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Abstract

Sciatica or the sciatic syndrome is a common and often disabling low back disorder in the

working-age population. It has a relatively high heritability but poorly understood molecular

mechanisms. The Finnish population is a genetic isolate where small founder population

and bottleneck events have led to enrichment of certain rare and low frequency variants.

We performed here the first genome-wide association (GWAS) and meta-analysis of sciat-

ica. The meta-analysis was conducted across two GWAS covering 291 Finnish sciatica

cases and 3671 controls genotyped and imputed at 7.7 million autosomal variants. The

most promising loci (p<1x10-6) were replicated in 776 Finnish sciatica patients and

18,489 controls. We identified five intragenic variants, with relatively low frequencies, at

two novel loci associated with sciatica at genome-wide significance. These included

chr9:14344410:I (rs71321981) at 9p22.3 (NFIB gene; p = 1.30x10-8, MAF = 0.08) and four

variants at 15q21.2: rs145901849, rs80035109, rs190200374 and rs117458827 (MYO5A;

p = 1.34x10-8, MAF = 0.06; p = 2.32x10-8, MAF = 0.07; p = 3.85x10-8, MAF = 0.06;

p = 4.78x10-8, MAF = 0.07, respectively). The most significant association in the meta-
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Copyright: © 2016 Lemmelä et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: We have deposited

all raw result data of the meta-analysis in Dryad

Digital Repository, with Dryad doi: doi:10.5061/

dryad.tq5f0. In addition, we have added to the

revised manuscript the following supplementary

appendices with raw result data of the meta-

analysis: - S1 Appendix. Raw result data of the

meta-analysis (with variants with p < 0.05). - S2

Appendix. Raw result data of the meta-analysis

(with variants with p < 0.001).

Funding: The study was supported by the

Academy of Finland, Responding to Public Health

ChallengesResearch Programme (129364 to EVJ)

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0163877&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5061/dryad.tq5f0
http://dx.doi.org/10.5061/dryad.tq5f0


analysis, a single base insertion rs71321981 within the regulatory region of the transcrip-

tion factor NFIB, replicated in an independent Finnish population sample (p = 0.04).

Despite identifying 15q21.2 as a promising locus, we were not able to replicate it. It was

differentiated; the lead variants within 15q21.2 were more frequent in Finland (6–7%) than

in other European populations (1–2%). Imputation accuracies of the three significantly

associated variants (chr9:14344410:I, rs190200374, and rs80035109) were validated by

genotyping. In summary, our results suggest a novel locus, 9p22.3 (NFIB), which may be

involved in susceptibility to sciatica. In addition, another locus, 15q21.2, emerged as a

promising one, but failed to replicate.

Introduction

Low back pain is a global health problem affecting all age groups [1, 2]. Sciatica–usually a clini-
cal manifestation of lumbar disc herniation (OMIM 603932)—is a common low back disorder
with a population prevalence of about 5%; it is often disabling in the working age population
[3, 4]. Sciatica is a complex disorder, with both genetic and environmental factors involved [4,
5]. Sciatic pain or lumbar radicular pain–the typical symptom of sciatica–is defined as pain
radiating from the back down to the leg, usually caused by compression or irritation of one of
the lumbosacral nerve roots [6–9].

Twin and family studies have revealed a substantial genetic component in low back disor-
ders with heritability estimates of approximately 20–40% for sciatica and 35–75% for lumbar
disc degeneration (OMIM 603932) [10–12]. Candidate gene studies of low back disorders have
typically focused on functional genes that associate with cartilage structure and stability, pain
signaling, obesity, or inflammation [13–15].

The Finnish population is one of the most thoroughly characterized genetic isolate. It has its
ancestry in a small founder population, followed by several bottle neck events and genetic drift
that has led to the enrichment of certain rare and low frequency variants that are almost absent
in many other European populations [16]. Presently, there are several representative Finnish
population cohorts with genome-wide data available, and these have contributed to an array of
successful large GWAS consortia [17–25].

The current study was conducted in two of the Finnish population cohorts, the Young
Finns Study (YFS) and Health 2000 Study (H2000), both with data on physician-diagnosed
sciatica available. We rationalized that the unique Finnish population features together with
the representative population-based studies allow us to investigate possible influence of not
only common variants but also discover rare or low frequency variants involved in the devel-
opment of sciatica.

