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Abstract 

Purpose: Delineation of gross tumour volume in 3D is a critical step in the radiotherapy (RT) 

treatment planning for oropharyngeal cancer (OPC). Static [18F]-FDG PET/CT imaging has been 

suggested as a method to improve the reproducibility of tumour delineation, but it suffers from low 

specificity. We undertook this pilot study in which dynamic features in time-activity curves (TACs) 

of [18F]-FDG PET/CT-images were applied to help the discrimination of tumour from inflammation 

and adjacent normal tissue. Methods: Five patients with OPC underwent dynamic [18F]-FDG 

PET/CT- imaging in treatment position. Voxel-by-voxel analysis was performed to evaluate seven 

dynamic features developed with the knowledge of differences in glucose metabolism in different 

tissue types and visual inspection of TACs. The Gaussian mixture model and K-means algorithms 

were used to evaluate the performance of the dynamic features in discriminating tumour voxels 

compared to the performance of standardized uptake values obtained from static imaging. Results: 

Some dynamic features showed a trend towards discrimination of different metabolic areas but lack 

of consistency means that clinical application is not recommended based on these results alone.  

Conclusions: Impact of inflammatory tissue remains a problem for volume delineation in RT of 

OPC but a simple dynamic imaging protocol proved practicable and enabled simple data analysis 

techniques that show promise for complementing the information in static uptake values. 

Keywords: oropharyngeal cancer, PET/CT, [18F]-FDG, dynamic PET/CT-imaging, contouring, 

radiotherapy 
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Introduction 

Hybrid positron emission tomography computed tomography (PET/CT) imaging with [18F]-

fluorodeoxyglucose ([18F]-FDG) is commonly used in the management of patients with 

oropharyngeal cancer (OPC). Concurrent chemoradiotherapy (CRT) is the preferred treatment 

modality for locally advanced OPC, and approximately 70-80% of patients can be expected to 

achieve local control with platinum-based drugs and conformal irradiation techniques [1].  

Although the overall survival of patients with OPC has improved since the introduction of CRT, the 

treatment frequently causes remarkable and even life-long adverse effects [2,3], motivating research 

into better personalization of treatment plans. First, the improved accuracy of gross tumour volume 

determination utilizing [18F]-FDG PET/CT may be beneficial in limiting the dose in sensitive 

normal tissues such as salivary glands, spinal cord and mandible [4,5]. Second, the improvement in 

survival has been paralleled with the rising incidence of human papilloma virus (HPV) infection, 

which accounts for more than two thirds of all OPCs in the Western world [6,7,8]. Patients with 

HPV-positive OPC have better prognoses compared to HPV-negative patients [8,9], and some of 

the HPV-positive patients would survive without undergoing the most intensified treatment 

protocols [10]. This observation has prompted discussion about the de-intensification of treatment 

in individual patients [11], but this remains an experimental approach and de-intensified protocols 

require rigorous imaging applications given that cervical lymph node metastases are extremely 

common in patients with HPV-positive OPC. 

In planning of RT, one major challenge is the task of reliably delineating malignant tissues in 3D 

using different datasets such as PET/CT or magnetic resonance imaging. The limited specificity of 

[18F]-FDG to differentiate between neoplastic and inflammatory tissue is a well-recognized problem 

that stems from the fact that all cells with increased rate of intracellular glucose consumption are 

[18F]-FDG-avid and present as hot spots in PET images [12]. Static [18F]-FDG-PET/CT-imaging 

and semiquantitative tracer uptake analysis using standardized uptake value (SUV) is a widely 

applied technology in oncology, but the method is suboptimal in the identification of malignant 

tissue for delineation of RT targets. To overcome the limitations of a static approach in 

differentiation between cancer and inflammation, the images can be further analyzed by taking into 

account the temporal dimension of tracer uptake [13]. Probably the most common investigated 

application in this field is dual-time point imaging. However, this relatively robust and reproducible 

method has not totally fulfilled expectations in patients with head and neck cancer [14]. 

