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Abstract
The point pair function pG defined in a domain G � Rn is shown to be a quasi-
metric, and its other properties are studied. For a convex domain G � Rn , a new
intrinsic quasi-metric called the function wG is introduced. Several sharp results are
established for these two quasi-metrics, and their connection to the triangular ratio
metric is studied.
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1 Introduction

In geometric function theory, one of the key concepts is an intrinsic distance. This
notion means a distance between two points fixed in a domain that not only depends
on how close these points are to each other but also takes into account how they
are located with respect to the boundary of the domain. A well-known example of an
intrinsic metric is the hyperbolic metric [1], but, especially during the past thirty years,
numerous other hyperbolic-type metrics have been introduced, see [2,4,6,9,11,12,14].

This often raises the question about the reason for introducing new metrics and
studying them instead of just focusing on those already existing. To answer this, it
should be first noted that the slightly different definitions of the intrinsic metrics mean
that they have unique advantages and suit for diverse purposes. Consequently, new
metrics can be used to discover various intricate features of geometric entities that
would not be detected with some other metrics. For instance, many hyperbolic-type
metrics behave slightly differently under quasiregular mappings and analyzing these
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differences can give us a better understanding of how such mappings distort distances
[13].

Furthermore, new metrics can also bring information about the already existing
metrics. Calculating the exact value of the hyperbolic metric in a domain that cannot
be mapped onto the unit disk with a conformal mapping is often impossible, but we
can estimate it by using other intrinsic metrics with simpler definitions [6, Ch. 4.3,
pp. 59–66]. However, in order to do this, we need to know the connection between the
different metrics considered and to be able to create upper and lower bounds for them.
Finding sharp inequalities for intrinsic metrics can often help us with some related
applications and, for instance, in the estimation of condenser capacities [6, Ch. 9, pp.
149–172].

Another noteworthy motivation for studying several different metrics is that their
inequalities can tell us more about the domain where the metrics are defined. The
definition for a uniform domain can be expressed with an inequality between the
quasihyperbolic metric and the distance ratiometric as in [6, Def. 6.1, p. 84]. Similarly,
some other inequalities can be used to determine whether the domain is, for instance,
convex or not, like in Theorem 3.5. Further, Corollary 3.7 even shows an equality
between metrics that serves as a condition for when the domain being a half-space.

In this paper, we consider two different intrinsic quasi-metrics. By a quasi-metric,
we mean a function that fulfills all the conditions of a metric otherwise, but only a
relaxed version of the triangle inequality instead of the inequality itself holds for this
function, see Definition 2.1 and inequality (2.2). The first quasi-metric considered is
the point pair function introduced by Chen et al. [2], and the other quasi-metric is a
function defined for the first time in Definition 4.1 in this paper. We also study the
triangular ratio metric introduced by Hästö [9] for one of the main results of this paper
is showing how our new quasi-metric can be used to create a very good lower bound
for this metric, especially in the case where the domain is the unit disk.

The structure of this paper is as follows. In Sect. 3, we study the properties of the
point pair function and show how it can be used together with the triangular ratio
metric to give us new information about the shape of the domain. Then, in Sect. 4,
we introduce a new quasi-metric and show how it works as a lower bound for the
triangular ratio metric in every convex domain. In Sect. 5, we focus on the case of the
unit disk and find several sharp inequalities between different hyperbolic-type metrics
and quasi-metrics. In particular, we investigate how the new quasi-metric can be used
to estimate the value of the triangular ratio metric in the unit disk, see Theorem 5.7
and Conjecture 5.19.

2 Preliminaries

In this section, we will introduce the necessary definitions and some basic results
related to them, but let us first recall the definition of a metric.

Definition 2.1 For any non-empty space G, ametric is a function d : G×G → [0,∞)

that fulfills the following three conditions for all x, y, z ∈ G:

(1) Positivity: d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y,
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(2) Symmetry: d(x, y) = d(y, x),
(3) Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y).

A quasi-metric is a function d that fulfills the definition above otherwise, but instead
of the triangle inequality itself, it only fulfills the inequality

d(x, y) ≤ c(d(x, z) + d(z, y)) (2.2)

with some constant c > 1 independent of the points x, y, z.
Now, let us introduce the notations used. Suppose that G � Rn is some domain. For

all x ∈ G, the Euclidean distance d(x, ∂G) = inf{|x −z| | z ∈ ∂G}will be denoted by
dG(x). The Euclidean balls and spheres are written as Bn(x, r) = {y ∈ Rn | |x − y| <

r}, B
n
(x, r) = {y ∈ Rn | |x − y| ≤ r} and Sn−1(x, r) = {y ∈ Rn | |x − y| = r}. If x

or r is not specified otherwise, suppose that x = 0 and r = 1. For points x, y ∈ Rn , the
Euclidean line passing through them is denoted by L(x, y), the line segment between
them by [x, y] and the value of the smaller angle with vertex in the origin and x, y on
its sides by �X OY . Furthermore, {e1, . . . , en} is the set of the unit vectors.