In the present study, we performed the first genome-wide association studies (GWAS) and
GWAS meta-analysis of sciatica (291 sciatica cases and 3671 controls), utilizing the special
benefits of the Finnish population isolate and the power of 1000 Genomes imputation. We vali-
dated imputation accuracies of three significantly associated variants by genotyping them in
the discovery cohorts. The most promising loci (p< 1x10-6) were replicated in an independent
population-based sample of 776 Finnish sciatica patients and 18,489 controls.
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Results

Genome-wide meta-analysis

We conducted a meta-analysis of sciatica across two Finnish GWAS covering 291 sciatica cases
and 3,671 controls genotyped or imputed at 7.7 million autosomal variants (Fig 1; S1 Table).
Both GWAS (YFS and H2000) (see URLs; S1 Text) are based on Finnish population-based
cohorts with dense genome-wide genotyping and 1000 Genomes imputation data (Fig 1;
Table 1; S1 Table).

In the meta-analysis of GWAS data, a total of five novel variants within two loci achieved
genome-wide significance (p<5x10-8). These were insertion chr9:14344410:I (also known as
rs71321981) at 9p22.3 (p = 1.30x10-8; MAF 0.08) and rs145901849, rs80035109, rs190200374
and rs117458827 at 15q21.2 (p = 1.34x10-8, MAF = 0.06; 2.32x10-8, MAF = 0.07; 3.85x10-8,
MAF = 0.06; 4.78x10-8, MAF = 0.07, respectively). The between study heterogeneity (I2) ranged
between 0–0.63 and the imputation quality was high (0.77–0.99) for the associated variants
(Table 1; S2 and S3 Tables). From these, the insertion chr9:14344410:I (rs71321981) is a regula-
tion region variant in the first intron of theNFIB gene. The 15q21.2 variants (an intronic regu-
lation region variant rs145901849; intronic SNPs rs80035109 and rs190200374, as well as a 3’
UTR SNP rs117458827) are located within ~200kb region in theMYO5A gene and are in a
strong linkage disequilibrium (LD) (r2�0.81) (Table 1; S4 Table; Figs 2 and 3; 1000 Genomes
Project; see URLs).

All five significantly associated variants have relatively low frequencies (MAF�0.08). The
insertion chr9:14344410:I at 9p22.3 (NFIB) has similar frequencies in the Finnish and other
European populations (7% and 8%, respectively), whereas all four lead variants at the locus
15q21.2 (MYO5A) were more frequent in Finnish population (6–7%) than in other Europeans
(0–2%, respectively) (Table 2; S5 Table; 1000 Genomes Project; see URLs).

In addition, 176 variants at 30 loci showed suggestive associations with sciatica (p<1.0x10-5)
(Fig 2; S1 Fig; S2 and S3 Tables). Of these, 45 variants were within a 1.4 Mb region at 6p21.32–33
in theHLA gene region, with six lead SNPs having p<1x10-6. Four of these (s115949512,
rs3094014, rs114615271, rs115688765) were in perfect LD (r2�0.97) within or nearby theHCP5

Fig 1. Study design. Two discovery GWAS were conducted in Finnish population-based cohorts, the

Young Finns Study (YFS) and the Health 2000 Study (H2000). Meta-analysis was carried out across the

discovery GWAS. The most promising variants in meta-analysis (p<1x10-6) were replicated in a subsample

of the FINRISK Study.

doi:10.1371/journal.pone.0163877.g001
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gene at 6p21.33, and two (rs190606317 and rs115488695) were in moderate LD (r2�0.31) within
or nearby theHLA-DRB5 gene at 6p21.32 (S6 Table). The locus 6p21.32 has previously been
associated with lumbar disc degeneration and osteoarthritis (OMIM 165720) [26, 27] (Fig 3).

The genome-wide inflation factor in the meta-analysis was low (λGC = 0.99). Manhattan
and Quantile-Quantile (QQ) -plots for meta-analysis of adjusted genome-wide association
results (adjusted for age, sex and the seven principal components of the genetic data) are
shown in Fig 2 and S1 Fig. Regional plots for the associated loci are shown in the Fig 3. Man-
hattan and QQ -plots of adjusted individual GWAS are shown in S2, S3, S4 and S5 Figs.

Replication

From the meta-analysis, we selected 30 most promising SNPs (p<1x10-6) representing eight
loci for replication in an independent Finnish sample of 776 sciatica cases and 18,489 controls
from the FINRISK population survey (FINRISK; see URLs). The most significantly associated
variant in the meta-analysis (insertion chr9:14344410:I; rs71321981 at 9p22.3, p = 1.30x10-8)

Table 1. Sample demographics.

Study Status N Age Female % BMI Smoking % (Smokers/Non-smokers) PA % (Very low or no/Active)

Mean S.D. Mean S.D.