Motivated by the limitations of static and dual-time point image analysis, we hypothesized that 

different tissue types may show differences in the temporal pattern of [18F]-FDG uptake better 

identifiable by more advanced analysis of more temporally detailed dynamic images. To address 

this hypothesis we tested several features, calculated from PET activity curves of 22 time-points, for 

their ability to discriminate different metabolic areas in dynamic [18F]-FDG PET/CT-images of 

patients with OPC undergoing CRT. We further hypothesized that knowledge of the pattern of these 

features derived from tumour and inflammatory tissues would be useful for the delineation of RT 

volumes. 
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Methods 

Patients 

The study was conducted at Turku University Hospital, which is a tertiary academic center in 

Southwestern Finland. Five patients with newly diagnosed and untreated OPC were enrolled in the 

study. The median age of the patients was 59 years (range 58-65), and all patients were in good or 

moderate general health condition (Zubrod performance status score 1-2). The characteristics of the 

patients are presented in Table 1. Informed consent was obtained from all individual participants 

included in the study. All procedures performed in the study involving human participants were in 

accordance with the 1964 Helsinki Declaration and its later amendments. The study protocol was 

accepted by the Ethics Committee of the Hospital District of Southwest Finland. The patients 

underwent standard biopsy procedures (either tonsillectomy or tissue biopsy during 

hypopharyngoscopy depending on the site of the tumour) before PET/CT-imaging was performed. 

The median time from biopsy to scan was 21 days (range 16-23 days). Standard 

immunohistochemical staining of the tissue specimen using p16 antigen test was performed to 

determine the human papilloma virus (HPV) status [15]. 

The pre-study management included standard dentist´s evaluation, which consisted of an oral 

hygiene plan, extraction of decayed teeth, and management of oral chronic infections when 

necessary. All procedures were depicted in detail in the dental report, available for investigators, 

defining volumes of interest for RT and study protocol (see below). 

 

PET/CT Device and image reconstruction 

All scans were performed with a hybrid Discovery VCT PET/CT-scanner (General Electric Medical 

Systems, Milwaukee, WI, USA), which combines a helical 64 slice CT scanner and a PET 

tomography with bismuth germinate oxide crystals arranged in 24 rings, yielding 47 transverse 

slices of 3.27 mm slice thickness. The PET imaging field of view was 70 cm in diameter and 15 cm 

in axial length. Image reconstruction was performed with an iterative VUE Point Fx method (GE 

Healthcare, 2011) with 2 iterations and 24 subsets. A reconstruction matrix of 192x192 was used. 

 

Imaging protocol 

The PET/CT acquisition protocol was designed both for the study purposes and for the planning of 

the standard RT. The patients fasted for at least 4 hours before the scan was performed. Then the 

patient was positioned supine, arms down on the scanner couch with a flat table and a thermoplastic 

mask for the immobilization. The scanner landmarks were set to the predefined marks on the mask. 

A CT scan from the neck region was acquired, and after that, the injection of [18F]-FDG was 

administered intravenously. At the same time as the injection, the dynamic PET scan was started. 

During the first 30 minutes, dynamic PET data from the neck region was acquired (0-30 minutes 

divided in 20 frames, please see Fig. 1 for details). After that, the patients were allowed to rest 

outside the scanner before the second imaging session began. 

The second imaging session started with a whole-body CT scan for the treatment planning purposes 

followed by the standard diagnostic whole-body PET scan containing two bed positions from the 

neck region (4 minutes per bed position) and two bed positions from the lower part of the body (2 

minutes per bed position). Finally, one frame of the PET data from neck region (one bed position, 

four minutes frame) was acquired. In total, the PET data contained 22 frames. The imaging data of 
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the 21st frame was used in order to determine the uptake value in the form of static parameter SUV. 

The scanning protocol is presented in detail in Fig. 1. 

 

Image analysis 

Volumes of interest (VOIs) were determined on the co-registered PET/CT images. The primary 

tumours and all metastatic lymph nodes were contoured manually by a qualified radiation 

oncologist on the images from the 21st frame. Identification of primary tumours was based on 

detection of an FDG-avid lesion in an area with a history of positive biopsy, excluding 

physiological tracer uptake, and, in the case of metastases, detection of a FDG positive lesion in the 

neck where the overlaying lymph node could be seen on anatomical CT. The largest metastatic 

lymph node when available was chosen for further analysis. 

Healthy tissue surrounding a primary tumour VOI (Gross Tumour Volume) was defined using a 

voxel threshold method: First, a box-shaped VOI was defined around the irregular-shaped tumour 

VOI, then tumour voxels (according to the manually contoured tumour VOI) were subtracted from 

this box-shaped VOI leaving behind the healthy tissue voxels. The voxels belonging to any other 

nearby VOI contour (e.g. inflammation) were also excluded in the rare cases where they fell inside 

the same box-shaped VOI.  