In this paper, we focus on the cases where the domain G is either the upper half-
space Hn = {(x1, . . . , xn) ∈ Rn | xn > 0}, the unit ball Bn = Bn(0, 1) or the open
sector Sθ = {x ∈ C | 0 < arg(x) < θ} with an angle θ ∈ (0, 2π). The hyperbolic
metric can be defined in these cases with the formulas

chρHn (x, y) = 1 + |x − y|2
2dHn (x)dHn (y)

, x, y ∈ Hn,

sh2
ρBn (x, y)

2
= |x − y|2

(1 − |x |2)(1 − |y|2) , x, y ∈ Bn,

ρSθ (x, y) = ρH2(xπ/θ , yπ/θ ), x, y ∈ Sθ ,

see [6, (4.8), p. 52 & (4.14), p. 55]. In the two-dimensional unit disk, we can simply
write

th
ρB2(x, y)

2
=

∣
∣
∣
∣

x − y

1 − x y

∣
∣
∣
∣
,

where y is the complex conjugate of y.
For any domain G � Rn , define the following hyperbolic-type metrics and quasi-

metric:
(1) [2, (1.1), p. 683] The triangular ratio metric sG : G × G → [0, 1],

sG(x, y) = |x − y|
inf z∈∂G(|x − z| + |z − y|) ,

(2) [8, 2.2, p. 1123 & Lemma 2.1, p. 1124] the j∗G-metric j∗G : G × G → [0, 1],

j∗G(x, y) = |x − y|
|x − y| + 2min{dG(x), dG(y)} ,
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(3) [2, p. 685], [8, 2.4, p. 1124] the point pair function pG : G × G → [0, 1],

pG(x, y) = |x − y|
√|x − y|2 + 4dG(x)dG(y)

.

Remark 2.3 All three functions listed above are invariant under all similarity maps. In
particular, when defined in a sector Sθ , they are invariant under a reflection over the
bisector of the sector and a stretching x �→ r · x with any r > 0. Consequently, this
allows us to make certain assumptions when choosing the points x, y ∈ Sθ to study
these functions.

The metrics introduced above fulfill the following inequalities.

Lemma 2.4 [8, Lemma 2.1, p. 1124; Lemma 2.2 & Lemma 2.3, p. 1125 & Thm 2.9(1),
p. 1129] For any subdomain G � Rn and all x, y ∈ G, the following inequalities
hold:
(1) j∗G(x, y) ≤ pG(x, y) ≤ √

2 j∗G(x, y),
(2) j∗G(x, y) ≤ sG(x, y) ≤ 2 j∗G(x, y).
Furthermore, if G is convex, then for all x, y ∈ G
(3) sG(x, y) ≤ √

2 j∗G(x, y).

Lemma 2.5 [6, p. 460] For all x, y ∈ G ∈ {Hn, Bn},

(1) th
ρHn (x, y)

4
≤ j∗

Hn (x, y) ≤ sHn (x, y) = pHn (x, y) = th
ρHn (x, y)

2
≤ 2th

ρHn (x, y)

4
,

(2) th
ρBn (x, y)

4
≤ j∗

Bn (x, y) ≤ sBn (x, y) ≤ pBn (x, y) ≤ th
ρBn (x, y)

2
≤ 2th

ρBn (x, y)

4
.

Furthermore, the following results are often needed in order to calculate the value
of the triangular ratio metric in the unit disk.

Lemma 2.6 [6, 11.2.1(1) p. 205] For all x, y ∈ Bn,

sBn (x, y) ≤ |x − y|
2 − |x + y| ,

where the equality holds if the points x, y are collinear with the origin.

Theorem 2.7 [7, Thm 3.1, p. 276] If x = h + ki ∈ B2 with h, k > 0, then

sB2(x, x) = |x | if |x − 1

2
| >

1

2
,

sB2(x, x) = k
√

(1 − h)2 + k2
≤ |x | otherwise.
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3 Point Pair Function

In this section, wewill focus on the point pair function. The expression for this function
was first introduced in [2, p. 685], but it was named and researched further in [8]. It
was noted already in [2, Rmk 3.1 p. 689] that the point pair function defined in the unit
disk is not a metric because it does not fulfill the triangle inequality for all points of this
domain. However, the point pair function offers a good upper bound for the triangular
ratio metric in convex domains [6, Lemma 11.6(1), p. 197] and, by Lemma 2.5, it
also serves as a lower bound for the expression th(ρG(x, y)/2) if G ∈ {Hn, Bn} so
studying its properties more carefully is relevant.

It is very easy to show that there is a constant c > 1 with which the point pair
function is a quasi-metric.

Lemma 3.1 For all domains G � Rn, the point pair function pG is a quasi-metric
with a constant less than or equal to

√
2.

Proof It follows from Lemma 2.4(1) and the fact that the j∗G -metric is a metric that

pG(x, y) ≤ √
2 j∗G(x, y) ≤ √

2( j∗G(x, z) + j∗G(z, y)) ≤ √
2(pG(x, z) + pG(z, y)).


�
For some special choices of the domain G, it is possible to find a better constant than√
2withwhich the point pair function is a quasi-metric. For instance, byLemma2.5(1),

pHn (x, y) = sHn (x, y), so the point pair function is a metric in the domain G = Hn

and trivially fulfills inequality (2.2) with c = 1. Furthermore, numerical tests suggest
also that the constant

√
2 can be always replaced with a better one, even in the case

where the exact shape of the domain is unknown.

Conjecture 3.2 For all domains G � Rn, the point pair function pG is a quasi-metric
with a constant less than or equal to

√
5/2.