YFS All 2020 37.7 5.0 55 26.0 4.7 23 (450/1468) 23 (455/1561)

Case 180 39.2 4.8 64 26.6 5.1 28 (48/123) 21 (38/141)

Control 1840 37.6 5.0 54 25.9 4.7 23 (402/1345) 23 (417/1420)

H2000 All 1942 50.4 10.9 51 27.2 4.5 29 (571/1365) 25 (470/1443)

Case 111 54.4 10.6 55 28.0 4.7 29 (32/79) 27 (30/80)

Control 1831 50.1 10.9 50 27.2 4.5 30 (539/1286) 24 (440/1363)

FINRISK All 19 265 48.1 13.3 55 26.8 4.7 27 (5144/13961) NA

Case 776 50.7 12.3 48 27.7 4.5 28 (212/558) NA

Control 18 489 48.0 13.3 55 26.8 4.7 27 (4932/13403) NA

N, Number of individuals; BMI, Body Mass Index; S.D., Standard Deviation; Smoking, Percentage of smokers (Numbers of smokers vs non-smokers given

for each group); PA, Percentage of subjects with very low or no physical activity (Numbers of those with no physical activity or up to 3 times a month vs once

a week or more frequently); NA, Not available. YFS, The Cardiovascular Risk in Young Finns Study; H2000, The Health 2000 Study; FINRISK, a subsample

(years 1992, 1997, 2002, 2007) of the FINRISK Study. Values given represent those at the time of the questionnaire.

doi:10.1371/journal.pone.0163877.t001

Fig 2. Manhattan plot for meta-analysis of adjusted genome-wide association results. Variants with p-values below the genome-wide

significance level (p < 5x10-8) are shown in red.

doi:10.1371/journal.pone.0163877.g002
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showed association with sciatica in the replication sample (p = 0.04) (S7 Table). No other repli-
cations were identified (S7 Table). The rs190606317 at 6p21.32 as well as rs62100562 at
18q22.3 showing suggestive associations in the meta-analysis (p<1x10-6) (S7 Table) had a sig-
nificant p-value in replication sample (p = 0.006, p = 0.03, respectively), but the effect direction
was different and thus was not considered as replicated (S7 Table).

Genotype validation. For validating the imputation accuracy, we sequenced the insertion
variant chr9:14344410:I (rs71321981) at 9p22.3 (NFIB) in the two discovery cohorts, with 184

Fig 3. Regional association plots for associated loci in the GWAS meta-analysis of sciatica. The associations along with recombination rates and

genes on the region are shown in 2 Mb windows surrounding the lead SNP, to provide a graphical view of the associated region. SNPs are plotted by

position on chromosome (x-axis) against association with sciatica (-log10 –p-value, y-axis). The lead SNP is shown with a purple diamond. Color intensity of

each dot depicting a SNP reflects the extent of LD with the lead SNP, colored red (r2<0.8) through blue (r2<0.2). The LD has been estimated using 1000

Genomes, Mar2012 release, European population (see URLs). Physical positions are based on of the human genome build 37 (NCBI). 9p22.3: (NFIB)

represented by rs71321981 (chr9:14344410:I, p = 1.30x10-8). No usable LD information was available for this SNP. 15q21.2: (MYO5A) represented by

rs145901849 (p = 1.34x10-8). The associated region harbor SNPs in the MYO5A (p < 5x10-8) (red circle) and SNPs in the surrounding genes MYO5C,

LYSMD2, ARPP19, and FAM214A (p<1.0x10-6) (blue circles). 6p21.32: (HLA-DRB5) represented by rs115488695 (p = 3.58x10-7). The HLA gene region

(6p21.32) has previously been associated with musculoskeletal disorders; SNPs (rs2187689, rs7767277) nearby TAP1 (violet circle) were associated with

lumbar disc degeneration in the meta-analysis of Northern European individuals [26], two SNPs (rs7775228, rs10947262) within BTNL2 and nearby

HLA-DQB1 genes (green circles) were associated with knee osteoarthritis in a Japanese GWAS [27), and two SNPs (rs2076311 and rs1799907) within

COL11A2 (blue circle) were associated with magnetic resonance-determined disc signal intensity [28], and with degenerative lumbar spinal stenosis with

radicular pain in Finnish individuals [29].

