 to
9% [5]. Enzymatic treatments resulted in high amounts of n-3 and n-6 PUFAs. A 35-min
extraction with Alcalase and a 70-min extraction with Neutrase yielded statistically lower
content of PUFAs compared to other treatments. Together with a 35-min extraction with
Protamex, these treatments led to lower n-3 PUFA contents compared to the rest, whereas
the other enzymatic treatments resulted in a PUFA content similar to or better than the
levels obtained with solvent extraction. The n-6 FAs were found in significantly higher
concentrations in the enzymatically extracted oils than in the solvent-extracted oil.

The most dominant saturated fatty acid (SFA) was palmitic acid C16:0, which varied
between 17.6 and 18.4% depending on the extraction. Further, the most dominant monoun-
saturated fatty acid (MUFA) was oleic acid C18:1 (n-9c), which ranged between 23.3 and
24.8%. These findings are in line with a previous study [29]. The most interesting findings
concern the differences in PUFAs, the two n-3 FAs EPA (20:5n-3) and DHA (22:6n-3) being
especially important. The EPA content in the oil from whole fish varied between 6.1 and
7.3%, the lowest values being from 70-min extractions with Neutrase and Protamex and the
highest value from the 35-min extraction with Protamex. The tow-way ANOVA also shows
that both the enzymes and hydrolysis times as well as their interaction (enzyme*time)
had a significant impact on the n-3 PUFA content. The DHA content was significantly
higher in the solvent-extracted oil compared to the enzymatically extracted oils, being
11.5% compared to 9.4–10.8%. In another study, DHA was the most abundant PUFA in
Baltic herring oil (20.2 ± 4.9%) [29], whereas, in this study, despite being the most abundant
PUFA, it ranged only between 9.4–10.8%. However, The DHA content was comparable
to Baltic herring fillets (7.8%) and gutted Baltic herring (9.4%) [30]. The enzymatically
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extracted oils had DHA contents of 9.4–10.8%, the lowest values being obtained from
the 35-min extractions with Neutrase and Alcalase, as well as the 70-min extraction with
Protamex. The highest value was achieved with the 70-min extraction with Alcalase and
the 35-min extraction with Protamex. Again, the two-way ANOVA showed significant
differences between the enzymes and hydrolysis times as well as the impact of their in-
teraction. The differences in these compositions may be partly from oxidation processes
during the extraction because oxidation causes degradation of long-chain PUFAs. Further,
differences in composition of different lipid classes extracted (not studied here) could cause
differences in fatty acid profiles as certain lipid classes can be richer in certain fatty acids
and vice versa for others [31].

In contrast to whole fish, the EPA and DHA contents in the oils from the by-products
were not significantly different between any of the treatment groups (Table 3). The most
abundant FAs were palmitic acid from SFA (17.8–19.4% of total FAs), oleic acid from
MUFAs (24.7–25.5%) and DHA from PUFAs (8.3–9.3%). There are no significant differences
in the compositions of SFAs, MUFAs, PUFAs or n-3 PUFAs between the treatment groups.
In contrary, statistical differences (p < 0.05) are seen in n-6 PUFAs according to one-way
ANOVA (all samples) but the two-way ANOVA (only enzymatically extracted samples)
does not show significant differences between the enzymes or hydrolysis times. The FAs
contributing to the biggest differences between the different enzymatic extractions were
myristoleic acid (14:1 (n-5)) and palmitoleic acid (16:1 (n-7)), which were significantly
different between the enzymes and hydrolysis times.

According to the fatty acid composition, the n-6/n-3 ratio in Baltic herring oil is 3.6/1
for whole fish and 2.9/1 for by-products. It is generally accepted that humans have evolved
on a diet with an n-6/n-3 ratio of ~1. However, the Western diet has changed drastically
over the last 100 years, and nowadays people are getting more n-6 FAs from their diets,
typically from vegetable oils. The n-6/n-3 ratio in the Western diet is approx. 15/1–16.7/1.
Higher ratios of n-6/n-3 FAs in the diet have been linked to a myriad of health-related
issues, such as cardiovascular disease, cancer and inflammatory and autoimmune diseases.
Individuals with diets rich in fish or supplementation with DHA and EPA have been
associated with reductions in cardiovascular diseases and related mortality compared to
those who do not consume fish [32,33]. Based on the fatty acid composition, oils from Baltic
herring fish and by-products can be considered as a good source of n-3 PUFAs for human
consumption. It is important to optimize the enzymatic extraction processes to minimize
the loss of n-3 PUFAs caused by oxidation.
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Table 2. Fatty acid composition of enzymatically extracted oils and solvent-extracted oil (reference) from whole Baltic herring. The values are presented as mass percentages of the total
fatty acid content. The results are shown as mean value ± standard deviation of the three analytical replicates.

2-Way ANOVA Solvent
Extraction

Alcalase Neutrase Protamex
Fatty Acid Enzyme Time E × T 35 min 70 min 35 min 70 min 35 min 70 min

14:0 ** n ** 6.56 ± 0.17 c,d 6.74 ± 0.06 d 6.18 ± 0.05 b 6.55 ± 0.10 c,d 6.31 ± 0.08 b,c 5.76 ± 0.11 a 6.52 ± 0.12 c,d

14:1(n-5) ** ** ** 0.15 ± 0.01 a 0.72 ± 0.00 e 0.71 ± 0.00 e 0.83 ± 0.02 f 0.65 ± 0.01 d 0.49 ± 0.01 b 0.55 ± 0.04 c

16:0 ** n n 17.77 ± 0.10 a 17.62 ± 0.15 a 17.81 ± 0.11 a 17.92 ± 0.06 a,b 18.20 ± 0.22 c 18.43 ± 0.27 c 18.30 ± 0.29 b,c

16:1(n-7) ** n ** 5.27 ± 0.12 c 4.93 ± 0.03 b 4.61 ± 0.05 a 4.60 ± 0.03 a 4.61 ± 0.06 a 4.73 ± 0.07 a,b 4.89 ± 0.05 b

17:1(n-8) n n * 0.31 ± 0.01 a,b 0.29 ± 0.02 a 0.40 ± 0.03 c 0.33 ± 0.01 a,b 0.32 ± 0.01 a,b 0.36 ± 0.01 b,c 0.33 ± 0.07 a.b

18:0 ** ** ** 1.24 ± 0.02 c,d 1.15 ± 0.01 a 1.31 ± 0.01 e 1.27 ± 0.00 d 1.21 ± 0.02 b,c 1.39 ± 0.01 f 1.19 ± 0.02 b