In addition to tumours and metastases, VOIs representing inflammatory lesion(s) in the mandible or 

other parts of the oral cavity were drawn manually on the PET/CT images, paying specific attention 

to the written report of all dental procedures. All the patients had at least one inflammatory lesion 

due to extraction of decayed teeth, which was feasible for further analysis of PET data. All the 

VOIs that were drawn on the PET/CT images from the 21st frame were rigidly registered with the 

corresponding PET/CT images from the first part of the imaging session (frames nr 1-20). 

 

Evaluation of dynamic features in the distinction of different tissue types 

Time-activity curves (TACs) were generated for every single voxel of the predefined VOIs. A 

number of dynamic features were developed for voxel classification. Design of these features was 

based on visual inspection of TACs and assumptions based on knowledge of glucose transport 

mechanisms. The dynamic features (D1-D7) are defined in Table 2 and described in detail in the 

master thesis of Mueez U Din [16]. SUV and all dynamic features were calculated for each of the 

voxels from the predefined VOIs. These predefined VOIs provided the best available ground-truth 

for labelling voxels according to tissue type. 

Two classification algorithms Gaussian mixture model (GMM) and K-means were used to evaluate 

performance of the dynamic features and SUV in the distinction of different tissue types. The 

classification and performance evaluation were implemented in the programming software Matlab 

(Version: R2006b). GMM code was adapted from open-source code in Simulink´s on-line archive 

of open-source libraries (Matlab Central – File exchange, 2013), and K-means is a built-in function 

of the Matlab statistical toolbox package. Starting with 4 tissue types: primary tumour, 

inflammation, metastatic lymph node and healthy tissue surrounding the primary tumour, we 

performed 4 binary classification experiments that discriminated (i) tumour vs. inflammatory tissue, 

(ii) tumour vs. healthy tissue, (iii) tumour vs. metastatic lymph node and (iv) inflammatory tissue 

vs. metastatic lymph node.  
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In each binary classification, a mixture of unlabeled data from two different tissue types was input 

to a classification algorithm, which was set up to divide the data into two classes based on the 

evaluated dynamic feature or SUV. Each algorithm produced a label according to whether the voxel 

belonged to the positive class (e.g. primary tumour) or negative class (e.g. healthy tissue). These 

labels were compared to the ground-truth labels in order to calculate specificity and sensitivity of 

the dynamic features and SUV. For the K-Means algorithm, the specificity and sensitivity values 

were presented separately whereas for the GMM algorithm, receiver operating characteristics 

(ROC) analysis was performed. The area under the curve (AUCROC) is a combined measure of 

sensitivity and specificity and was used as performance metric for the GMM algorithm. 

Finally, sensitivity and specificity of the dynamic features were compared with those of the static 

parameter SUV. For comparison between the performance of a dynamic feature and SUV, 

Wilcoxon rank-sum test was used to investigate the statistical significance of differences. The non-

parametric test was chosen because of the low number of patients. 

 

Treatment of oropharyngeal cancer 

After PET/CT imaging, all patients received standard treatment assigned for them in a multi-

disciplinary tumour board. It consisted of intensity-modulated RT to the primary tumour and 

bilateral neck applying international guidelines [17]. Irradiation was combined with concurrent 

weekly cisplatin (40 mg/m2) over six weeks. One patient with sensorineural hearing loss (nr 4) 

received weekly cetuximab (250 mg/m2) instead of cisplatin [18]. Patients nrs 2,3, and 4 also 

underwent  neck dissection as a first-line surgery 3 weeks after completion of CRT. All patients 

received post-treatment [18F]-FDG PET/CT scan three months after CRT. Patients with residual or 

recurrent disease received additional chemotherapy either alone or combined with surgery. 

 

Results 

General evaluation of time-activity curves and tissue uptake 

The patients (nrs 1-3) with tonsillar carcinoma had lower [18F]-FDG uptake in their primary 

tumours compared to the two patients (nrs 4-5) with non-tonsillar carcinoma. Furthermore, the 

tonsillar carcinoma patients had higher tracer uptake in the inflammatory regions compared to the 

uptake of the primary tumour. Visual inspection revealed that the patients with tonsillar carcinoma 

also had a different shape of the TAC of the primary tumour compared to the non-tonsillar 

carcinoma patients (Fig. 2 and Fig. 3). The mean SUVs from all VOIs are presented in Table 3. The 

median SUV of the metastatic lymph nodes was lower than that of the inflammatory regions in the 

whole study population (Table 3). An example of PET/CT images is presented in Fig. 4. 