doi:10.1371/journal.pone.0163877.g003
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individuals (92 cases and 92 controls) in YFS, and 184 individuals (89 cases and 95 controls) in
H2000 (Fig 4). The concordance between the sequenced and the imputed genotypes were
88.2% in YFS (imputation quality 0.78; MAF 0.08) and 87.3% in H2000 (imputation quality
0.77; MAF 0.07). We also genotyped rs190200374 and rs80035109 at 15q21.2 (MYO5A) in a
total of 1686 (152 cases and 1534 controls) and 1642 (154 cases and 1488 controls) individuals
in YFS as well as 1405 (82 cases and 1323 controls) and 1392 (99 cases and 1293 controls) indi-
viduals in H2000, respectively. For rs190200374, the concordance between the genotyped and
imputed genotypes was 96.7% in YFS (imputation quality 0.84; MAF 0.06) and 96.2% in
H2000 (imputation quality 0.87; MAF 0.06). For rs80035109, these were 99.6% in YFS (impu-
tation quality 0.97; MAF 0.07) and 98.3% in H2000 (imputation quality 0.97; MAF 0.07). All
concordances as well as results from the association analysis using the real genotypes are given
in S8 Table. Both rs190200374 and rs80035109 are in strong LD with two other significantly
associated variants (rs145901849 and rs117458827) in theMYO5A gene region (15q21.2)
(r2� 0.81) (S4 Table). In summary, our additional genotyping assessments were able to vali-
date the accuracy of the imputed genotypes for chr9:14344410:I (9p22.3,NFIB), rs190200374
and rs80035109 (15q21.2,MYO5A), with high concordances obtained for all.

Discussion

The present study is the first GWAS and meta-analysis of sciatica. For lumbar disc degenera-
tion, two genome-wide association analyses have been reported [26, 30]. The strongest associa-
tion signal (p = 1.30x10-8) for sciatica in our present study was obtained for a single base
insertion -/G (chr9:14344410:I; rs71321981) withinNFIB gene at locus 9p22.3. To our knowl-
edge, this locus has not been associated with sciatica earlier. We were able to replicate this asso-
ciation in an independent Finnish population cohort (FINRISK, rs71321981, p = 0.04).
Frequency of rs71321981 is about 8% in Finns as well as in other European populations.

The insertion rs71321981 resides in the regulatory region within the first of eight introns of
theNFIB gene causing a single base extension to the sequence with regard to the reference
sequence. It overlaps also a novel antisense gene, RP11-120J1.1, being intronic or upstream gene
variant for that depending on the transcript (Ensemble Variant effect predictor; see URLs).
NFIB is a member of the nuclear factor I (NFI) family of evolutionary conserved genes

(NFIA, NFIB,NFIC and NFIX) encoding sequence-specificDNA-binding proteins, transcrip-
tion factors, which regulate transcription throughout the development in mammals and in

Fig 4. Sequence of the insertion chr9:14344410:I (rs71321981) within the regulatory region of the

NFIB gene (9p22.3). The chr9:14344410:I (rs71321981) was sequenced in 184 individuals belonging to the

YFS and 184 individuals included in the H2000 discovery cohort. Upper panel: heterozygous insertion/

frameshift (-/G); Middle panel: homozygous insertion (G/G); Lower panel: wild type (-/-). The nucleotide

sequences generated were compared to the reference sequence at 1000 Genomes browser (see URLs).

doi:10.1371/journal.pone.0163877.g004
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adenoviral replication [31]. NFI transcription factors bind to DNA as homo- and heterodimers
[32–34] and control, through promoter and cell-type specific transactivation or repression, a
diverse set of tissue-specific and developmentally regulated genes (e.g. in the central nervous
system, muscle, and the lungs, as well as in various cell types such as fibroblasts, chondrocytes,
osteoblasts, adipocytes) [31, 35–38]. The insertion discovered here is a regulatory region vari-
ant located in the C-terminal transcriptional activation and/or repression domain of NFIB [35]
(1000 Genomes Project; see URLs).
In vitro work has suggested that NFIB plays a role in chondrocyte differentiation [39]. In

murine mesenchymal ATDC5 cells, a cell line used as a model for chondrocyte differentiation,
the creation of a NFIB truncation mutation resulted in lack of the C-terminal transactivation/
repression domain, led to an impaired nodule formation, less accumulation of cartilaginous
matrices, and reduced expression of a set of marker genes for proliferating chondrocytes,
namely Col2a1,Matn-1, PTHrP, and to some extent also of SOX9 [39]. Other studies have indi-
cated that NFI/NFIB proteins bind to a promoter silencer region ofMatn1 and modulate Sox9
transactivation in in vitro chondrogenesis [40, 41]. NFI has also been demonstrated to function
as a positive regulator of Runx2-dependent skeletal development and osteoblast function [37].