18:1(n-9)t n n * 0.01 ± 0.02 a 0.05 ± 0.02 b,c 0.07 ± 0.00 c 0.04 ± 0.01 a.b,c 0.05 ± 0.02 b,c 0.07 ± 0.01 c 0.03 ± 0.00 a,b

18:1(n-9)c n * ** 25.22 ± 0.10 d 25.22 ± 0.11 c,d 23.55 ± 0.08 a 23.31 ± 0.05 a 24.64 ± 0.22 b,c 23.70 ± 0.31 a 24.79 ± 0.21 b

18:1(n-7) n n * 2.66 ± 0.02 c 2.51 ± 0.00 a 2.55 ± 0.02 a,b 2.58 ± 0.01 a,b 2.51 ± 0.03 a 2.63 ± 0.01 b,c 2.54 ± 0.08 a

18:2(n-6)t n n n 0.08 ± 0.01 a 0.41 ± 0.02 b,c 0.36 ± 0.02 b,c 0.46 ± 0.12 c 0.42 ± 0.03 b,c 0.34 ± 0.01 b 0.40 ± 0.01 b,c

18:2(n-6)c n n ** 4.29 ± 0.03 a 4.62 ± 0.04 b 4.94 ± 0.03 c 4.70 ± 0.03 b 5.00 ± 0.05 c 5.09 ± 0.12 c 4.58 ± 0.12 b

18:3(n-6) n n * 0.12 ± 0.00 a 0.15 ± 0.01 a,b 0.17 ± 0.00 b 0.17 ± 0.01 b 0.12 ± 0.04 a 0.16 ± 0.01 a,b 0.16 ± 0.00 a,b

18:3(n-3) n n n 2.39 ± 0.03 a,b 2.48 ± 0.03 a,b 2.97 ± 0.04 b 2.83 ± 0.01 a,b 2.63 ± 0.02 a 2.96 ± 0.08 b 2.55 ± 0.03 a,b

18:4(n-3) * * ** 2.32 ± 0.01 a 2.59 ± 0.03 b,c 2.77 ± 0.01 d 2.74 ± 0.02 d 2.48 ± 0.03 b 2.81 ± 0.08 d 2.62 ± 0.08 c

20:0 n n n 0.16 ± 0.01 0.13 ± 0.01 0.17 ± 0.02 0.17 ± 0.03 0.14 ± 0.04 0.16 ± 0.02 0.15 ± 0.03
20:1(n-9) ** ** ** 2.22 ± 0.02 c 2.34 ± 0.01 d 2.08 ± 0.01 b 2.23 ± 0.02 c 2.34 ± 0.01 d 1.94 ± 0.04 a 2.36 ± 0.02 d

20:1(n-11) * * ** 0.31 ± 0.00 b 0.35 ± 0.01 c,d 0.30 ± 0.01 b 0.33 ± 0.02 b,c 0.35 ± 0.00 d 0.28 ± 0.01 a 0.36 ± 0.01 d

20:2(n-6) ** ** ** 1.52 ± 0.02 a 1.78 ± 0.02 d 1.69 ± 0.02 c 1.71 ± 0.01 c 1.88 ± 0.02 e 1.61 ± 0.03 b 1.82 ± 0.04 d

20:3(n-6) * n n 0.00 ± 0.00 a 0.04 ± 0.02 b 0.05 ± 0.02 b 0.08 ± 0.01.c 0.05 ± 0.02 b 0.04 ± 0.00 b 0.04 ± 0.00 b

20:4(n-6) * n ** 0.46 ± 0.01 c,d 0.38 ± 0.03 a 0.45 ± 0.01 c,d 0.43 ± 0.01 b,c 0.39 ± 0.01 a 0.48 ± 0.02 d 0.40 ± 0.02 a.b

20:3(n-3) ** ** ** 1.07 ± 0.02 a 1.26 ± 0.02 c 1.16 ± 0.01 b 1.20 ± 0.01 b 1.31 ± 0.02 d 1.10 ± 0.02 a 1.31 ± 0.03 c,d

20:4(n-3) ** * ** 1.50 ± 0.03 a 1.75 ± 0.02 c 1.59 ± 0.01 b 1.73 ± 0.01 c 1.77 ± 0.03 c 1.53 ± 0.03 a,b 1.78 ± 0.05 c

20:5(n-3) * ** ** 6.46 ± 0.08 b 6.11 ± 0.06 a 6.93 ± 0.03 c 6.74 ± 0.03 b,c 6.06 ± 0.09 a 7.33 ± 0.20 d 6.06 ± 0.16 a

22:0 n * * 0.08 ± 0.00 a,b 0.09 ± 0.01 a,b 0.09 ± 0.01 a,b,c 0.09 ± 0.01 b,c 0.07 ± 0.02 a,b 0.11 ± 0.01 c 0.07 ± 0.01 a

22:1(n-9) * n ** 0.41 ± 0.01 a 0.49 ± 0.01 c 0.45 ± 0.00 b 0.49 ± 0.01 c 0.49 ± 0.01 c 0.42 ± 0.03 a 0.48 ± 0.02 c

22:1(n-11) n n n 0.06 ± 0.01 0.08 ± 0.01 0.08 ± 0.00 0.08 ± 0.01 0.06 ± 0.00 0.07 ± 0.01 0.08 ± 0.03
22:2(n-6) n * * 0.63 ± 0.03 a 0.86 ± 0.02 c,d 0.80 ± 0.01 b,c 0.84 ± 0.02 c,d 0.91 ± 0.10 d 0.70 ± 0.02 a,b 0.91 ± 0.03 d

22:3(n-3) n n n 0.20 ± 0.02 0.22 ± 0.03 0.24± 0.01 0.22 ± 0.03 0.19 ± 0.01 0.24 ± 0.01 0.21 ± 0.03
22:4(n-6) * * * 0.69 ± 0.01 a,b 0.76 ± 0.02 b,c,d 0.75 ± 0.03 b,c 0.76 ± 0.02 b.c,d 0.84 ± 0.02 d 0.65 ± 0.08 a 0.81 ± 0.04 c,d

22:5(n-3) n n n 0.88 ± 0.02 0.89 ± 0.01 0.91 ± 0.01 0.91 ± 0.01 0.91 ± 0.02 0.88 ± 0.01 0.92 ± 0.05
22:6(n-3) * * ** 11.50 ± 0.11 d 9.68 ± 0.10 a 10.73 ± 0.05 c 10.23 ± 0.04 b 9.45 ± 0.15 a 10.76 ± 0.29 c 9.43 ± 0.27 a

24:1(n-9) n n n 1.51 ± 0.32 1.08 ± 0.06 1.12 ± 0.05 1.06 ± 0.07 1.21 ± 0.13 1.13 ± 0.08 1.11 ± 0.17
24:4(n-3) ** ** ** 1.38 ± 0.17 a,b 1.60 ± 0.03 b,c,d 1.47 ± 0.07 a,b,c 1.70 ± 0.02 c,d 1.75 ± 0.04 d 1.20 ± 0.02 a 1.61 ± 0.04 b,c,d



Foods 2021, 10, 1811 9 of 25

Table 2. Cont.

