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Species distribution models are required for the research and management of biodi-
versity in the hyperdiverse tropical forests, but reliable and ecologically relevant digi-
tal environmental data layers are not always available. We here assess the usefulness 
of multispectral canopy reflectance (Landsat) relative to climate data in modelling 
understory plant species distributions in tropical rainforests. We used a large dataset 
of quantitative fern and lycophyte species inventories across lowland Amazonia as the 
basis for species distribution modelling (SDM). As predictors, we used CHELSA cli-
matic variables and canopy reflectance values from a recent basin-wide composite of 
Landsat TM/ETM+ images both separately and in combination. We also investigated 
how species accumulate over sites when environmental distances were expressed in 
terms of climatic or surface reflectance variables. When species accumulation curves 
were constructed such that differences in Landsat reflectance among the selected plots 
were maximised, species accumulated faster than when climatic differences were maxi-
mised or plots were selected in a random order. Sixty-nine species were sufficiently 
frequent for species distribution modelling. For most of them, adequate SDMs were 
obtained whether the models were based on CHELSA data only, Landsat data only 
or both combined. Model performance was not influenced by species’ prevalence or 
abundance. Adding Landsat-based environmental data layers overall improved the dis-
criminatory capacity of SDMs compared to climate-only models, especially for soil 
specialist species. Our results show that canopy surface reflectance obtained by mul-
tispectral sensors can provide studies of tropical ecology, as exemplified by SDMs, 
much higher thematic (taxonomic) detail than is generally assumed. Furthermore, 
multispectral datasets complement the traditionally used climatic layers in analyses 
requiring information on environmental site conditions. We demonstrate the utility 
of freely available, global remote sensing data for biogeographical studies that can aid 
conservation planning and biodiversity management.
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Introduction

Species distribution models (SDMs) are widely used in ecol-
ogy, biogeography and conservation biology to prioritise 
conservation actions, forecast climate change impacts, pre-
dict biological invasions and test biogeographic hypotheses 
(Rylands 1990, Guisan and Zimmermann 2000). Species 
distribution modelling is particularly relevant for large 
areas with a low density of field observation points, such 
as Amazonia. Unfortunately, the accuracy of SDMs is con-
strained not only by the scarcity of verified species pres-
ence–absence data points, but also by limited availability and 
reliability of digital environmental layers (Araújo and Guisan 
2006, Carneiro et al. 2016). In other words, areas that would 
benefit most from SDMs are typically those where the data 
are least adequate for the purpose.

Commonly used explanatory variables in SDMs are related 
to climate and elevation (Elith and Leathwick 2009, He et al. 
2015). Climate is often thought to be the primary factor that 
limits species distributions at broad spatial scales (Mackey 
and Lindenmayer 2001). Digital climatic and topographic 
data layers have been freely available already for some time 
(Hijmans et al. 2005, Karger et al. 2017), so they can easily be 
incorporated in SDMs. Soil properties have also been found 
important determinants of species distribution for Amazonian 
plants (Phillips et al. 2003, Tuomisto et al. 2003a,  b, 2016, 
Duque et  al. 2005, Baldeck et  al. 2016, Cámara-Leret  et  al. 
2017). Digital soil maps have recently become available 
(Hengl et al. 2017, Zuquim et al. 2019b) and some of these 
have been found to improve predictions of plant species ranges 
in Amazonia (Velazco  et  al. 2017, Figueiredo  et  al. 2018, 
Zuquim et  al. 2019a), but current global soil maps lack the 
ecologically most important variables and suffer from low accu-
racy, especially in poorly sampled areas (Moulatlet et al. 2017).