At 15q21.2, four SNPs; rs145901849 (intronic regulatory region variant), rs117458827
(3’UTR SNP), rs80035109 and rs190200374 (both intronic), were significantly associated with
sciatica (p<5x10-8). These variants are in strong LD (r2�0.81) within a 200kb region in the
MYO5A gene. However, we were not able to replicate the 15q21.2 variants in the Finnish repli-
cation sample and thus we consider 15q21.2 as a promising locus but needing further replica-
tion efforts. In addition, thirteen surrounding SNPs at 15q21.2-15q21.3 harboring theMYO5A,
FAM214A, ARPP19, LYSMD2, DMXL2, andMYO5C genes as well as an intergenic region
showed suggestive associations (p<1x10-5).

Class V myosins (MYO5A, MYO5B, MYO5C; ~50–60% protein sequence identity shared)
are an evolutionarily ancient group of molecularmotors that mediate actin-dependent organ-
elle trafficking [42, 43]. MYO5A is involved in the intracellular transport of organelles in mela-
nocytes and neuronal cells [44–46], and mutations within it have been associated with rare
human syndromes with neurological defects [47–49]. Interestingly, a suggestive association
was reported for rs4802666 ofMYH14 (19q13.33) in a GWAS meta-analysis of lumbar disc
degeneration [26].MYH14 is a member of the same myosin superfamily asMYO5A and
MYO5C; all are expressed in human cell lines derived from bone (Human Protein Atlas; see
URLs) and normal skeletal muscle tissue (Gene Cards; see URLs). It has been suggested that
myosins may play a role in lumbar disc degeneration through mechanisms that affect multiple
tissues, rather than cartilage alone [26]. To sum up, 15q21.2 (MYO5A) emerged as an interest-
ing locus but failed to replicate in our replication sample. Further replication efforts in other
populations are needed. In this context, it is of note that theMYO5A variants discovered
appear enriched in the Finnish population (somewhat over 5%) and are rather rare in other
European populations (up to 2%) (1000 Genomes Project; see URLs) as discussed in more
detail below.

At locus 6p21.32–33, 45 SNPs located within a 1.4 Mb region in theHLA gene region (i.e.,
human major histocompatibility complex) showed suggestive associations with sciatica
(p<1x10-5). Six of them had a p-value<1x10-6, of which four (rs115949512, rs3094014,
rs114615271 and rs115688765) were in strong LD (r2�0.97) within or nearby theHCP5 gene
at 6p21.33 and two (rs190606317, rs115488695) were in moderate LD (r2�0.31) within/nearby
theHLA-DRB5 gene at 6p21.32 (S6 Table). We were not able to replicate association between
these six lead SNPs and sciatica in our independent Finnish replication sample. The
rs190606317 at 6p21.32 had a significant p-value (p = 0.006) in the sample, but the effect direc-
tion was different and thus was not considered as replicated (S7 Table).
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TheHLA gene region (6p21.32) has previously been associated with musculoskeletal disor-
ders. Two SNPs (rs2187689 and rs7767277) were associated with lumbar disc degeneration
(LDD) in a GWAS meta-analysis in Northern European populations [26], and two variants
(rs10947262 and rs7775228) were associated with osteoarthritis (OA) in the GWAS of a Japa-
nese population [27], although this association was not replicated in European or Han Chinese
study populations [50, 51]. The OA-associated SNPs (rs7775228, rs10947262) from the Japa-
nese study were not in LD with our six lead variants in theHLA gene region, and the LDD-
associated variants (rs2187689 and rs7767277) were not included in our GWAS (not included
in the 1000 Genomes 1KG pilot data) (S6 Table). It may be noted that neither sciatica, osteoar-
thritis, nor LDD is considered as an auto-immune disease. However, it has been suggested that
there may be pro-inflammatory cytokine activation in herniated lumbar discs [5, 52], and anti-
TNF has been used successfully to treat disc herniation-induced sciatica [5, 53]. Accordingly,
inflammatorymediator genes are considered to be candidate genes for sciatica, lumbar disc
degeneration and osteoarthritis [5, 14, 28, 54, 55].

It is also of note that COL11A2, previously associated with magnetic resonance-determined
disc signal intensity (with rs2076311 as the lead SNP) and with degenerative lumbar spinal ste-
nosis with radicular pain (the lead SNP rs1799907) [28, 29], lies 622 kb upstream of our
rs190606317 at 6p2.32. However, our six lead variants were not in LD with theseCOL11A2 var-
iants (rs2076311, rs1799907) (S6 Table), so it seems unlikely that COL11A2would directly
account for the observed association in the meta-analysis, although we cannot rule out some
possible influence of long range effectors such as enhancers.