2-Way ANOVA Solvent
Extraction

Alcalase Neutrase Protamex
Fatty Acid Enzyme Time E × T 35 min 70 min 35 min 70 min 35 min 70 min

24:5(n-3) ** n * 0.54 ± 0.02 a,b 0.63 ± 0.07 b,c 0.54 ± 0.03 a,b 0.67 ± 0.04 c 0.68 ± 0.05 c 0.46 ± 0.02 a 0.61 ± 0.04 b,c

SFA * n n 25.81 ± 0.26 25.72 ± 0.24 25.56 ± 0.17 26.02 ± 0.07 25.93 ± 0.32 25.84 ± 0.39 26.23 ± 0.44
MUFA n * ** 38.14 ± 0.28 b 38.06 ± 0.18 b 35.92 ± 0.10 a 35.86 ± 0.03 a 37.25 ± 0.29 b 35.83 ± 0.53 a 37.56 ± 0.44 b

PUFA n n ** 36.04 ± 0.29 a 36.2 ± 0.40 a 38.52 ± 0.27 b 38.13 ± 0.07 b 36.83 ± 0.56 a 38.33 ± 0.91 b 36.21 ± 0.89 b

n-3 n * ** 28.25 ± 0.25 b,c 27.21 ± 0.30 a,b 29.31 ± 0.17 c 28.97 ± 0.07 c 27.23 ± 0.38 a 29.27 ± 0.71 c 27.09 ± 0.69 a,b

n-6 * * n 7.79 ± 0.05 a 9.01 ± 0.10 b 9.21 ± 0.10 b 9.16 ± 0.12 b 9.60 ± 0.21 c 9.06 ± 0.22 b 9.12 ± 0.20 b

Different letters indicate significant differences (p < 0.05) detected by one-way ANOVA and Tukey HSD. * p < 0.05, ** p < 0.001, n not significant as determined by statistical comparisons with two-way ANOVA.

Table 3. Fatty acid composition of enzymatically extracted oils and solvent-extracted oil (reference) from Baltic herring by-products. The values are presented as mass percentages of the total fatty
acid content. The results are shown as mean value ± standard deviation of the three analytical replicates.

2-Way ANOVA Solvent
Extraction

Alcalase Neutrase Protamex
Fatty Acid Enzyme Time E × T 35 min 70 min 35 min 70 min 35 min 70 min

14:0 n n n 6.69 ± 0.09 6.53 ± 0.03 6.82 ± 0.86 6.29 ± 0.13 6.94 ± 0.11 6.55 ± 0.04 6.58 ± 0.02
14:1(n-5) * * ** 0.17 ± 0.01 a 0.61 ± 0.04 c,d 0.56 ± 0.09 c 0.41 ± 0.05 b 0.68 ± 0.03 d 0.68 ± 0.03 d 0.69 ± 0.02 d

16:0 n n n 18.39 ± 0.09 17.95 ± 0.06 19.35 ± 2.37 18.32 ± 0.13 18.71 ± 0.50 17.79 ± 0.04 17.76 ± 0.01
16:1(n-7) ** ** ** 4.79 ± 0.06 b 5.06 ± 0.01 c 5.38 ± 0.08 d 4.55 ± 0.01 a 4.88 ± 0.02 b 4.82 ± 0.01 b 4.89 ± 0.01 b

17:1(n-8) n n n 0.29 ± 0.02 a 0.35 ± 0.03 a,b 0.36 ± 0.03 b 0.30 ± 0.05 a,b 0.34 ± 0.01 a,b 0.30 ± 0.01 a,b 0.34 ± 0.04 a,b

18:0 n n n 1.18 ± 0.01 a 1.35 ± 0.01 a,b 1.39 ± 0.15 a.b 1.21 ± 0.00 a 1.46 ± 0.22 b 1.27 ± 0.00 a,b 1.21 ± 0.00 a

18:1(n-9)t n n * 0.00 ± 0.00 a 0.06 ± 0.02 b,c 0.05 ± 0.01 b 0.04 ± 0.02 a.b 0.09 ± 0.03 c 0.06 ± 0.01 b,c 0.05 ± 0.01 b,c

18:1(n-9)c n n n 24.97 ± 0.21 25.10 ± 0.05 25.51 ± 1.09 25.25 ± 0.11 24.98 ± 0.17 24.83 ± 0.01 24.65 ± 0.04
18:1(n-7) * n n 2.56 ± 0.02 a 2.60 ± 0.01 a,b 2.68 ± 0.12 b 2.55 ± 0.02 a 2.60 ± 0.03 a,b 2.55 ± 0.00 a 2.55 ± 0.01 a

18:2(n-6)t n n n 0.12 ± 0.01 a 0.41 ± 0.01 b 0.42 ± 0.03 b 0.42 ± 0.01 b 0.52 ± 0.07 c 0.42 ± 0.05 b 0.41 ± 0.01 b

18:2(n-6)c n n n 4.53 ± 0.04 4.69 ± 0.01 4.40 ± 0.63 4.81 ± 0.05 4.56 ± 0.05 4.78 ± 0.01 4.80 ± 0.01
18:3(n-6) n n n 0.11 ± 0.00 a 0.15 ± 0.00 b 0.16 ± 0.02 b 0.15 ± 0.00 b 0.15 ± 0.02 b 0.17 ± 0.01 b 0.16 ± 0.01 b

18:3(n-3) n n n 2.35 ± 0.06 a,b 2.53 ± 0.05 b 2.19 ± 0.32 a 2.39 ± 0.03 a,b 2.35 ± 0.07 a,b 2.42 ± 0.02 a,b 2.50 ± 0.07 b