However, for an arbitrary domain G, there cannot be a better constant than
√
5/2

with which the point pair function is a metric. Namely, if the domain G is the unit ball
Bn , we see that we must choose c ≥ √

5/2 so that inequality (2.2) holds for the points
x = e1/3, z = 0 and y = −e1/3. Other domains like this where inequality (2.2) can
only hold with c ≥ √

5/2 include, for instance, a twice punctured spaceRn\({s}∪{t}),
s = t ∈ Rn , and all k-dimensional hypercubes in Rn where 1 ≤ k ≤ n. Consequently,
the point pair function is not a metric in any of these domains.

It can be also shown that the point pair function pG is not a metric in a sector Sθ

with an angle 0 < θ < π . For instance, if θ = π/2, then the points x = eπ i/5,
y = e3π i/10 and z = (x + y)/2 do not fulfill the triangle inequality. However, it is
noteworthy that the point pair function is a metric in an open sector Sθ whenever the
angle θ is from the interval [π, 2π).

Theorem 3.3 In an open sector Sθ with an angle π ≤ θ < 2π , the point pair function
pSθ is a metric.
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Proof Trivially, we only need to prove that the point pair function fulfills the triangle
inequality in this domain. Fix distinct points x, y ∈ Sθ . Note that if θ ≥ π then, for
every point x ∈ Sθ , there is exactly one point x ′ ∈ S1(x, dSθ (x))∩ ∂Sθ . Fix x ′, y′ like
this for the points x, y, respectively. Furthermore, define J as follows: If x, y, x ′, y′
are collinear, let J = L(x, y); if L(x, x ′) and L(y, y′) are two distinct parallel lines,
let J be the closed strip between them; and if L(x, x ′) are L(y, y′) intersect at one
point, let J be the smaller closed sector with points x, x ′ on its one side and points
y, y′ on its other side.

We are interested in such a point z ∈ Sθ that minimizes the sum pSθ (x, z) +
pSθ (z, y). Note that if z /∈ J , then it can be rotated around either x or y into a new
point z ∈ J ∩ Sθ so that one of the distances |x − z| and |z − y| does not change and
the other one decreases, and the distance dSθ (z) increases. Since these changes do not
increase the sum pSθ (x, z)+ pSθ (z, y), we can suppose without loss of generality that
the point z must belong in J ∩ Sθ .

Choose now a half-plane H such that x, y ∈ H and ∂ H is a tangent for both
S1(x, dSθ (x)) and S1(y, dSθ (y)). Now, dH (x) = dSθ (x) and dH (y) = dSθ (y). Clearly,
J ∩ Sθ ⊂ H and, since θ ≥ π , for every point z ∈ J ∩ Sθ , dSθ (z) ≤ dH (z). Recall
that the point pair function pG is a metric in a half-plane domain. It follows that

pSθ (x, y) = pH (x, y) ≤ inf
z∈J∩Sθ

(pH (x, z) + pH (z, y)) ≤ inf
z∈J∩Sθ

(pSθ (x, z) + pSθ (z, y))

= inf
z∈Sθ

(pSθ (x, z) + pSθ (z, y)),

which proves our result. 
�
Because the point pair function has several desirable properties that can be used

when creating bounds for hyperbolic-typemetrics, it is useful to study itmore carefully
in sector domains. Next, we will show that the point pair function is invariant under
a certain conformal mapping defined in a sector. Note that the triangular ratio metric
has this same property, see [14, Thm 4.16, p. 14].

Lemma 3.4 For all angles 0 < θ < 2π , the point pair function pSθ is invariant under
the Möbius transformation f : Sθ → Sθ , f (x) = x/|x |2.

Proof ByRemark 2.3, we can fix x = eki and y = rehi with r > 0 and 0 < k ≤ h < θ

without loss of generality. Now, f (x) = x = eki and f (y) = (1/r)ehi . It follows that

pSθ (x, y) = |1 − re(h−k)i |
√|1 − re(h−k)i |2 + 4dSθ (e

ki )dSθ (rehi )

= r |1 − (1/r)e(h−k)i |
√

r2|1 − (1/r)e(h−k)i |2 + 4r2dSθ (e
ki )dSθ ((1/r)ehi )

= |1 − (1/r)e(h−k)i |
√|1 − (1/r)e(h−k)i |2 + 4dSθ (e

ki )dSθ ((1/r)ehi )
= pSθ ( f (x), f (y)),

which proves the result. 
�

123



Intrinsic Quasi-Metrics

Let us yet consider the connection between the point pair function and the triangular
ratio metric and, especially, what we can tell about the domain by studying these
metrics.

Theorem 3.5 [16, Theorem 3.8, p. 5] A domain G � Rn is convex if and only if the
inequality sG(x, y) ≤ pG(x, y) holds for all x, y ∈ G.

Theorem 3.6 If G � Rn is a domain and the inequality sG(x, y) ≥ pG(x, y) holds
for all x, y ∈ G, the complement Rn\G is a connected, convex set.