The primary phenotype in the two discoveryGWAS was a physician-diagnosed sciatica. Sci-
atica is a syndrome involving nerve root impingement or inflammation that has progressed
sufficiently to cause neurological symptoms in the areas that are supplied by the affected nerve
roots [8]. While there is a range of definitions of sciatica, its specific clinical features—such as
low back pain radiating below the knee, presence of numbness or pins and needles in a derma-
tomal distribution, positive results on a straight leg raise test, and weakness or reflex changes,
or both, in a myotomal distribution—are used for diagnoses of sciatica [7, 9]. Further, sciatica
is commonly associated with disc disorders such as herniated disk or spinal stenosis [9], but
still in many cases with clinical symptoms of sciatica, no lumbar disc herniation is present on
images [9, 56, 57]

In YFS, the physician-diagnosed sciatica cases were self-reported in an on-site examination
and represented manifestations of sciatica in a relatively young population. In H2000, sciatica
was diagnosed by a field physician, if the subject had a history of low back pain radiating down
to the leg, and either positive clinical findings or a history of lumbar disc herniation that had
previously been confirmed by imagining or required surgery. Finally, in the replication popula-
tion (FINRISK, the largest of the study populations), the sciatica phenotype was based on ICD
diagnoses available at the Finnish Hospital Discharge Register, thus likely to represent the
severe cases requiring hospitalization. Collectively, while the phenotypes across the three study
cohorts were not identical, they were all representative of sciatica. Therefore, we see that the
study managed to capture representation from the whole sciatica spectrum.Furthermore, in all
study populations, the diagnoses were made by Finnish physicians according to general medi-
cal practice in Finland, a countrywith high-level and uniform medical education and well orga-
nized health services.Obviously, some residual differences between the diagnoses and study
populations may partly explain why only one of the loci (9p22.3) was replicated in the FIN-
RISK population.

This study is based on three representative Finnish population samples representing a
genetic isolate, where certain rare and low frequency variants are enriched due to population
history (small founder population, several bottle neck events and genetic drift). Each of the five
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lead SNPs in the two loci (9p22.3, 15q21.2) has a relatively low frequency (<8%) in the general
population (1000 Genomes Project; see URLs). The insertion chr9:14344410:I at 9p22.3 (NFIB)
has similar frequencies in the Finnish (7%) and other European populations (8%) as well as in
American (6%) and South Asian populations (8%) (1000 Genomes Project; see URLs). In Afri-
can population, the frequency of rs71321981 is even higher (24%), but in East Asian population
this variant is absent (0%). Most of these minor allele frequencies would allow replication; we
therefore conclude that further replication efforts are warranted. For 15q21.2, however, all four
MYO5A variants were 3–6 times more frequent in our representative Finnish samples (6–7%)
than in other European populations (0–2%) and in African, American, East and South Asian
populations they were absent (Table 2; S5 Table; 1000 Genomes Project; see URLs). The differ-
ences in allele frequencies likely indicates a past bottleneck events and genetic drift in the Finn-
ish population. In all, our data are in line with previous studies illustrating the high utility of
population isolate and the dense genotype imputation based on representative data from multi-
ple populations, in search for low frequency variants associated with complex human diseases
[21, 58–60]. The five relatively low frequency variants associated with sciatica in this study,
especially the differentiated variants in 15q21.2, would likely not have been identifiedwithout
inclusion of Finnish individuals in the 1000 Genomes reference panel. Furthermore, the identi-
fication and replication of the differentiated variants would require much larger sample sizes in
more mixed population.

In summary, we conducted the first GWAS meta-analysis of sciatica and identified a single
base insertion at locus 9p22.3 (NFIB) associated with sciatica at genome-wide significance and
replicated in an independent Finnish population sample. The insertion is within a regulation
region of the transcription factorNFIB, which has been shown to be involved in chondrocyte
differentiation and osteoblast function, thus making this gene and the insertion functionally
interesting for sciatica. In addition, we identified four variants associated with sciatica at the
locus 15q21.2 (MYO5A), which was promising but not replicated. Both loci merit further inves-
tigation and replication studies. As the first GWAS of sciatica, this study may serve as a starting
point for further studies and shed light to the genetic susceptibility factors of sciatica.