18:4(n-3) n n n 2.10 ± 0.07 a 2.42 ± 0.01 b 2.26 ± 0.29 a,b 2.42 ± 0.02 b 2.34 ± 0.03 a,b 2.51 ± 0.00 b 2.47 ± 0.01 b

20:0 n n n 0.15 ± 0.01 0.16 ± 0.01 0.17 ± 0.02 0.15 ± 0.04 0.16 ± 0.02 0.15 ± 0.01 0.14 ± 0.01
20:1(n-9) * n * 2.53 ± 0.08 a,b 2.40 ± 0.01 a 2.49 ± 0.11 a,b 2.59 ± 0.01 b 2.50 ± 0.01 a,b 2.42 ± 0.00 a 2.45 ± 0.01 a,b

20:1(n-11) n n * 0.38 ± 0.01 a,b 0.37 ± 0.01 a 0.39 ± 0.02 a,b 0.40 ± 0.00 b 0.39 ± 0.01 a,b 0.38 ± 0.02 a,b 0.40 ± 0.00 a,b

20:2(n-6) * n n 1.94 ± 0.02 b,c 1.77 ± 0.02 a,b 1.72 ± 0.23 a 2.00 ± 0.04 c 1.85 ± 0.05 a,b,c 1.86 ± 0.01 a,b,c 1.94 ± 0.02 b,c

20:3(n-6) n n n 0.00 ± 0.00 a 0.04 ± 0.02 b 0.05 ± 0.01 b 0.04 ± 0.01.b 0.02 ± 0.01 a,b 0.05 ± 0.01 b 0.04 ± 0.01 b
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Table 3. Cont.

2-Way ANOVA Solvent
Extraction

Alcalase Neutrase Protamex
Fatty Acid Enzyme Time E × T 35 min 70 min 35 min 70 min 35 min 70 min

20:4(n-6) n n n 0.38 ± 0.01 a,b 0.38 ± 0.02 a,b 0.33 ± 0.04 a,b 0.34 ± 0.01 a,b 0.33 ± 0.03 a 0.39 ± 0.05 b 0.37 ± 0.01 a,b

20:3(n-3) * n n 1.43 ± 0.02 c,d 1.25 ± 0.01 a,b 1.18 ± 0.16 a 1.46 ± 0.02 d 1.30 ± 0.03 a,b,c 1.31 ± 0.03 a,b,c 1.37 ± 0.01 b,c,d

20:4(n-3) n n n 1.66 ± 0.02 a 1.77 ± 0.03 a,b 1.67 ± 0.25 a 1.92 ± 0.03 b 1.80 ± 0.05 a,b 1.81 ± 0.02 a,b 1.85 ± 0.00 a,b

20:5(n-3) n n n 5.62 ± 0.18 5.83 ± 0.01 5.36 ± 0.76 5.53 ± 0.06 5.35 ± 0.10 5.87 ± 0.01 5.88 ± 0.01
22:0 n n n 0.07 ± 0.01 a,b 0.08 ± 0.01 a,b 0.09 ± 0.02 b 0.08 ± 0.01 a,b 0.06 ± 0.01 a 0.08 ± 0.00 a,b 0.08 ± 0.02 a,b

22:1(n-9) * n * 0.52 ± 0.02 0.51 ± 0.00 0.53 ± 0.01 0.55 ± 0.00 0.53 ± 0.01 0.53 ± 0.02 0.52 ± 0.01
22:1(n-11) n n n 0.08 ± 0.01 0.09 ± 0.01 0.09 ± 0.01 0.09 ± 0.00 0.08 ± 0.01 0.08 ± 0.00 0.08 ± 0.02
22:2(n-6) n n n 1.00 ± 0.02 a,b 0.92 ± 0.00 a 0.94 ± 0.12 a,b 1.05 ± 0.03 b 0.96 ± 0.04 a,b 0.97 ± 0.04 a,b 1.01 ± 0.02 a,b

22:3(n-3) n n n 0.21 ± 0.02 0.22 ± 0.01 0.23 ± 0.09 0.19 ± 0.02 0.22 ± 0.03 0.20 ± 0.03 0.20 ± 0.01
22:4(n-6) * n n 0.99 ± 0.02 c 0.78 ± 0.03 a 0.78 ± 0.12 a 0.94 ± 0.01 b.c 0.81 ± 0.08 a 0.83 ± 0.02 a.b 0.88 ± 0.01 a,b,c

22:5(n-3) n n n 0.95 ± 0.01 0.92 ± 0.01 0.78 ± 0.12 0.96 ± 0.02 0.88 ± 0.02 0.93 ± 0.02 0.95 ± 0.02
22:6(n-3) n n n 9.26 ± 0.34 9.18 ± 0.05 8.27 ± 1.39 8.76 ± 0.09 8.48 ± 0.13 9.28 ± 0.03 9.03 ± 0.03
24:1(n-9) n n * 1.70 ± 0.43 1.18 ± 0.04 1.10 ± 0.01 1.07 ± 0.01 1.20 ± 0.02 1.14 ± 0.07 1.09 ± 0.07
24:4(n-3) * n n 2.09 ± 0.32 1.67 ± 0.04 1.64 ± 0.19 2.01 ± 0.03 1.82 ± 0.09 1.80 ± 0.03 1.91 ± 0.05
24:5(n-3) * n n 0.79 ± 0.04 b 0.65 ± 0.04 a,b 0.63 ± 0.09 a 0.78 ± 0.07 b 0.66 ± 0.03 a,b 0.77 ± 0.06 a,b 0.75 ± 0.08 a,b

SFA n n n 26.48 ± 0.17 26.06 ± 0.06 27.81 ± 3.41 26.05 ± 0.26 27.34 ± 0.67 25.84 ± 0.08 25.77 ± 0.04
MUFA * n n 38.00 ± 0.66 38.35 ± 0.04 39.15 ± 1.29 37.79 ± 0.10 38.26 ± 0.22 37.79 ± 0.06 37.72 ± 0.10
PUFA n n n 35.52 ± 0.75 35.59 ± 0.02 33.04 ± 4.69 36.16 ± 0.24 34.40 ± 0.72 36.37 ± 0.05 36.51 ± 0.11

n-3 n n n 26.45 ± 0.74 26.43 ± 0.04 24.25 ± 3.56 26.41 ± 0.30 25.20 ± 0.48 26.90 ± 0.06 26.89 ± 0.11
n-6 n n n 9.07 ± 0.05 a,b 9.16 ± 0.03 a,b 8.78 ± 1.14 a 9.75 ± 0.05 b 9.21 ± 0.25 a,b 9.47 ± 0.01 a,b 9.62 ± 0.03 a,b

Different letters indicate significant differences (p < 0.05) detected by one-way ANOVA and Tukey HSD. * p < 0.05, ** p < 0.001, n not significant as determined by statistical comparisons with two-way ANOVA.
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3.3. Oxidation

The AVs, PVs and total oxidation products (TOTOX = 2 × PV + AV) of enzymatically
extracted oils are presented in Table 4. There were differences in AVs and PVs between the
treatments. In the extractions from whole fish, AV was the lowest for the 35-min extraction
with Alcalase, whereas the highest result was for the 70-min extraction with Protamex.
With Baltic herring by-products, the lowest AV was achieved with the 35-min extraction
using Neutrase, whereas the 70-min extraction with Alcalase resulted in the highest value,
the difference being statistically significant (p < 0.05).