Proof Suppose that Rn\G is either non-convex or non-connected. Now, there are
some u, v ∈ ∂G such that [u, v] ∩ G = ∅. It follows that there must be some ball
Bn(c, r) ⊂ G so that the intersection Sn(c, r) ∩ ∂G contains distinct points u′, v′.
Without loss of generality, we can assume that c = 0 and r = 1. Since u′, v′ are
distinct, μ = �U ′OV ′ = 0. If μ = π , it holds for points x = u′/2 and y = v′/2 that

sG(x, y) = 1

2
<

1√
2

= 1
√

12 + 4(1/2)2
= pG(x, y).

If 0 < μ < π instead, fix x = cos(μ/2)u′ and y = cos(μ/2)v′. By the law of cosines
and the sine double-angle formula, we will have |x − y| = sin(μ). It follows now
from Theorem 2.7 and a few trigonometric identities that

sG(x, y) ≤ sBn (x, y) ≤ cos(μ/2) = sin(μ)

2 sin(μ/2)
= sin(μ)

√

4 sin2(μ/2)

= sin(μ)
√

sin2(μ) + 4 sin2(μ/2)(1 − cos2(μ/2))
= sin(μ)

√

sin2(μ) + 4(1 − cos2(μ/2))2

<
sin(μ)

√

sin2(μ) + 4(1 − cos(μ/2))2
= pG(x, y).

Consequently, if Rn\G is not convex, there are always some points x, y ∈ G such that
the inequality sG(x, y) < pG(x, y) holds and the theorem follows from this. 
�
Corollary 3.7 If G � Rn is a domain such that sG(x, y) = pG(x, y) holds for all
x, y ∈ G, then G is a half-space.

Proof By Theorems 3.5 and 3.6 , both the sets G and Rn\G must be convex, from
which the result follows directly. 
�

4 NewQuasi-Metric

In this section, we define a new intrinsic quasi-metric wG in a convex domain G and
study its basic properties. As can be seen from Theorem 4.7, this function gives a
lower bound for the triangular ratio metric. Since the point pair function serves as an
upper bound for the triangular ratio metric, these two quasi-metrics can be used to
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form bounds for the triangular ratio distance like in Corollary 4.9. Furthermore, these
three functions are equivalent in the case of the half-space, see Proposition 4.2, so
these bounds are clearly essentially sharp at least in some cases.

First, consider the following definition.

Definition 4.1 Let G � Rn be a convex domain. For any x ∈ G, there is a non-empty
set

X̃ = {̃x ∈ Sn−1(x, 2dG(x)) | (x + x̃)/2 ∈ ∂G}.

Define now a function wG : G × G → [0, 1],

wG(x, y) = |x − y|
min{inf ỹ∈Ỹ |x − ỹ|, inf x̃∈X̃ |y − x̃ |} , x, y ∈ G.

Note that we can only define the function wG for convex domains G because, for
a non-convex domain G and some points x, y ∈ G, there are some points x, y ∈ G
such that y = x̃ with some x̃ ∈ X̃ and the denominator in the expression of wG would
become zero.

Proposition 4.2 For all points x, y ∈ Hn,

wHn (x, y) = sHn (x, y) = pHn (x, y).

Proof For all x = (x1, . . . , xn) ∈ Hn , there is onlyonepoint x̃ = (x1, . . . , xn−1,−xn) =
x − 2xnen in the set X̃ . Thus, for all x, y ∈ Hn ,

wHn (x, y)

pHn (x, y)
=

√|x − y|2 + 4xn yn

min{|x − ỹ|, |y − x̃ |} =
√|x − y|2 + 4xn yn

min{|x − y + 2ynen|, |y − x + 2xnen|} = 1.

The result sHn (x, y) = pHn (x, y) is in Lemma 2.5(1). 
�
Lemma 4.3 For all points x, y ∈ Sθ with 0 < θ ≤ π , sSθ (x, y) = wSθ (x, y).

Proof By the known solution toHeron’s problem, the triangular ratio distance between
x, y ∈ Sθ is

sSθ (x, y) = |x − y|
inf z∈∂Sθ (|x − z| + |z − y|) = |x − y|

min{|x ′ − y|, |x − y′|} , (4.4)

where the points x ′, y′ are the points x, y reflected over the closest side of the sector
Sθ , respectively. Since the points in sets X̃ and Ỹ are similarly found by reflecting
x, y over the closest sides, the distance wSθ (x, y) is equivalent to (4.4) and the result
follows. 
�

While it trivially follows from Lemma 4.3 that the function wG is a metric in the
case G = Sθ with some 0 < θ ≤ π , this is not true for all convex domains G, as can
be seen with the following example.
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Example 4.5 G = {z ∈ C | − 1 < Re(z) < 1, 0 < Im(z) < 1} is a convex domain,
in which wG is not a metric.

Proof If x = 1/2+k +i/2, y = −1/2+i/2 and z = −1/2−k +i/2 with 0 < k < 1/
3, it follows that

wG(x, y) = 1 + k
√

1 + (1 + k)2
, wG(x, z) = 1 + 2k

2
, wG(z, y) = k

1 − k

and, consequently,

lim
k→0+

wG(x, y)

wG(x, z) + wG(z, y)
= lim

k→0+
2(1 − k2)

√

1 + (1 + k)2(1 + 3k − 2k2)
= √

2.


�
Let us next show that wG is a quasi-metric by finding first the inequalities between

it and two hyperbolic-type metrics, the j∗G -metric and the triangular ratio metric, in
convex domains.