When digital layers of terrain and environmental charac-
teristics are needed over large and inaccessible areas, remote 
sensing is a powerful data source and has emerged as a crucial 
tool in the global modelling of species’ distributions, diversity 
and traits (He et al. 2015, Lausch et al. 2016, Rocchini et al. 
2016). In the context of species distribution modelling, data 
layers derived from low to medium spatial resolution multi-
spectral satellite data can act as biotic predictor variables. For 
example, data layers derived from the MODIS or AVHRR 
satellite sensors have been used as a descriptor of habitat in 
the distribution modelling of various animal species (He et al. 
2015). MODIS-derived metrics were also successfully used 
in SDMs of timber species across Amazonia (Saatchi  et  al. 
2008) and in SDMs of plant species across South America 
(Buermann et al. 2008). Special attention should be paid to 
spatial scale when applying SDMs of canopy trees. In particu-
lar, the situation should be avoided that the spatial resolution 
of remote sensing data is in the same order or smaller than 
the size of individual tree canopies. Each pixel would then 
represent the reflectance properties of just one canopy spe-
cies rather than of the forest canopy in general, which would 
result in mapping the actual presence of a species instead of 
modelling habitat suitability (Bradley et al. 2012).

Over densely forested areas, such as Amazonia, remotely 
sensed canopy reflectance is largely a function of canopy 
structure, tree species composition and physiological con-
dition. Several studies at local and landscape scales have 
found canopy surface reflectance to be highly correlated 
with patterns in species composition and turnover in several 
understory plant groups (Tuomisto  et  al. 1995, 2003a,  b, 
Salovaara et al. 2005, Thessler et al. 2005, Higgins et al. 2011, 
2012, Sirén et al. 2013). Although this may sound surprising, 
the explanation is logical: canopy trees define many proper-
ties of the understory habitat, and the distributions of both 
canopy trees and understory plants are associated with varia-
tion in soil properties and drainage (Ruokolainen et al. 2007).

Multispectral images with an intermediate spatial resolu-
tion (10–100 m), such as Landsat and Sentinel-2, have two 
main advantages for species distribution modelling: their pixel 
size matches well the typical spatial resolution of field surveys 
of plant communities, and they provide complete and global 
spatial coverage. Low resolution imagery (250–4000 m), such 
as MODIS or AVHRR, has a scale mismatch with field data, 
and high-resolution imagery (< 10 m) is either very expen-
sive, lacks wide coverage or both. Despite this, we have seen as 
yet no studies using medium resolution multispectral data in 
basin-wide SDMs for Amazonian plants, and only a few at the 
local scale (Figueiredo et al. 2015, Pérez Chaves et al. 2018).

Traditional disadvantages of medium resolution imagery 
for basin-wide studies include a rather high data volume and 
problems related to persistent cloud cover, variable aero-
sol concentrations and effects of illumination and viewing 
geometry (Toivonen et al. 2006). Increases in computing and 
data storage capacity are, however, making the data volume 
problem obsolete, and recent advances in data access policy 
and algorithms have made it possible to produce radio-
metrically consistent image composites at the extent of the 
entire Amazon basin (Van doninck and Tuomisto 2018, 
Tuomisto et al. 2019a).

In this study, our aim is to assess to what degree spec-
tral data provided by the Landsat sensors can complement 
traditionally used climatic data layers in ecological model-
ling at high taxonomic resolution, using an extensive data-
set of understory ferns and lycophytes as model group. We 
compare how models that include Landsat TM/ETM+ data 
perform when compared to models using only climatic data. 
In order to obtain results that are generalisable over differ-
ent modeling techniques and ecological questions, we made 
the models with three different SDM algorithms (Random 
Forests, GLM and MaxEnt), and additionally compared spe-
cies accumulation along gradients defined either by climatic 
or by surface reflectance data.

Material and methods

Field data

We combined data from field inventories carried out between 
1991 and 2013 by researchers working in either the Brazilian 
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biodiversity research program (PPBio) or the Univ. of Turku 
Amazon research team (UTU). The same dataset was used 
in Tuomisto et al. (2019a), where more details on the field 
methodology can be found. The PPBio inventories comprise 
309 plots, each 250 m by 2 m in size. The UTU inventories 
were originally done using transects either 5 m wide and 500 
or 1300 m long, or 2 m wide and up to 43 km long. To match 
PPBio plot size, the UTU transects were subdivided into 
1822 plots of 500 m2 (5 m by 100 m) and 849 plots of 400 m2 
(2 m by 200 m). The resulting database contains a total of 
2980 georeferenced field plots that collectively span a large 
part of the Amazonian lowland forests (Fig. 1).