Table 4. p-Anisidine values (AV), peroxide values (PV) and total oxidation product (TOTOX) values of different enzymat-
ically extracted oils. The results for AV and PV are shown as mean value ± standard deviation. Significant differences
(p < 0.05) were determined by one-way ANOVA and Tukey HSD.

Alcalase Neutrase Protamex
35 min 70 min 35 min 70 min 35 min 70 min

Whole fish
AV 11.10 ± 0.61 a 16.87 ± 2.77 b,c 16.91 ± 0.78 b,c 15.25 ± 0.03 a,b 21.08 ± 1.31 c,d 25.84 ± 0.54 d

PV 22.95 ± 1.92 a 53.66 ± 6.90 b 54.44 ± 7.27 b 43.65 ± 2.89 b 57.58 ± 6.50 b 75.65 ± 7.40 c

TOTOX 54.88 124.19 125.80 102.56 136.23 177.14

By-products
AV 16.34 ± 0.37 b,c 25.88 ± 5.80 c 5.60 ± 1.14 a 13.35 ± 0.29 a,b 12.05 ± 0.30 a,b 9.94 ± 0.03 a,b

PV 49.67 ± 1.53 c 68.43 ± 1.01 d 23.56 ± 0.19 a 52.05 ± 2.00 c 35.21 ± 0.68 b 36.77 ± 0.64 b

TOTOX 115.69 162.74 52.72 117.44 82.46 83.48

Different letters indicate significant differences (p < 0.05).

A longer extraction time resulted in a higher PV in all except one treatment. In
addition to enzymes and extraction times, there was evidently an influence by the raw
materials on the PVs of the crude extracts. The difference can be explained by interference
of endogenous enzymes in the proteolytic process. With whole fish, the lowest PV was
seen in the 35-min extraction with Alcalase, whereas the highest result was from the 70-min
extraction with Protamex. For by-products, the lowest PV was from the 35-min extraction
with Neutrase, which also had the lowest AV. The highest PV, on the other hand, was in
the 70-min Alcalase-extracted oil, which also had the highest AV.

According to the TOTOX values, the 35-min extraction with Alcalase was the best
for whole fish in terms of oxidative stability. On the other hand, the 35-min extraction
with Neutrase was the best for by-products. The Codex standard for refined fish oil
states that the acceptable limits are PV ≤ 5 meq/kg, AV ≤ 20 and TOTOX ≤ 26 [34]. In
relation to these limits, all oil samples had a compromised oxidative status. A typical
oil extraction process uses antioxidants, such as α-tocopherol or synthetic antioxidants,
as oxidation protectants which were not used in this study. Further, the oils were not
refined. During the typically used chemical refining process, oxidation products are
removed, which improves both AV and PV. Additionally, fish oil rich in EPA and DHA
can lead to over-estimation of AV because the absorbance intensity is dependent of the
unsaturation level of the aldehydes [35]. Recently, the suitability of PV and AV as methods
to determine the oxidative status of fish oils is being reconsidered and alternatives have
been discussed [30,34].

Many oxidative compounds are derived from the degradation of long-chain PU-
FAs [36]. The degradation can also be visible as decreased DHA and EPA contents. In this
study, Neutrase- and Protamex-extracted oils from whole fish had lower (p < 0.05) DHA
and EPA contents after the 70-min extraction compared to the 35-min extraction. On the
contrary, Alcalase had the opposite effect for both n-3 PUFAs. When looking at the total
PUFAs, Neutrase and Protamex show a decreasing trend with a longer extraction time, the
difference being statistically significant for Neutrase but not Protamex. The PUFA content
of the Alcalase-extracted oil increased between the time points (p < 0.05). These findings
do not correlate with the changes in AVs and PVs. Alcalase shows a significant increase in
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both AV and PV, although the EPA, DHA and PUFA contents increased with extraction
time. For oils extracted from by-products, an increased extraction time decreased DHA
with all enzymes and EPA with Alcalase and Neutrase; however, the differences were not
significant. Furthermore, PUFAs showed a decreasing trend with increasing extraction
time with Alcalase and Neutrase, but again, the differences were not statistically significant.
The AVs increased significantly with Alcalase- and Neutrase-extracted oil with longer
extraction times, but there were no statistically significant differences in PVs.

3.4. Volatiles

A total of 41 volatiles (Table 5) were tentatively identified from the oil samples based
on the database NIST MS and comparison to external standards. Examples of total ion
chromatograms for whole fish and by-products from the SPME-GC-MS are presented in
Figures A3 and A4, respectively. Retention indices (RIs) of the volatiles with retention
times of 12.93 min or higher in Baltic herring crude oils were calculated based on the
retention times of these compounds and n-alkane standards (Table 5). Most of the identi-
fied volatiles were secondary volatile compounds formed from lipid oxidation including
propanal, butanal, 1-penten-3-ol, hexanal, heptanal and nonanal. A larger volatile content
indicates a higher degree of lipid oxidation in fish oil, because the majority of the volatile
compounds are oxidation products. The oils produced from whole fish had a larger total
volatile content compared to those from by-products (Figure 1). Based on the total ion
chromatogram of HS-SPME-GC-MS analysis, the most abundant volatiles in oils extracted
from whole fish were 2-propenal, 2-ethylfuran, 1-penten-3-ol, hexanal and two unidentified
compounds (unknown 1 and 2), whereas in the oils extracted from by-products, the most
abundant volatile compounds were propanal, 2,3-butanedione, 2-ethylfuran, 1-penten-3-
ol, 2,3-pentanedione, unknown 2, and (E,E)-2,4-heptadienal. Hexanal and 1-penten-3-ol
are typical oxidation products from n-3 PUFA degradation and they are both related to
unpleasant odors and flavors [37]. Both of these compounds have shown increases in
Baltic herring during storage, indicating oxidation of long-chain unsaturated FAs [38].
(E,E)-2,4-heptadienal is another oxidation compound related to rancid and fishy odors.
It has also been detected in oxidized herring oil and could be a good indicator for the
oxidative status of fish oil [39]. Furthermore, 2-ethylfuran has been detected in fish, for
example triploid rainbow trout, and it is derived from the oxidation of n-3 PUFAs. The
odor of the compound is described as “rubber”, “pungent” and “green bean” [40,41].