Proposition 4.6 For any convex domain G � Rn and all x, y ∈ G, j∗G(x, y) ≤
wG(x, y).

Proof By the triangle inequality,

min{ inf
ỹ∈Ỹ

|x − ỹ|, inf
x̃∈X̃

|y − x̃ |} ≤ min{|x − y| + d(y, Ỹ ), |x − y| + d(x, X̃)}

= min{|x − y| + 2dG(y), |x − y| + 2dG(x)} = |x − y| + 2min{dG(x), dG(y)},

so the result follows. 
�
Theorem 4.7 For an arbitrary convex domain G � Rn and all x, y ∈ G,

wG(x, y) ≤ sG(x, y) ≤ √
2wG(x, y).

Proof Choose any distinct x, y ∈ G. By symmetry, we can suppose that inf x̃∈X̃ |y −
x̃ | ≤ inf ỹ∈Ỹ |x − ỹ|. Fix x̃ as the point that gives this smaller infimum. Let us only
consider the two-dimensional plane containing x, y, x̃ and set n = 2. Fix u = [x, x̃]∩
∂G and z = [y, x̃] ∩ ∂G. Position the domain G on the upper half-plane so that the
real axis is the tangent of S1(x, dG(x)) at the point u. Since G is convex, it must be
a subset of H2 and therefore z ∈ H2 ∪ R. Thus, it follows that |x − z| ≤ |z − x̃ |.
Consequently,

wG(x, y) = |x − y|
|y − x̃ | = |x − y|

|z − x̃ | + |z − y| ≤ |x − y|
|x − z| + |z − y| ≤ sG(x, y).

The inequality sG(x, y) ≤ √
2wG(x, y) follows from Lemma 2.4(3) and Proposi-

tion 4.6. 
�
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Now, we can show that the function wG is a quasi-metric.

Corollary 4.8 For an arbitrary convex domain G � Rn, the function wG is a quasi-
metric with a constant less than or equal to

√
2, and the number

√
2 here is sharp.

Proof It follows fromTheorem4.7 and the fact that the triangular ratiometric is always
a metric that

wG(x, y) ≤ sG(x, y) ≤ sG(x, z) + sG(z, y) ≤ √
2(wG(x, z) + wG(z, y))

and, by Example 4.5, the constant
√
2 here is the best one possible for an arbitrary

convex domain. 
�
We will also have the following result.

Corollary 4.9 For any convex domain G � Rn and all x, y ∈ G,

j∗G(x, y) ≤ wG(x, y) ≤ sG(x, y) ≤ pG(x, y).

Proof Follows from Proposition 4.6 and Theorems 4.7 and 3.5 . 
�
Next, in order to summarize our results found above, let us yet write Lemma 2.5

with the quasi-metric wG .

Corollary 4.10 [6, p. 460] For all x, y ∈ G ∈ {Hn, Bn},

(1) th
ρHn (x, y)

4
≤ j∗

Hn (x, y) ≤ wHn (x, y) = sHn (x, y) = pHn (x, y) = th
ρHn (x, y)

2
,

(2) th
ρBn (x, y)

4
≤ j∗

Bn (x, y) ≤ wBn (x, y) ≤ sBn (x, y) ≤ pBn (x, y) ≤ th
ρBn (x, y)

2
.

Proof Follows from Lemma 2.5, Proposition 4.2 and Corollary 4.9. 
�

5 Quasi-Metrics in the Unit Disk

In this section, we will focus on the inequalities between the hyperbolic-type metrics
and quasi-metrics in the case of the unit disk. Calculating the exact value of the
triangular ratio metric in the unit disk is not a trivial task, but instead quite a difficult
problem with a very long history, see [3] for more details. However, we already know
from Corollary 4.9 that the quasi-metric wG serves as a lower bound for the triangular
ratio metric in convex domains G and this helps us considerably.

Remark 5.1 Note that while we focus belowmostly on the unit diskB2, all the inequal-
ities can be extended to the general case with the unit ballBn , because the values of the
metrics and quasi-metrics considered only depend on how the points x, y are located
on the two-dimensional place containing them and the origin.
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First, we will define the function wG of Definition 4.1 in the case G = Bn . Denote
below x̃ = x(2−|x |)/|x | for all points x ∈ Bn\{0}.Wewill have the following results.

Proposition 5.2 If x, y ∈ Bn\{0} such that |y| ≤ |x |, then |y − x̃ | ≤ |x − ỹ|.
Proof Let μ = �X OY . Note that |̃x | = 2 − |x | and |̃y| = 2 − |y|. By the law of
cosines,

|y − x̃ | ≤ |x − ỹ|
⇔

√

|y|2 + (2 − |x |)2 − 2|y|(2 − |x |) cos(μ)

≤
√

|x |2 + (2 − |y|)2 − 2|x |(2 − |y|) cos(μ)

⇔ |y|2 − (2 − |y|)2 − |x |2 + (2 − |x |)2 + 2|x |(2 − |y|) cos(μ)

− 2|y|(2 − |x |) cos(μ) ≤ 0

⇔ 4|y| + 4 − 4|x | − 4 + 2(|x |(2 − |y|) − |y|(2 − |x |)) cos(μ) ≤ 0

⇔ 4(|y| − |x |) + 4(|x | − |y|) cos(μ) ≤ 0 ⇔ (|y| − |x |)(1 − cos(μ)) ≤ 0

⇔ |y| ≤ |x |,

which proves the result. 
�
Proposition 5.3 If x ∈ Bn\{0} is fixed and y → 0, then

|x − y|
|y − x̃ | → |x |

2 − |x | .