Discriminating primary tumour from inflammation 

The performance of the two classification algorithms in discriminating primary tumour from 

inflammatory voxels is presented in Table 4. Using the GMM algorithm, dynamic feature D3 

showed slightly better performance compared to SUV, but the difference was not statistically 

significant (p= 0.82). Among non-tonsillar carcinoma patients, D1 and D6 provided some superior 

ability compared to SUV, although these differences were not significant (p= 0.33 for both of 

them). 
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The test with K-means algorithm provided slightly different results (Table 4). The feature D3 

provided a lower sensitivity compared to the SUV in the whole patient population, and D6 was not 

superior compared to the SUV among non-tonsillar carcinoma patients. 

 

Discriminating primary tumour from surrounding healthy tissue 

The dynamic features were also utilized to discriminate the voxels of primary tumours from the 

surrounding healthy tissue. Both GMM and K-means clustering algorithms were used in these 

calculations. The results are shown in Table 4, and none of the dynamic features was found to be 

superior to SUV. 

 

Discriminating a metastatic lymph node from inflammation and from primary tumour 

The dynamic features did not provide superior performance compared to SUV in the distinction 

between metastatic lymph node and inflammation. Instead, the analysis between metastatic lymph 

nodes and primary tumours revealed that, to some extent, D5 showed superior sensitivity and 

specificity compared to SUV, when K-means algorithm was used. The results of both two 

comparisons with GMM and K-means algorithms are presented in Table 4. 

 

Discussion 

[18F]-FDG PET/CT has revolutionized the imaging of several types of malignant tumours [19]. 

Nonetheless, the low specificity of [18F]-FDG uptake in the identification of malignant tissue, 

mainly due to increased glucose metabolism of inflammatory tissue, remains a remarkable 

challenge [12]. This problem affects not only diagnostic imaging but also the delineation of RT 

volumes in complex anatomic regions such as the head and neck area. Bearing this difficulty in 

mind, we overtook the current study and evaluated the novel dynamic features of [18F]-FDG uptake 

in patients with head and neck cancer scheduled for CRT. We felt that dynamic imaging in 

treatment position might be helpful in the distinction of different tissue types compared to the 

standard approach, thus assisting in the contouring of tumours and minimizing the excess irradiation 

of normal tissues. 

Some differential features in the glucose metabolism and transport of neoplastic and non-neoplastic 

tissues can potentially be discernible in dynamic imaging. Of these, the expression of glucose 

transporter proteins (GLUT family) shows a distinct pattern in the presence of cancer. In malignant 

cells such as head and neck squamous cell carcinoma, the expression of GLUT1- and GLUT3-

proteins is up-regulated under the activation of hypoxia-inducible factor 1 (HIF-1) in low oxygen 

concentration [20]. GLUT-3 has been reported to have both a higher affinity for glucose and at least 

a five-fold greater transport capacity compared to GLUT-1 [21]. In inflammatory tissue, which may 

be abundant in white blood cells such as lymphocytes, monocytes, macrophages, and neutrophils, 

glucose transport is more similar to healthy tissue in spite of the presence of GLUT-3 [22]. Second, 

the preference of malignant cells for glycolysis as opposed to the respiration of normal cells results 

in metabolic features potentially detectable at long or delayed imaging protocols. 

The idea of the evaluation of temporal changes in [18F]-FDG uptake to improve specificity has been 

utilized in some previous studies. Among them, dual-time point imaging is the most common 

investigated acquisition protocol. Several studies have been performed in non-small-cell lung 
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cancer to evaluate this method in the distinction of mediastinal lymph node metastases from 

inflammatory changes, but the results have been controversial [23,24]. Indeed, a recent meta-

analytic comparison between single and dual-time point imaging in a variety of solid tumours found 

the latter to be more sensitive but less specific in the evaluation of metastatic nodal involvement and 

did not support the routine use of dual-time point [18F]-FDG PET/CT for the diagnosis of metastatic 

lymph nodes [25].  