Out of all the identified volatile compounds, 17 were aldehydes including acetalde-
hyde, 2-propenal, propanal, butanal, 2-methylbutanal, 3-methylbutanal, (Z)-2-butenal,
(E)-2-pentenal, hexanal, 2-methyl-4-pentenal, (E)-2-hexenal, heptanal, (E,E)-2,4-hexadienal,
(Z)-2-heptenal, octanal, (E,Z)-2,4-heptadienal and nonanal. Aldehydes are secondary oxi-
dation products, which can also be measured with AV. The correlation between aldehydes
and AV in the oils extracted from whole fish had a correlation factor of R2 = 0.80, whereas
the corresponding one for by-products was R2 = 0.89 (Figure 2).

The volatile data were analyzed with principal component analysis (PCA). The volatile
data from whole fish (Figure A1) and by-products (Figure A2) were analyzed separately.
The figures include scores and correlation loadings of the most important principal com-
ponents (PCs). PCs 1 and 2 explain a total of 74% of the variance in the volatile data of
oils extracted from whole fish. PC2 allows a quite good separation between faster extrac-
tion processes (35 min, lower scores on PC2) and slower ones (70 min, higher scores on
PC2) independently to the enzyme used. The most influential compounds for PC2 are
2-pentylfuran, trans-2-(2-pentenyl)furan, 2-nonanone, 2,3-butanedione and heptane on the
positive side of the X-axis, while 1-penten-3-ol was influential on the negative side. PC1
and PC3 (Figure A1c,d) explain 64% of the variance in the volatile data. PC3 explains only
8% of the variance but it allows a rather good separation of the Alcalase-extracted samples
from those extracted with the other two enzymes. The correlation loadings show that most
of the volatiles are grouped close to each other on the negative side of the Y-axis. The only
volatile on the positive side of the Y-axis with a significant impact (inside the further ellipse)
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is 2-methylbutanal. The differences in total volatile peak areas (Figure 1) are also visible in
the correlation loadings. The Neutrase-treated samples show a negative correlation with
most volatiles, and these samples had the smallest volatile peak areas compared to the
samples with other enzymes. The 70-min extractions using Alcalase and Protamex, on the
other hand, correlate with most of the volatiles, indicating increased oxidation.

Table 5. All identified volatile compounds of enzymatically extracted Baltic herring oil. The compounds were identified
based on the literature, NIST library and external standards (STD). Retention indices for HS-SPME-GC-MS of some volatile
compounds are also presented. The column was SPB®-624 Fused Silica Capillary Column 60 m × 0.25 mm × 1.4 µm.

Compound Number Compound Identification Method RT (min) RI 1

1 Acetaldehyde STD 6.51
2 2-Propenal MS 9.79
3 Propanal STD 9.97
4 Butanal STD 14.55 638
5 2,3-Butanedione MS 14.64 640
6 Unknown 1 - 14.84 644
7 Formic acid MS 15.96 667
8 1,3-Butanediol MS 14.64 676
9 Acetic acid STD 17.44 696

10 3-Methylbutanal MS 17.67 700
11 Heptane STD 17.84 704
12 2-Methylbutanal MS 18.05 709
13 (Z)-2-Butenal MS 18.13 711
14 2-Ethylfuran STD 18.85 727
15 1-Penten-3-one MS 19.31 738
16 1-Penten-3-ol STD 19.44 741
17 2,3-Pentanedione MS 19.68 746
18 Cyclopentanol MS 19.73 747
19 Propanoic acid MS 21.67 787
20 (E)-2-Pentenal STD 22.41 801
21 Hexanal STD 24.44 851
22 2-Methyl-4-pentenal MS 24.48 852
23 3-Hexanol MS 25.71 880
24 2,4-Hexadien-1-ol MS 26.84 905
25 (E)-2-Hexenal STD 27.37 920
26 Heptanal STD 28.69 954
27 (E,E)-2,4-Hexadienal STD 30.05 988
28 Unknown 2 - 30.58 1002
29 2-Pentylfuran STD 31.23 1020
30 (Z)-2-Heptenal MS 31.48 1027
31 (E)-2-(2-Pentenyl)furan MS 31.72 1034
32 Octanal STD 32.55 1058
33 Hexanoic acid MS 32.62 1060
34 (E,Z)-2,4-Heptadienal MS 33.22 1076
35 (E,E)-2,4-Heptadienal MS 33.81 1091
36 (E,E)-3,5-Octadien-2-one MS 35.57 1146
37 2-Nonanone MS 35.73 1151
38 Nonanal STD 36.08 1161
39 5-Ethyl-2(5H)-furanone MS 36.45 1173
40 (E,E)-3,5-Octadien-2-one MS 36.52 1175
41 Nonanoic acid MS 41.94 1334

1 The retention indices are calculated in regard to a series of n-alkanes.
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Figure 1. Total peak areas in HS-SPME-GC-MS chromatogram of all identified volatile compounds (N = 41) from different
enzymatically extracted oils from whole fish (blue bars) and by-products (orange bars) of Baltic herring.

Figure 2. The correlation between p-anisidine value (AV) and total area of all identified aldehydes from the volatile analysis
of enzymatically extracted oils from whole fish (blue) and by-products (orange) of Baltic herring.