In each PPBio and UTU plot, all terrestrial fern and lyco-
phyte individuals with at least one leaf (leafy stem in the case of 
lycophytes) longer than 10 cm were counted and identified to 
species. Species that are mostly epiphytic or hemiepiphytic were 
excluded. Species identifications across the UTU and PPBio 
data were harmonized by HT and GZ on the basis of either 
voucher specimens or photographs. Closely related species 
that had not been reliably separated in the field were lumped 
to ensure a consistent taxonomy over the entire dataset, which 
resulted in presence/absence or abundance information for 214 
species. Ferns and lycophytes are a practical example group, 
because some species are present in practically all Amazonian 
forests, and local species composition varies in response to envi-
ronmental conditions, especially soil properties (Tuomisto et al. 
2003a,  b, 2016, 2019a, Zuquim et al. 2014, 2019b).

Composite surface soil samples (topmost layer of the 
mineral soil down to 5–10 cm depth) were collected in 1572 
of the plots and the concentration of exchangeable bases 
(Ca+Mg+K in cmol(+)/kg) was measured in the soil samples. 
The optimum and tolerance of each species along the soil base 
cation concentration gradient were calculated using presence/
absence data. The optimum was defined as the average soil 
cation concentration in those plots where the species occurred 
and tolerance as the root mean squared error between the spe-
cies optimum and the observed soil cation concentration value 

for each occurrence (ter Braak and van Dam 1989). Details 
on the field and laboratory methodology and on calculation 
of soil base cation concentration optimum and tolerance are 
available in Tuomisto et al. (2003a,  b), Zuquim et al. (2014).

Environmental datasets

Climatic data
We used the nineteen bioclimatic layers of the CHELSA 
(climatologies at high resolution for the earth’s land surface 
areas) dataset (Karger et al. 2017) as climatic environmental 
variables, which are derived from monthly minimum, maxi-
mum and mean temperature and mean precipitation values. 
For each field plot, we extracted the bioclimatic variable val-
ues of the 30 arcsec (approximately 1 km) grid cell overlap-
ping the plot midpoint.

Canopy reflectance
We obtained surface reflectance values from a new Amazon-
wide Landsat TM/ETM+ image composite (Van doninck 
and Tuomisto 2018). This product combines all Landsat 
TM/ETM+ acquisitions with less than 60% cloud cover 
from the dry-season months July, August and September 
of the years 2000–2009. The compositing process applied 
a correction for reflectance anisotropy that was calibrated 
for tropical forests (Van doninck and Tuomisto 2017a) and 
a multi-dimensional median compositing that took advan-
tage of the large number of multitemporal observations per 
pixel (Van doninck and Tuomisto 2017b). Consequently, this 
image composite obtained an exceptionally high radiometric 
consistency compared to other products over Amazonia (Van 
doninck and Tuomisto 2018).

We extracted surface reflectance values of Landsat bands 
3 (red), 4 (NIR), 5 (SWIR1) and 7 (SWIR2) for each field 
plot using a 15 by 15 pixel window centered on the plot 
midpoint. Bands 1 (blue) and 2 (green) were not used here, 
because these short wavelengths visibly retained significant 
residual atmospheric contamination. Non-forested pixels 
were identified using an unsupervised k-means nearest neigh-
bour clustering with post-classification interpretation and 
excluded from the analyses. For each field plot, we calculated 
per-window median and standard deviation surface reflec-
tance of the forested pixels corresponding to that plot.