In the recent years several computational methods have been proposed to be used in medical image 

registration and segmentation [26,27,28] Moreover, classification algorithms have been used widely 

as segmentation algorithms for medical images [29]. Based on our previous experience [30], we 

adopted two well-characterized clustering algorithms, GMM and K-means, for management of the 

data of the current study. Our main hypothesis was that the dynamic features could better 

differentiate tissues compared to the static parameter SUV. The features were calculated from 

dynamic data of the VOIs in PET/CT images, which required much longer acquisition protocol 

compared to that in the standard planning of RT. All seven features (D1-D7) were then evaluated 

with the two algorithms. 

First, the tracer retention index (D1) showed a favorable capability to distinguish between tumour 

and healthy tissue VOI in this study population. D1 resembles retention indices reported in dual-

time point protocols, although we used the initial 10 frames (0-10 min from injection) rather than 

the much later 45-60 min. window typical of several previous studies to calculate the first time 

point [23, 24, 31]. In spite of the wide range of the D1 of our tumour VOIs, there was no overlap 

with the healthy tissue VOIs. On the other hand, voxel-wise analyses using clustering algorithms 

showed only moderately low specificity for D1 in the distinction of healthy tissue and tumour 

voxels. This is probably due to the manual contouring of the tumour volume, which tends to be 

done by oversegmenting the tumour in order to avoid a geographic miss in RT. 

Second, the patients with tonsillar carcinoma had lower [18F]-FDG uptake as well as retention index 

(D1) in their tumour VOIs compared to the patients with non-tonsillar carcinoma. The shape of the 

tumour TACs in tonsillar carcinoma was different from that of non-tonsillar carcinoma (Fig. 2 and 

3) and did not exhibit the usual steep rising curve of malignant tumours [32]. Our observation needs 

to be considered as preliminary owing to the small number of cases, but it clearly warrants future 

investigation of similar patients. 

The analysis of discrimination of primary tumour and inflammation voxels showed that dynamic 

feature D3 provided a little better performance compared to the static parameter SUV. The feature 

D3 is the area under the TAC between the 20th and the 21st PET frames (30-70 minutes). D6 

(temporal variance) represents the total change in the radioactivity concentration over the entire 

period of time, and this feature explains how quickly the signal becomes stable. Among non-

tonsillar carcinoma patients, the features D1 and D6 showed also slightly higher specificity and 

sensitivity compared to the SUV. These three features can rationally be considered to represent the 

potential differences between glucose transport and the metabolism of different tissue types, 

although the biological background behind these findings remains obscure. 

Variance of local change (D5) is a unique feature, since it is not dependent on the tracer uptake rate. 

Instead, D5 describes the in-flux and out-flux of glucose through the cell membranes and thus is 

analogous to the ratio of rate constants K1 and k2 of the original Sokoloff equation describing [18F]-

FDG kinetics in dynamic PET studies [33]. Nonetheless, this theoretical background of the feature 

did not provide a reasonable explanation for the slightly superior performance of D5 compared to 
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SUV in the discrimination of primary tumour and metastatic lymph node observed in this study 

population. Furthermore, unlike in the SUV, we do not know the repeatability of D5 over sequential 

scans performed within a short time span. 

Some of the dynamic features showed different specificity and sensitivity with the K-means 

algorithm as compared to the calculations with GMM algorithm. The higher sensitivity and 

specificity obtained with the K-means algorithm may be explained by the fact that K-means can 

better classify into separate groups data which does not show normal distribution. On the other 

hand, the GMM algorithm outperformed K-means in some calculations, which indicates that neither 

of the algorithms can be regarded as preferable in every situation. This may be due to the fact that 

GMM utilizes the expectation maximization algorithm, which estimates the maximum likelihood of 

the data point belonging to either of the classes. With a larger study population it might be valuable 

to perform also further analyses by combining several dynamic features in the distinction of 

different tissue types. Intuitively it might be beneficial to take into account the individual features of 

glucose metabolism and transport in different tissue types when considering how to combine the 

features for separate analyses.  

In this study, the patients fasted four hours before [18F]-FDG PET/CT-imaging, but the blood 

glucose level was not monitored before the imaging session. This can be considered as a weakness 

of the study protocol. On the other hand, none of our patients had any history of diabetes or 

impaired glucose tolerance, and the retrospective review of hospital charts did not reveal any 

suspicion of abnormal glucose metabolism during the cancer treatment and follow-up period. None 

of the study subjects was obese (body mass index >30 kg/m2) and none of them had any medication 

(e.g. systemic corticosteroid) likely to cause a temporary change in glucose metabolism. Therefore 

it is very unlike that any of the patients would have had a high plasma glucose level (>11.0 mmol/l) 

during the imaging.  