Proof By writing μ = �X OY and using the law of cosines,

lim
|y|→0+

|x − y|
|y − x̃ | = lim

|y|→0+

√

|x |2 + |y|2 − 2|x ||y| cos(μ)

|y|2 + (2 − |x |)2 − 2|y|(2 − |x |) cos(μ)

=
√

|x |2
(2 − |x |)2 = |x |

2 − |x | .


�
Now, consider the following result.

Proposition 5.4 In the domain G = Bn, the quasi-metric wG is a function wBn :
Bn × Bn → [0, 1],

wBn (x, y) = |x − y|
min{|x − ỹ|, |y − x̃ |} , x, y ∈ Bn\{0},

wBn (x, 0) = |x |
2 − |x | , x ∈ Bn,

where x̃ = x(2 − |x |)/|x | and ỹ = y(2 − |y|)/|y|.
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Proof Follows from 4.1. 
�
Consider also the next corollary, which follows directly from the proposition above

and our earlier observations.

Corollary 5.5 For all distinct points x, y ∈ Bn such that 0 ≤ |y| ≤ |x | < 1,

wBn (x, y) = |x − y|
|y − x̃ | .

Proof Note that 0 ≤ |y| ≤ |x | and x = y, so x = 0. If y = 0, the result follows from
Proposition 5.4 because |0 − x̃ | = 2 − |x |. If x, y ∈ B2\{0} instead, the result holds
by Propositions 5.4 and 5.2 . 
�

It follows from this and Proposition 5.3 that the functionwBn defined as in Proposi-
tion 5.4 is continuous. ByCorollary 4.8, the functionwBn is also at least a quasi-metric.
In fact, according to the numerical tests, the function wBn seems to fulfill the triangle
inequality in the unit ball, which would mean that the following conjecture holds.

Conjecture 5.6 The function wBn is a metric on the unit ball.

However, it does not affect the results of this paper if the function wBn truly is a
metric or just a quasi-metric, so let us move on and show that the functionwB2 is quite
a good lower bound for the triangular ratio metric in the unit disk.

Theorem 5.7 For all x, y ∈ B2, wB2(x, y) ≤ sB2(x, y) and the equality holds here
whenever x, y are collinear with the origin.

Proof The inequality follows from Corollary 4.10(2). If the points x, y ∈ B2 are
collinear with the origin, we can fix x, y ∈ R so that 0 < −x < y ≤ x < 1 without
loss of generality. In the special case x = y, the equality holds trivially and, if x = y,
by Lemma 2.6 and Corollary 5.5,

sB2(x, y) = |x − y|
2 − |x + y| = x − y

2 − (x + y)
= |x − y|

|y − (2 − x)| = |x − y|
|y − x̃ | = wB2(x, y).


�
By [15, Lemma 3.12, p. 7], the following function is a lower bound for the triangular

ratio metric.

Definition 5.8 [15, Def. 3.9, p. 7] For x, y ∈ B2\{0}, define

low(x, y) = |x − y|
min{|x − y∗|, |x∗ − y|} ,

where x∗ = x/|x |2 and y∗ = y/|y|2.
However the quasi-metricwB2 is a better lower bound for the triangular ratio metric

in the unit disk than this low-function, as we will show below.
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Lemma 5.9 For all distinct points x, y ∈ B2\{0}, wB2(x, y) > low(x, y).

Proof Let x ∈ B2, k > 1 and μ be the value of the larger angle between line L(1, x)

and the real axis. Now,

|x − ke1| =
√

|x − 1|2 + (k − 1)2 − 2|x − 1|(k − 1) cos(μ).

Here, cos(μ) < 0 since π/2 < μ ≤ π . Thus, we see that the distance |x − ke1| is
strictly increasingwith respect to k. In otherwords, the further away a point k ∈ R2\B

2

is from the origin, the longer the distance between k and an arbitrary point x ∈ B2 is.
For every point y ∈ B2\{0},

1 < 2 − |y| <
1

|y| ⇔ 1 <

∣
∣
∣
∣

y(2 − |y|)
|y|

∣
∣
∣
∣
<

∣
∣
∣
∣

y

|y|2
∣
∣
∣
∣

⇔ 1 < |̃y| < |y∗|,

so it follows by the observation made above that, for all x ∈ B2,

|x − ỹ| < |x − y∗|.

Consequently, by symmetry, the inequality

wB2(x, y) = |x − y|
min{|x − ỹ|, |y − x̃ |} >

|x − y|
min{|x − y∗|, |y − x∗|} = low(x, y)

holds for all distinct points x, y ∈ B2\{0}. 
�
Next, we will prove one sharp inequality between the two quasi-metrics considered

this paper.

Theorem 5.10 For all points x, y ∈ B2,

wB2(x, y) ≤ pB2(x, y) ≤ √
2wB2(x, y),

where the equality wB2(x, y) = pB2(x, y) holds whenever x, y are on the same ray
starting from the origin, and pB2(x, y) = √

2wB2(x, y) holds when x = −y and
|x | = |y| = 1/2.