Materials and Methods

Study populations and phenotypes

This study was carried out in accordance with the recommendations of the Declaration of Hel-
sinki. All participants of studies have given written informed consent. Studies were approved
by the local research ethic committees: Ethics Committee of the National Public Health Insti-
tute for the Health 2000 Study, Ethics Committee of the Hospital District of Southwest Finland
for the Young Finns Study, and Ethics Committee of Helsinki and Uusimaa Hospital for the
FINRISK Study.

Genome-wide association studies of sciatica were carried out in two Finnish population-
based cohorts, the Young Finns Study, (YFS; 180 sciatica cases and 1,840 controls) and the
Health 2000 Study (H2000; 111 sciatica cases and 1,831 controls) (Fig 1; S1 Table; S1 Text).
The primary phenotype analyzed was a physician-diagnosed sciatica, with diagnosis based on
specific symptoms and clinical findings according to general medical practice in Finland. In
the YFS, information on physician-diagnosed sciatica was inquired during on-site examina-
tions using a self-administered questionnaire (“Do you currently have or have you had a long-
term disease diagnosed by a physician, such as sciatica?”). In the H2000, participants attended
a comprehensive health examination, with a physical examination of the musculoskeletal sys-
tem performed by a field physician. The diagnosis of sciatica was based on the presence of
chronic (>3 months) low back pain radiating down to the leg and either clinical findings of
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lumbar nerve root compression or a history of lumbar disc herniation that had been previously
verified by imaging or required surgery (S1 Text). Demographics of the population samples are
given in Table 1 (see also S1 Text).

Replication analyses were carried out in an independent Finnish population sample consist-
ing of four independent cross-sectional population surveys (carried out in years 1992, 1997,
2002, and 2007) of the FINRISK Study [61] (Table 1; S1 Text; see URLs). The FINRISK Study
populations have been linked to the Finnish Hospital Discharge Register (currently the Finnish
Care Register for Health Care) (see URLs), which provides personal identification code-based
individual diagnoses (WHO ICD codes) at discharge. For the replication study, those diag-
nosed with one of the ICD-codes selected a priori by two experts on musculoskeletal diseases
(EVJ and MH) as relevant for sciatica or sciatic syndrome (ICD8 353, 728.8; ICD9 724.3, 722.1,
722.10, 722.5, 722.52, 355.0; ICD10 M54.3, M51.1, M54.1, M54.4) were included as cases
(amounting to 776 sciatica cases and 18,489 controls) (see URLs; S1 Text).

Genome-wide scans and imputation

Genotypes for both YFS and H2000 study populations were pre-existing, determined at the
Wellcome Trust Sanger Institute (UK) using custom-generated Illumina Human Map 670K
array for YFS and 610K BeadChip for H2000 study. Prior to genome-wide association analysis,
quality control was performed independently in both two cohorts. Poor quality markers (those
with genotyping failure>5% of samples) and poor quality DNA samples (those with genotyp-
ing failure>5% of markers) were removed. Moreover, markers with low minor allele frequency
(MAF<0.01 in YFS and MAF<0.02 in H2000), Mendelian errors, or those violating the
Hardy-Weinberg equilibrium (HWE�1x10-6 in YFS and in H2000) were excluded. Likewise,
samples with gender inconsistency or cryptic relatedness (PI_HAT>0.2) and samples with
excessive genome-wide heterozygosity (indicative of sample contamination) were removed.
IBD sharing was also computed for the combined dataset, and duplicates and close relatives
(PI_hat>0.4) were removed from the analyses. The genotype imputation data used were gener-
ated from cleaned data in both cohorts using IMPUTE2–program [62] and was based on the
1000 Genomes imputation reference in NCBI build 37, where the 1000 Genomes files were
from March 2012 release for YFS and April 2012 release for H2000 (see URLs). The 1000
Genomes imputation reference includes Finnish imputation reference (FIN; see URLs). Quality
control for imputed markers was conducted separately in both studies; markers with
MAF<0.02 or imputation quality<0.7 were excluded. Genotyping, imputation and quality
control measures are summarized in S1 Table.