Environmental variable reduction
Combining the nineteen bioclimatic layers and the eight lay-
ers derived from Landsat gave a total of 27 environmental 
variables, many of which were strongly correlated. We per-
formed variable selection to obtain a smaller set of environ-
mental variables to be used throughout this study. To ensure 
that these were relevant predictors of fern and lycophyte spe-
cies occurrence, we first ran a principal coordinates analysis 
(PCoA) of all the field sites using extended Sørensen dissimi-
larities (De’ath 1999) and retained the first three ordination 
axes, accounting for 38, 13 and 8% of the total variation. We 
then correlated each axes with each environmental variable 
in turn and ordered the environmental variables according to 
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Figure 1. Geographical distribution of the fern and lycophyte inven-
tory plots.
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decreasing maximum correlation with any of the three PCoA 
axes (rmax). The variable with the largest rmax was retained, 
and all environmental variables with a correlation coef-
ficient larger than 0.78 with this variable were removed to 
avoid covariation of explanatory variables. This process was 
repeated for the remaining variables, until a minimum thresh-
old of 0.3 was reached. This gave a set of seven environmental 
variables, including four climatic and three remote sensing 
variables (Table 1). Taken together, these are strongly corre-
lated with the understory floristic variability across the study 
sites. Overall, the Landsat variables correlated most strongly 
with the first PCoA axis and the CHELSA variables with the 
second PCoA axis. None of the 27 original environmental 
variables correlated significantly with the third PCoA axis.

Species accumulation curves

To assess how species accumulate in relation to gradients 
defined by the selected environmental variables, we first 
selected one plot at random, and then added the plot that 
had the largest environmental dissimilarity to it (Euclidean 
distance, with all the variables standardized to zero mean 
and unit standard deviation). The remaining plots were then 
added iteratively such that the plot with the largest envi-
ronmental dissimilarity to any of the already selected plots 
was added next. Separate species accumulation curves were 
derived using dissimilarities based on the climatic data (four 
CHELSA variables) and the reflectance data (three Landsat 
variables), as well as using entirely random plot selection. 
This process was repeated 50 times for each of the three spe-
cies accumulation curves.

Species distribution modelling

In order to evaluate the relative importance of climatic and 
remote sensing variables for modelling terrestrial ferns and 
lycophytes, we validated species distribution models (SDMs) 
based on three sets of environmental data layers: the four 
selected CHELSA variables only, the three selected Landsat 
variables only and all seven environmental variables together 
(Table 1). We used three established techniques: Random 

Forests (RF) (Breiman 2001), Generalized Linear Models 
(GLM) and Maximum Entropy (MaxEnt) (Phillips  et  al. 
2006). While RF and GLM are based on presence/absence 
data, which can be extracted from the field plot data, MaxEnt 
is based on presence/background data. We extracted back-
ground data from across the entire Amazon biome using 
stratified random sampling in tiles of 2.5 degrees by 2.5 
degrees. In each of these tiles, 100 coordinates were randomly 
selected, and climatic and remote sensing variables were 
extracted using the same methodology as for the field plots. 
After removal of non-forested samples, 7571 background 
points were retained for analysis.

Species distribution modelling was performed in the R 
programming language (ver. 3.5.0), using the randomForest, 
stats and maxnet packages for RF, GLM and MaxEnt model-
ling, respectively. For RF modelling, the number of trees was 
set to 1000, and the number of variables sampled as candi-
dates at each split was set to the square root of the total num-
ber of environmental variables used, rounded up. For GLM, 
a binomial link function was used. Both GLM and MaxEnt 
used the linear and quadratic terms of the (normalized) envi-
ronmental variables.

We evaluated the discriminatory capacity of the differ-
ent modelling techniques and environmental datasets using 
10-fold cross-validation. We split the plot data by longitude 
rather than at random to obtain geographically separated 
folds which reduces the effects of spatial autocorrelation. 
We restricted the analysis to those 69 species that were suffi-
ciently prevalent (present in more than 40 plots in the whole 
dataset) and sufficiently well distributed spatially (present in 
more than 20 plots in each of the ten calibration sets).

For each species, we validated the discriminating capacity 
of the nine combinations of modelling technique and pre-
dictor variables using the threshold-independent area under 
the receiver operating characteristic (ROC) curve (AUC), 
and the threshold-dependent True Skill Statistic (TSS) 
(Allouche et al. 2006). The threshold required for calculation 
of the TSS was set to maximize the sum of specificity and 
sensitivity, effectively maximizing TSS.