Proof The first inequality follows from Corollary 4.10(2). If x = y, the equality
wB2(x, y) = pB2(x, y) = 0 is trivial. Thus, if x, y ∈ B2 are on the same ray, we can
now fix 0 ≤ y < x < 1 without loss of generality. Now, by Corollary 5.5,

wB2(x, y) = x − y

2 − x − y
= x − y

√

(x − y)2 + 4(1 − x)(1 − y)
= pB2(x, y).
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Next, let us prove the latter part of the inequality. We need to find that the maximum
of the quotient

pB2(x, y)

wB2(x, y)
= min{|x − ỹ|, |y − x̃ |}

√|x − y|2 + 4(1 − |x |)(1 − |y|) . (5.11)

In order to do that, we can suppose without loss of generality that x, y are on different
rays starting from the origin since, as we proved above, the equality wB2(x, y) =
pB2(x, y) holds otherwise. Choose these points so that 0 < |y| ≤ |x | < 1 and
μ = �X OY > 0. It follows from Corollary 5.5 that quotient (5.11) is now

pB2(x, y)

wB2(x, y)
= |y − x̃ |

√|x − y|2 + 4(1 − |x |)(1 − |y|)

=
√

|y|2 + (2 − |x |)2 − 2|y|(2 − |x |) cos(μ)

|x |2 + |y|2 − 2|x ||y| cos(μ) + 4 − 4|x | − 4|y| + 4|x ||y|

=
√

|y|2 + (2 − |x |)2 − 2|y|(2 − |x |) cos(μ)

|y|2 + (2 − |x |)2 − 4|y|(1 − |x |) − 2|x ||y| cos(μ)
. (5.12)

Fix now

j = cos(μ), s = |y|2 + (2 − |x |)2, t = 2|y|(2 − |x |),
u = |y|2 + (2 − |x |)2 − 4|y|(1 − |x |), v = 2|x ||y|,

so that the argument of the square root in expression (5.12) can be described with a
function f : [0, 1] → R,

f ( j) = s − t j

u − v j
.

By differentiation, the function f is decreasing with respect to j , if and only if

f ′( j) = −t(u − v j) + v(s − t j)

(u − v j)2
= sv − tu

(u − v j)2
≤ 0 ⇔ sv − tu ≤ 0.

Since this last inequality is equivalent to

(|y|2 + (2 − |x |)2)2|x ||y| − 2|y|(2 − |x |)(|y|2 + (2 − |x |)2 − 4|y|(1 − |x |)) ≤ 0

⇔ (|y|2 + (2 − |x |)2)|x | − (2 − |x |)(|y|2 + (2 − |x |)2 − 4|y|(1 − |x |)) ≤ 0

⇔ |y|2|x | + |x |(2 − |x |)2 − |y|2(2 − |x |) − (2 − |x |)3 + 4|y|(1 − |x |)(2 − |x |) ≤ 0

⇔ − 2|y|2(1 − |x |) − 2(2 − |x |)2(1 − |x |) + 4|y|(1 − |x |)(2 − |x |) ≤ 0

⇔ |y|2 + (2 − |x |)2 − 2|y|(2 − |x |) ≥ 0

⇔ (|y| − (2 − |x |))2 = (2 − |x | − |y|)2 ≥ 0,
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which clearly holds, it follows that the function f and quotient (5.11) are decreasing
with respect to j = cos(μ). The minimum value of cos(μ) is −1 at μ = π . Conse-
quently, we can fix the points x, y so that x = h and y = −h +k with 0 ≤ k < h < 1,
without loss of generality. Now, quotient (5.11) is

pB2(x, y)

wB2(x, y)
= 2 − k

√

(2h + k)2 + 4(1 − h)(1 − h + k)
=

√

4 − 4k + k2

8h2 − 8h + k2 + 4k + 4

≤
√

4 − 4k + k2 + k(4 − k)

8h2 − 8h + k2 + 4k + 4 − k(4 + k)
=

√

4

8h2 − 8h + 4

= 1√
2h2 − 2h + 1

.

This upper bound found above is the value of quotient (5.11) in the case k = 0,
because, for x = h and y = −h,

pB2(x, y)

wB2(x, y)
= 2

√

4h2 + 4(1 − h)2
= 1√

2h2 − 2h + 1
.

The expression 2h2 − 2h + 1 obtains its minimum value 1/2 at h = 1/2, so the
maximum value of quotient (5.11) is

√
2. 
�

The next result follows.

Theorem 5.13 For all x, y ∈ B2,

j∗
B2(x, y) ≤ wB2(x, y) ≤ √

2 j∗
B2(x, y),

where the equality j∗
B2(x, y) = wB2(x, y) holds whenever x, y are on the same ray

starting from the origin and the constant
√
2 is the best possible one.

Proof The inequality j∗
B2(x, y) ≤ wB2(x, y) follows from Corollary 4.10(2) and the

inequalitywB2(x, y) ≤ √
2 j∗

B2(x, y) from Lemma 2.4(1) and Theorem 5.10. If x, y ∈
B2 are on the same ray, we can suppose without loss of generality that 0 ≤ y ≤ x < 1.
If now x = y, the equality j∗

B2(x, y) = wB2(x, y) = 0 is trivial, and if x = y instead,
by Corollary 5.5,

wB2(x, y) = x − y

2 − x − y
= x − y

x − y + 2(1 − x)
= j∗

B2(x, y).