The scores plot for PC1 and PC2 from oils extracted from by-products (Figure A2a)
show that Alcalase samples separate well from Neutrase and Protamex samples. PC1 and
PC2 explain 87% of the variance in the dataset. PC1 seems to relate to the differences
between the enzymes, whereas PC2 show no clear trend in treatment time or other known
factors. The correlation loadings (Figure A2b) show that most volatiles group on the
negative side of the Y-axis, whereas 2-methylbutanal is the only volatile with a significant
effect on the positive side. 2-Methylbutanal has a negative correlation with heptane and
2,3-butanedione. Butanal is also located on the positive side of the Y-axis, but it does
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not have a significant effect in the model with PC1 and PC2. The separation of Alcalase
from Protamex and Neutrase can be explained by Figure 1 and Table 4, which show that
Alcalase-treated samples are more oxidized and have bigger total volatile peak areas.
Alcalase samples are also grouped closer to the large cluster of volatiles compared to
Neutrase and Protamex samples. PC1 and PC3 (Figure A2c) group different enzymes from
each other even clearer. PC3 explains 4% of the variance in the data set, but it allows a
better separation of Neutrase and Protamex. According to the correlation loadings, butanal
and 2-methylbutanal are the only compounds that have a significant effect on the positive
side of the Y-axis, whereas other compounds are grouped together on the negative side.

The PCA models described above were used to select volatile compounds that con-
tributed most to the first three principal components: formic acid, acetic acid, acetaldehyde,
propanal, 2-propenal, propanoic acid, 2-methylbutanal, 2,3-butanedione, 1,3-butanediol,
(E)-2-pentenal, 2,3-pentanedione, 1-penten-3-ol, 2-pentylfuran, hexanal, 2,4-hexadien-1-o,
heptane, heptanal, (Z)-2-heptenal, 2,4-heptadienal, octanal, 3,5-octadien-2-one, 2-nonanone,
unknown 1 and unknown 2. These compounds were important in oil samples from both
raw materials. A new PCA model was created using these compounds, total volatile peak
areas, total aldehyde areas, n-3 and n-6 PUFA contents, as well as PVs and AVs as variables.
Figure 3 contains scores and correlation loadings where both raw materials are plotted
together. PC1 and PC2 explain 84% of the variance in the data set. The oil samples extracted
from whole fish (wbh) are grouped mostly on the negative side of the X-axis, while all by-
product (bb) oils are on the positive side. Further, Alcalase-extracted oils from by-products
clearly separate from Neutrase and Protamex samples along the X-axis. Based on the
oxidation results discussed earlier, PC1 is related to oxidation because the most oxidized
samples group on the right side of the X-axis, which correlate with AV, PV, aldehydes and
most of the volatiles. On the other hand, 2-methylbutanal, which has been characterized
with malty and dark chocolate odors [42], seems to be correlated with the less-oxidized
samples (Neutrase- and Protamex-extracted oils from whole fish). PC2 explains 21% of
the variance, and it allows moderate separation of the samples based on their extraction
times. The compounds influential on the positive side of the X-axis are 2,3-butanedione,
heptane and 2-pentylfuran. 2,3-Butanedione has been detected from other fish species,
such as obscure puffer (Takifugu obscurus), and it has “sweet” and “caramel-like” odors [43].
2-Pentylfuran has been reported to derive from the degradation of n-6 PUFAs and it has
been detected in many fish species. It has been characterized with “orange” and “licorice”
odors. [44,45]. On the negative side of the X-axis, however, the influential factors are EPA,
DHA and PUFA contents. The FA analysis (Table 2) showed that the 35-min extraction
with Protamex from whole fish lead to the highest DHA, EPA and PUFA contents, and the
PCA models supports these findings. It can also be seen that the concentrations of these
FAs are higher from the oils extracted from whole fish compared to by-products.

This study showed the potential of enzymatic hydrolysis for the extraction of oil from
whole fish and by-products of Baltic herring. Our findings indicate that different enzymes
and extraction times lead to a different oil composition and stability. One limitation of
the current research is the lack of statistical comparison between different enzymes and
hydrolysis times due to the pooling of the crudes from different extraction replicates.
The pooling was performed to reduce the total number of samples for analysis. The oil
recoveries achieved in this study would not be sufficient in the industry, where recovery
rates of 70% or higher are considered optimal. The optimization of extraction parameters
such as enzyme dosage was not performed to increase the oil yields in this study. A clear
challenge for enzymatic hydrolysis is emulsion formation, which further reduces oil yield,
as seen by the authors during hydrolyses of leaner Baltic herring fish from autumn 2020
(data not published). The interaction of oils and proteins, as well as endogenous enzymes
in the raw material likely interfere with the processing. Further, the crude oil should be
refined and enrichment with n-3 FAs could be investigated in order to obtain products with
quality meeting the requirements set for fish oil for human consumption. These aspects
will be the focus of our future research.
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Figure 3. Principal component analysis (PCA) of volatile compounds that were most influential in PCAs with all identified
volatiles, total volatile and aldehyde peak areas, EPA, DHA and PUFA contents, and AVs and PVs. Both raw materials were
analyzed together and marked to the figures as bb (by-products) and wbh (whole Baltic herring). The enzymes are marked
as their initials: A for Alcalase, N for Neutrase and P for Protamex. The figures are (a) scores plot and (b) correlation loadings
of principal components PC1 and PC2. The data was normalized (auto normalization) and centered (mean centering).