Finally, we have to consider how our approach could be implemented in the workflow of a busy RT 

department. The dynamic acquisition takes longer than standard static imaging, and longer sessions 

are uncomfortable for patients, since they have to wear a thermoplastic mask during the imaging. A 

clear advantage compared to classical dynamic studies evaluating [18F]-FDG kinetics is the lack of 

measurement of input function, which removes the need for extracting blood from the patient 

during acquisition. In this study, the imaging procedure was well tolerated, but our patients had 

good performance, and this kind of imaging protocol would be very challenging for 

tracheostomized patients or patients requiring a mouth bite for immobilization during the imaging 

session. 

Conclusions 

We found in this small pilot study that some dynamic features obtained by the extended PET/CT 

acquisition showed slightly superior performance compared to the SUV for differentiation of 

tumour from normal and inflammatory tissues in oropharyngeal cancer. The improvement in 

specificity and sensitivity was modest, and a large variation was seen for all features. This rules out 

any clear or statistically significant conclusion on the clinical value of any of the tested dynamic 

features of their relative discrimination capability compared with SUV, and is due in part to the 

difficulty in recruiting a large enough cohort of subjects with similar pathology. Some of these 

features may, however, provide additional information compared to static imaging, and we 

encourage further study of dynamic features in fit patients who tolerate the discomfort resulting 

from longer-than-standard imaging protocols. 
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Figure Legends: 

Fig. 1 Dynamic PET/CT acquisition protocol 

Fig. 2 Time-activity curves of volumes of interests of patients nr 1-3 with HPV-positive tonsillar 

carcinoma (black=primary tumour, orange=healthy tissue, blue=metastatic lymph node, 

red=inflammatory region left side, green=inflammatory region right side) 

Fig. 3 Time-activity curves of volumes of interests of patients with HPV-positive (nr 4) and HPV-

negative (nr 5) non-tonsillar carcinoma (black=primary tumour, orange=healthy tissue, 

blue=metastatic lymph node, red=inflammatory region left side, green=inflammatory region right 

side) 

Fig. 4 PET/CT images of patient nr 3. The primary tumour is located in the right palatine tonsil and 

the metastatic lymph node is located on the right side of the neck (a). The dental inflammatory 

lesions on both sides of the mandible are visible (b) 
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Table 1 Characteristics and clinical data of the patients 

 

 The tumour stage is given according to the guidelines of the International Union Against Cancer (UICC). († = dead of disease). 

 

  

Patient 
nr 

Age (years) Weight 
(kg) 

Tumour location TNM-
classification 

Stage Grade p16 
staining 

Injected 
activity (MBq) 

Clinical outcome 2 years 
after primary treatment 

1 63 79 tonsil T2N2BM0 IVA III + 320 progressive disease † 
2 65 74 tonsil T3N2BM0 IVA II + 309 remission 
3 59 80 tonsil T2N2BM0 IVA II + 298 remission 
4 59 88 base of tongue T3N2BM0 IVA II + 294 progressive disease 
5 58 63 orophrayngeal wall T3N0M0 III I - 284 progressive disease † 
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Table 2 List of dynamic features utilized in the analyses of the study  

“A” refers to the activity concentration and “T” to the time of PET frame. The corresponding PET frame is presented with the number in the subscript. The 

subscript “early” refers to the first ten PET frames and the subscript “late” to the 21st PET frame.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Dynamic 
feature 

Description Equation 

D1 Retention index Retention index = (Alate-Aearly)/Aearly 

 

D2 Early slope Early slope= (mean(A15,A16…A20)-mean(A1,A2…A10))/(mean(T15,T16...T20)-
mean(T1,T2…T10)) 
 

D3 Area under the TAC20-21 Area under the TAC20-21= ((T21-T20)x(A21-A20)/2)+(T21-T20)xA20 

 

D4 Sum Fluctuation 1-22 Sum fluctuation1-22= |A2-A1|+|A3-A2|+|A4-A3|….+|A22-A21| 
   
D5 Variance of local change Variance of local change = Var[(A2-A1),(A3-A2)…(A22-A21)] 

 
D6 Temporal variance Temporal variance = Var[A1,A2,A3…A22] 