Fix yet x = 1− k and y = (1− k)e2ki with 0 < k < 1. By the law of cosines and the
cosine double-angle formula,

wB2(x, y)

j∗
B2(x, y)

= (1 − k)|1 − e2ki | + 2k

|(1 − k)e2ki − (1 + k)| = 2(1 − k) sin(k) + 2k
√

2 + 2k2 − 2(1 − k2) cos(2k)
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= (1 − k) sin(k) + k
√

k2 + (1 − k2) sin2(k)
. (5.14)

Since quotient (5.14) has a limit value of
√
2 when k → 0+, the final part of the

theorem follows. 
�
Let us next focus on how the quasi-metricwB2 can be used to create an upper bound

for the triangular ratio metric. We know from Theorem 4.7 that in the general case
where the domain G is convex, the inequality sG(x, y) ≤ √

2wG(x, y) holds. Thus,
this must also hold in the unit disk, but several numerical tests suggest that the constant√
2 is not necessarily the best possible when G = B2. The next result tells the best

constant in a certain special case.

Lemma 5.15 For all x, y ∈ B2 such that |x | = |y| and �X OY = π/2,

sB2(x, y) ≤ c · wB2(x, y) with c =
√

h2
0 − 2h0 + 2

2h2
0 − 2

√
2h0 + 2

, h0 = 1 −
√

9 − 6
√
2

2 − √
2

.

Proof Let x = h and y = hi for 0 < h < 1. Because

|h − 1

2
eπ i/4| >

1

2
⇔ |2√2h − 1 − i | >

√
2 ⇔ h >

1√
2
,

it follows from Theorem 2.7 that

sB2(x, y) = h, if h >
1√
2

sB2(x, y) = h/
√
2

√

(1 − h/
√
2)2 + h2/2

= h
√

2h2 − 2
√
2h + 2

otherwise,

wB2(x, y) =
√
2h

|hi − (2 − h)| =
√
2h√

2h2 − 4h + 4
= h√

h2 − 2h + 2
.

Consequently, if h > 1/
√
2,

sB2(x, y)

wB2(x, y)
=

√

h2 − 2h + 2 <

√

(1/
√
2)2 − 2(1/

√
2) + 2 =

√

5/2 − √
2 ≈ 1.04201

(5.16)

and, if h ≤ 1/
√
2 instead,

sB2(x, y)

wB2(x, y)
=

√

h2 − 2h + 2

2h2 − 2
√
2h + 2

. (5.17)
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Next, define a function f : (0, 1/
√
2] → R,

f (h) = h2 − 2h + 2

2h2 − 2
√
2h + 2

.

By differentiation,

f ′(h) = (2h − 2)(2h2 − 2
√
2h + 2) − (4h − 2

√
2)(h2 − 2h + 2)

(2h2 − 2
√
2h + 2)2

= 2((2 − √
2)h2 − 2h + 2

√
2 − 2)

(2h2 − 2
√
2h + 2)2

.

By the quadratic formula, f ′(h) = 0 holds when

h = 2 ±
√

4 − 4(2 − √
2)(2

√
2 − 2)

2(2 − √
2)

= 1 ±
√

9 − 6
√
2

2 − √
2

.

Here, the ±-symbol must be minus, so that 0 < h ≤ 1/
√
2. Fix

h0 = 1 −
√

9 − 6
√
2

2 − √
2

≈ 0.48236.

Since f ′(0.1) > 0 and f ′(0.7) < 1, the function f obtains its local maximum of
the interval (0, 1/

√
2] at h0. Thus,

√
f (h0) is the maximum value of quotient (5.17)

within the limitation h ≤ 1/
√
2. Since

√

f (h0) =
√

h2
0 − 2h0 + 2

2h2
0 − 2

√
2h0 + 2

≈ 1.07313 (5.18)

is clearly greater than upper value (5.16) for this same quotient in the case h > 1/
√
2,

value (5.18) is the maximum value of the quotient of the triangular ratio metric and
the quasi-metric wB2 in the general case 0 < h < 1. Thus, the lemma follows. 
�

Even though the inequality of Lemma 5.15 is proven for a very specific choice
of points x, y ∈ B2, the result itself is still relevant because several numerical tests
suggest that it holds more generally.

Conjecture 5.19 For all x, y ∈ B2, the inequality sB2(x, y) ≤ c ·wB2(x, y) holds with
the sharp constant

c =
√

h2
0 − 2h0 + 2

2h2
0 − 2

√
2h0 + 2

≈ 1.07313, h0 = 1 −
√

9 − 6
√
2

2 − √
2

.
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Fig. 1 Values of the quotient s
B2 (x, y)/w

B2 (x, y) for different points y ∈ B2, when x = 0.6 is fixed

Figure 1 also supports the assumption that the constant c of Conjecture 5.19 is at
most around 1.07. Consequently, the quasi-metric wB2 is quite a good estimate for
the triangular ratio metric in the unit disk. For instance, by choosing c like above, we
could use the value of (c/2) · wB2(x, y) for the triangular ratio distance. Namely, if
Conjecture 5.19 truly holds, our error with this estimate would be always less than 3.7
percent.
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