Data deposition

Plot data available from the Dryad Digital Repository: 
< http://dx.doi.org/10.5061/dryad.v7fp8ms > (Tuomisto 
et  al. 2019b). Landsat TM/ETM+ composite image  
available from Fairdata.fi: <http://urn.fi/urn:nbn:fi:att: 
71ba2590-7112-4669-a4b3-a427c85c7a86>.

Results

Species accumulation curves

At relatively small sample sizes, the most efficient method 
of finding previously undetected species was to accumulate 
plots such that the within-sample climatic heterogeneity was 
maximised (Fig. 2). However, the CHELSA accumulation 

Table 1. Selected environmental variables, maximum correlation 
with any of the floristic PCoA axes (rmax), and variance inflation fac-
tor (VIF).

Environmental variable VIF

CHELSA – Bio5 max. temperature of 
warmest month

0.65 10.62

Landsat – Band 7 median reflectance 0.55 1.94
CHELSA – Bio14 precipitation of driest 

quarter
0.54 2.43

CHELSA – Bio11 mean temperature of 
coldest quarter

0.55 7.44

Landsat – Band 5 standard deviation 
reflectance

0.39 1.32

CHELSA – Bio2 mean diurnal range 0.37 6.26
Landsat – Band 4 median reflectance 0.37 1.79
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curve only had the highest species richness until approxi-
mately 300 field plots had been sampled, at which point the 
Landsat curve crossed the CHELSA curve. After that, maxi-
mising heterogeneity in Landsat reflectance was a superior 
method for detecting new species. This was especially the case 
in samples larger than 800 plots, where the number of spe-
cies added by maximising remaining climatic differences was 
almost identical to that obtained by random sampling.

The largest gain in cumulative species number when 
Landsat data were used to inform field plot selection was 
observed between 750 and 1000 plots, when approximately 
13 more species were detected compared to plot selection 
based on climatic differences, and up to 16 more species 
compared to plot selection at random. Overall, the integral 
of the Landsat-based curve was significantly larger (p < 0.001 
in a paired t-test) than the integrals of the other two curves.

Discriminatory capacity of modelling techniques 
and environmental datasets

The discriminatory capacity of the SDMs was found to vary 
considerably among the 69 modelled species, with threshold-
independent AUC values ranging from below 0.5 (equivalent 
to random prediction) to above 0.9. Variation was large for 
each combination of modelling technique and predictive vari-
ables, although some combinations produced generally better 
models than others (Fig. 3). Validation using the threshold-
dependent TSS yielded comparable results (Supplementary 
material Appendix 1 Fig. A1).

The highest average AUC was obtained in a Random 
Forests model based on the combined set of four climatic 
and three remote sensing variables (Fig. 3). This combina-
tion significantly outperformed all other possible combina-
tions (p < 0.001 for each paired t-test). When using Random 
Forests, combining climatic and remote sensing variables clearly 

improved the discriminatory capacity of the SDMs compared 
to using CHELSA and Landsat variables separately. This was 
not the case for SDMs based on GLM or MaxEnt, in which 
the median AUC over all species was lower for the combined 
models than for the corresponding Landsat-only models.

Interestingly, there was a significant positive correlation 
between the AUC of a CHELSA-only RF SDM and the 
soil tolerance of the corresponding species (r = 0.27; Fig. 4). 

0
0

Number of sites

C
um

ul
at

iv
e 

# 
sp

ec
ie

s

Mean ± sd

Random

CHELSA

Landsat

0.85 0.013±

0.8 0.0026 ±

0.8 0.0059 ±

500 1000 1500 2000 2500

50

100

150

200

Figure 2. Species accumulation curves for ferns and lycophytes in 
Amazonia obtained by adding field plots either in a random order 
or such that the environmental heterogeneity of the selected set of 
plots is maximised (based on either four CHELSA climate variables 
or three Landsat reflectance variables). Solid lines indicate mean val-
ues obtained with 50 random initial sites, dashed lines indicate 
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When Landsat variables were added to these SDMs, AUC 
values increased for 60 out of 69 species, and the increase was 
stronger for species with a narrow tolerance (soil specialists) 
than for species with broad tolerance (soil generalists). As a 
result, the AUCs of SDMs based on all seven environmental 
variables were independent of the degree of species tolerance 
along the soil base cation concentration gradient.