 
D7 Sum of three slopes Sum of three slopes = Slope 1 + Slope 2 + Slope 3 

where, 
Slope 1= (mean(A15,A16…A20)-max(A1,A2…A5))/(mean(T15,T16…T20)-max(TA)) 
Slope 2=(A21-A20)/(T21-T20) 
Slope 3 =(A22-A21)/(T22-T21) 
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Table 3  Mean standardized uptake values (SUV) of volumes of interests 

 

 

 

 

 

 

Patient nr Primary 
tumour 

Metastatic 
lymph node 

Inflammatory 
lesion left 

Inflammatory 
lesion right 

Healthy tissue  

1 2.08 2.95 4.33 4.29 1.51  
2 2.56 3.07 3.94 2.88 1.73  
3 2.62 2.11 3.76 4.41 1.28  
4 7.32 4.73 NA 3.82 1.98  
5 5.61 NA 2.35 NA 1.36  

Median 2.62 3.01 3.85 4.06 1.51  
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Table 4  Performance of SUV and dynamic features in discrimination of voxel of different tissue types. *) The results of GMM-classification are presented as area under the 
curve (AUC) from ROC analysis, where a value of 1.0 signifies the best possible discrimination. The results of K-means classification are presented as sensitivity/specificity, 
also in the range 0 to 1.0. Values in bold reveal where dynamic features perform better than SUV in classification. 

Volumes of interest in 
discrimination 

Algorithm* 
G=GMM 

K=K-MEANS SUV D1 D2 D3 D4 D5 D6 D7 

Primary tumour and 
inflammation (all patients) 

G 0.825 0.812 0.707 0.845 0.703 0.689 0.764 0.801 

Primary tumour and 
inflammation (all patients) 

K 0.723/ 
0.896 

0.645/ 
0.877 

0.667/ 
0.631 

0.691/ 
0.929 

0.592/ 
0.713 

0.556/ 
0.726 

0.600/ 
0.405 

0.629/ 
0.704 

 
Primary tumour and 
inflammation (tonsillar ca) 

 
G 

 
0.864 

 
0.799 

 
0.726 

 
0.870 

 
0.678 

 
0.684 

 
0.738 

 
0.828 

Primary tumour and 
inflammation (tonsillar ca) 

K 0.811/ 
0.861 

0.685/ 
0.836 

0.741/ 
0.507 

0.765/ 
0.905 

0.606/ 
0.651 

0.595/ 
0.690 

0.629/ 
0.373 

0.688/ 
0.606 

 
Primary tumour and  
inflammation (non-tonsillar ca) 

 
G 

 
0.706 

 
0.853 

 
0.650 

 
0.771 

 
0.776 

 
0.702 

 
0.840 

 
0.721 

Primary tumour and 
inflammation (non-tonsillar ca) 
 

K 0.458/ 
1.000 

0.522/ 
1.000 

0.447/ 
1.000 

0.468/ 
1.000 

0.550/ 
0.900 

0.437/ 
0.833 

0.512/ 
0.500 

0.451/ 
1.000 

Primary tumour and healthy 
tissue (all patients) 

G 0.879 
 

0.760 
 

0.710 
 

0.827 
 

0.690 
 

0.690 
 

0.675 
 

0.673 
 

Primary tumour and healthy 
tissue (all patients) 
 

K 0.624/ 
0.932 

0.641/ 
0.725 

0.519/ 
0.428 

0.580/ 
0.778 

0.525/ 
0.669 

0.462/ 
0.835 

0.358/ 
0.763 

0.523/ 
0.711 

Metastatic lymph node and 
primary tumour (all patients) 

G 0.669 
 

0.642 
 

0.651 
 

0.641 
 

0.648 
 

0.594 
 

0.654 
 

0.650 
 

Metastatic lymph node and 
primary tumour (all patients) 
 

K 0.291/ 
0.716 

0.294/ 
0.610 

0.475/ 
0.613 

0.302/ 
0.707 

0.560/ 
0.713 

0.329/ 
0.842 

0.131/ 
0.867 

0.230/ 
0.605 

Metastatic lymph node and 
inflammation (all patients) 

G 0.783 
 

0.623 0.681 0.763 0.704 0.727 0.678 0.568 

Metastatic lymph node and 
inflammation (all patients) 

K 0.791/ 
0.630 

0.598/ 
0.519 

0.498/ 
0.565 

0.765/ 
0.639 

0.638/ 
0.542 

0.397/ 
0.756 

0.469/ 
0.604 

0.669/ 
0.461 
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