4. Conclusions

The best conditions for the enzymatic treatment were dependent on both the enzymes
and the raw material. For whole fish, Neutrase led to the best yield, and the 70-min
extraction time was better than 35 min. Neutrase also led to a smaller total volatile
content than the other two enzymes; however, treatment with Alcalase gave the smallest
TOTOX values. In contrast, extraction with Protamex resulted in the most oxidized oils.
For by-products, Protamex with a 70-min extraction time led to the highest yield. Both
hydrolysis times with Protamex resulted in oils with lower total volatile contents compared
to treatment with Alcalase, and the longer extraction time with Neutrase. The PCA models
show distinctive differences in the oils extracted with different enzymes. Neutrase and
Protamex extractions showed a negative correlation with volatile oxidation products in
the PCA model. Further research is needed to optimize the enzyme-assisted oil extraction
process to improve the yield and quality of crude oils.
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Figure A1. Principal component analysis (PCA) of volatile data from enzymatically extracted oils
from whole Baltic herring. The samples are A: Alcalase (blue), N: Neutrase (red) and P: Protamex
(green). The samples are also marked according to their extraction times of 35 or 70 min. (a) Scores plot
of Principal Components (PC) 1 and 2; (b) correlation loadings of PC1 and PC2; (c) scores plot of PC1
and PC3 and (d) correlation loadings of PC1 and PC3. The numbered volatiles are (1) acetaldehyde,
(2) 2-propenal, (3) propanal, (4) butanal, (5) 2,3-butanedione, (6) unknown 1, (7) formic acid, (8) 1,3-
butanediol, (9) acetic acid, (10) 3-methylbutanal, (11) heptane, (12) 2-methylbutanal, (13) (Z)-2-butenal,
(14) 2-ethylfuran, (15) 1-penten-3-one, (16) 1-penten-3-ol, (17) 2,3-pentanedione, (18) cyclopentanol,
(19) propanoic acid, (20) (E)-2-pentenal, (21) hexanal, (22) 2-methyl-4-pentenal, (23) 3-hexanol, (24) 2,4-
hexadien-1-ol, (25) (E)-2-hexenal, (26) heptanal, (27) (E,E)-2,4-hexadienal, (28) unknown 2, (29) 2-
pentylfuran, (30) (Z)-2-heptenal, (31) trans-2-(2-pentenyl)furan, (32) octanal, (33) hexanoic acid,
(34) (E,Z)-2,4-heptadienal, (35) (E,E)-2,4-heptadienal, (36) (E,E)-3,5-octadien-2-one, (37) 2-nonanone,
(38) nonanal, (39) 5-ethyl-2(5H)-furanone, (40) (E,E)-3,5-Octadien-2-one and (41) nonanoic acid.
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Figure A2. Principal component analysis (PCA) of volatile data from enzymatically extracted oils
from by-products of Baltic herring. The samples are A: Alcalase (blue), N: Neutrase (red) and
P: Protamex (green). The samples are also marked according to their extraction times 35 or 70 min.
(a) Scores plot of Principal Components (PC) 1 and 2; (b) correlation loadings of PC1 and PC2;
(c) scores plot of PC1 and PC3 and (d) correlation loadings of PC1 and PC3. The numbered volatiles
are (1) acetaldehyde, (2) 2-propenal, (3) propanal, (4) butanal, (5) 2,3-butanedione, (6) unknown
1, (7) formic acid, (8) 1,3-butanediol, (9) acetic acid, (10) 3-methylbutanal, (11) heptane, (12) 2-
methylbutanal, (13) (Z)-2-butenal, (14) 2-ethylfuran, (15) 1-penten-3-one, (16) 1-penten-3-ol, (17) 2,3-
pentanedione, (18) cyclopentanol, (19) propanoic acid, (20) (E)-2-pentenal, (21) hexanal, (22) 2-methyl-
4-pentenal, (23) 3-hexanol, (24) 2,4-hexadien-1-ol, (25) (E)-2-hexenal, (26) heptanal, (27) (E,E)-2,4-
hexadienal, (28) unknown 2, (29) 2-pentylfuran, (30) (Z)-2-heptenal, (31) trans-2-(2-pentenyl)furan,
(32) octanal, (33) hexanoic acid, (34) (E,Z)-2,4-heptadienal, (35) (E,E)-2,4-heptadienal, (36) (E,E)-3,5-
octadien-2-one, (37) 2-nonanone, (38) nonanal, (39) 5-ethyl-2(5H)-furanone, (40) (E,E)-3,5-Octadien-2-
one and (41) nonanoic acid.

Figure A3. Cont.
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Figure A3. Total ion chromatogram of volatile analysis with HS-SPME-GC-MS from enzymatically extracted oil (Neutrase,
35 min) from whole Baltic herring. (a) Total ion chromatogram, (b) chromatogram scaled to retention time 12.63–28.14 min
and (c) chromatogram scaled to retention time 28.14–43.64 min. The numbered volatiles are (1) acetaldehyde, (2) 2-
propenal, (3) propanal, (4) butanal, (5) 2,3-butanedione, (6) unknown 1, (7) formic acid, (8) 1,3-butanediol, (9) acetic
acid, (10) 3-methylbutanal, (11) heptane, (12) 2-methylbutanal, (13) (Z)-2-butenal, (14) 2-ethylfuran, (15) 1-penten-3-
one, (16) 1-penten-3-ol, (17) 2,3-pentanedione, (18) cyclopentanol, (19) propanoic acid, (20) (E)-2-pentenal, (21) hexanal,
(22) 2-methyl-4-pentenal, (23) 3-hexanol, (24) 2,4-hexadien-1-ol, (25) (E)-2-hexenal, (26) heptanal, (27) (E,E)-2,4-hexadienal,
(28) unknown 2, (29) 2-pentylfuran, (30) (Z)-2-heptenal, (31) trans-2-(2-pentenyl)furan, (32) octanal, (33) hexanoic acid,
(34) (E,Z)-2,4-heptadienal, (35) (E,E)-2,4-heptadienal, (36) (E,E)-3,5-octadien-2-one, (37) 2-nonanone, (38) nonanal, (39) 5-
ethyl-2(5H)-furanone, (40) (E,E)-3,5-Octadien-2-one and (41) nonanoic acid.
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Figure A4. Total ion chromatogram of volatile analysis with HS-SPME-GC-MS from enzymatically extracted oil (Al-
calase, 35 min) from by-products of Baltic herring. (a) Total ion chromatogram, (b) chromatogram scaled to reten-
tion time 16.8–27.8 min and (c) chromatogram scaled to retention time 28.3–39.3 min. The numbered volatiles are
(1) acetaldehyde, (2) 2-propenal, (3) propanal, (4) butanal, (5) 2,3-butanedione, (6) unknown 1, (7) formic acid, (8) 1,3-
butanediol, (9) acetic acid, (10) 3-methylbutanal, (11) heptane, (12) 2-methylbutanal, (13) (Z)-2-butenal, (14) 2-ethylfuran,
(15) 1-penten-3-one, (16) 1-penten-3-ol, (17) 2,3-pentanedione, (18) cyclopentanol, (19) propanoic acid, (20) (E)-2-pentenal,
(21) hexanal, (22) 2-methyl-4-pentenal, (23) 3-hexanol, (24) 2,4-hexadien-1-ol, (25) (E)-2-hexenal, (26) heptanal, (27) (E,E)-2,4-
hexadienal, (28) unknown 2, (29) 2-pentylfuran, (30) (Z)-2-heptenal, (31) trans-2-(2-pentenyl)furan, (32) octanal, (33) hexanoic
acid, (34) (E,Z)-2,4-heptadienal, (35) (E,E)-2,4-heptadienal, (36) (E,E)-3,5-octadien-2-one, (37) 2-nonanone, (38) nonanal,
(39) 5-ethyl-2(5H)-furanone, (40) (E,E)-3,5-Octadien-2-one and (41) nonanoic acid.
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