Genome-wide association analyses and meta-analysis

The genome-wide scan data was analyzed for associations between genetic variants and sciatica
separately in YFS and H2000 studies (Fig 1). Multidimensional Scaling was done for genetic
data of both studies using PLINK v. 1.07 [63]. Genome-wide association analyses were per-
formed for directly genotyped and imputed variants. Both studies included as covariates age,
sex and the first seven principal components from the genetic data to correct possible popula-
tion stratification. Frequentist/case-control-test, assuming an additive genetic model, was per-
formed using SNPTEST v2 for both genotyped and imputed markers [64]. To combine the
effect estimates from both studies, a fixed-effectsmeta-analysis was conducted for sciatica
using GWAMA [65]. The presence of heterogeneity across studies was investigated with
Cochran’s Q (weighted sum of squares) test and I2 statistic (percentage of true heterogeneity to
total observedvariation) [66]. Only good quality autosomal markers passing the following cri-
teria: imputation informativeness>0.7, and no heterogeneity in the effect sizes for the SNP
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between cohorts (Cochran‘s Q statistic P-value<1x10-5), were included in further evaluations.
The genome-wide inflation factor was measured in the individual GWAS and the GWAS
meta-analysis by genomic control statistic [67]. There was no evidence for population stratifi-
cation at the study level (genomic inflation factor; YFS λGC = 1.001 and H2000 λGC = 1.016) or
at the meta-analysis level (λGC = 0.993). Test statistics of both GWAS were corrected by using a
genomic inflation factors. The Quantile-Quantile and Manhattan plots were created using R-
2.11 (see URLs) to visualize genome-wide association results. Regional plots of association
were generated using LocusZoom[68] (see URLs). The genomic positions indicated through-
out this study are based on NCBI human genome build 37 (see URLs). GWAS, GWAS meta-
analysis, and quality control measures are summarized in S1 Table.

Replication analysis

Variants with p-value< 1 x 10−6 in the genome-widemeta-analysis were selected for replica-
tion. Variant was considered replicated if it reached significance of p<0.05 and was consistent
in terms of risk allele.

A large Finnish replication cohort, the FINRISK Study, was used for replication. Genotypes
for FINRISK were pre-existing and, due to the large number of participants (close to 21 000),
genotyping was performed in multiple batches/subpopulations using several standard genotyp-
ing arrays including: Sanger CoreExome batch1, Illumina HumanCoreExome Sanger CoreEx-
ome batch2, Illumina HumanCoreExome Broad CoreExome batch1, Illumina
HumanCoreExome PredictCVD, Illumina OmniX Corogene, Illumina 610K SUMMIT, Illumina
OmniX MIGEN–and Affy 6. Genotyping quality was examined by a detailedQC procedure con-
sisting of success rate checks, duplicated water controls and Hardy Weinberg Equilibrium
(HWE) testing. The genotype imputation data usedwas generated from cleaned data using
IMPUTE2–program and was based on the 1000 Genomes imputation reference panel.

Frequentist association test assuming an additive genetic model was performed using
SNPTEST v2 for selected variants [64].

Genotype validation

To validate imputation accuracy, the imputed variant chr9:14344410:I (rs71321981) at 9p22.3
was genotyped by direct sequencing using standard methods as described elsewhere [69]. The
chromatograms were analyzed manually, and the corresponding nucleotide sequences were
compared to the reference sequence at 1000 Genomes browser (1000 Genomes Project; see
URLs). The primer sequences are available from the authors on request.

In addition, imputed variants rs190200374 and rs80035109 at 15q21.2 were genotyped
using a TaqMan1 chemistry-basedPCR platform (Open Array™ system) and custom-made
TaqMan1 SNP Genotyping assays (Applied Biosystems). The allelic calling analysis was per-
formed using TaqMan Genotyper v1.3 software and OpenArray™ SNP Genotyping Analysing
software. For quality control, two independent readers interpreted the results. Random selec-
tion of all samples (about 5% in H2000 and 12% in YFS) was re-genotyped. No discrepancies
were discovered in the replicate tests for the variants.

Concordances between the genotyped and imputed SNPs were calculated using threshold
0.7 for converting probabilistic genotypes of imputed SNPs to hard calls.

Web Resources

The URLs for data presented herein are as follows:
GWAMA, http://www.well.ox.ac.uk/gwama/
IMPUTE2, http://mathgen.stats.ox.ac.uk/impute/impute_v2.html
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SNPTEST, https://mathgen.stats.ox.ac.uk/genetics_software/snptest/old/snptest_v2.1.1.html
LocusZoom,http://csg.sph.umich.edu/locuszoom/
R, http://www.r-project.org/
1000 Genomes Project, http://www.1000genomes.org/
Ensemble Variant Effect Predictor: http://www.ensembl.org/info/docs/tools/vep/index.html
Human Protein Atlas, http://www.proteinatlas.org/
Gene Cards, http://www.genecards.org/
Cardiovascular Risk in Young Finns Study, http://youngfinnsstudy.utu.fi/
Health 2000 Study, http://www.nationalbiobanks.fi/index.php/studies2/8-health2000
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