Comparison of SDM maps produced with the different 
explanatory variable combinations illustrates the added value 
of remotely sensed surface reflectance data when predicting 
understory plant species distributions. As an example, we 
show RF-predicted probabilities of species occurrence for two 
closely related terrestrial fern species with contrasting edaphic 
preferences: Trichomanes diversifrons and T. trollii. Both spe-
cies occurred in similar climates and often co-occurred within 
a region, but T. diversifrons was found on soils with a relatively 

high base cation concentration (optimum = 1.06 cmol(+)/
kg) whereas T. trollii grew on soils with relatively low soil 
base cation concentration (optimum = 0.07 cmol(+)/kg). At 
the biome extent (Fig. 5), the general pattern of predictions 
of the climate-only model for both species roughly corre-
sponded to observed presence and absence records, obtain-
ing an AUC of 0.70 for T. diversifrons. When zooming in, it 
becomes clear that at the regional extent (about 300 km) the 
climate-only models created artefacts related to the low the-
matic resolution of the climatic data in this climatically rela-
tively uniform area. Field-observed species occurrences were 
consistently structured in relation to a geological and edaphic 
boundary that runs roughly perpendicularly across the Juruá 
river (Higgins et al. 2011, Tuomisto et al. 2016), and SDMs 
that included Landsat layers were able to more accurately pre-
dict species distributional patterns in this region (Fig. 5).

Figure 5. Predicted probability of occurrence of Trichomanes diversifrons (left columns) and T. trollii (right columns) in Amazonia (outer 
columns) and in an area along the middle Juruá (inner columns) when using the Random Forests method with the predictor variables 
consisting of either all seven environmental predictor variables (top row), four CHELSA climate variables only (middle row), or three 
Landsat surface reflectance variables only (bottom row). Circles indicate quantitative field inventory plots in which the species was observed 
(black) and was not observed (grey).
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Among-species differences in the predictive capabili-
ties of SDMs were very large, even when the same model-
ling method and explanatory variables were used. However, 
the reasons for these differences are not clear, as model per-
formance was independent of both species prevalence (the 
number of plots in which the species was observed) and of 
the abundance of the species at plots where it was present 
(Supplementary material Appendix 1 Fig. A2, A3).

Discussion

Predictive power of multispectral and climatic layers

Our results show that canopy surface reflectance obtained by 
multispectral sensors can provide studies of tropical ecology, 
as exemplified by SDMs, much higher thematic (taxonomic) 
detail than is generally assumed. Furthermore, multispectral 
datasets complement the traditionally used climatic layers in 
analyses requiring information on environmental site condi-
tions. Here we demonstrate the utility of remote sensing data 
for biogeographical studies that can aid conservation plan-
ning and biodiversity management.

Medium spatial resolution multispectral sensors are already 
routinely used for the monitoring of dynamic processes in 
Amazonia related to deforestation and forest disturbances 
(Hansen et al. 2013). Several studies have documented that 
these datasets are also useful for identifying and mapping pat-
terns in species composition and species turnover in Amazonia 
(Tuomisto et al. 2003a,  b, Salovaara et al. 2005, Higgins et al. 
2011, 2012) and tropical forests in general (Helmer  et  al. 
2015) at local to regional extents. However, until recently 
(Tuomisto et al. 2019a), no studies have reported the use of 
medium resolution multispectral data to model Amazonian 
species distributions or diversity at the basin-wide extent. 
This can be mainly attributed to challenges that emerge when 
the spectral similarity among tropical forest types is com-
bined with artefacts introduced by illumination and view-
ing geometry, clouds and other atmospheric contamination, 
and image compositing (Toivonen et al. 2006, Helmer et al. 
2015, Muro et al. 2016). As a result, multispectral data have 
sometimes been deemed inadequate for these types of appli-
cations (Nagendra and Rocchini 2008, Lausch et al. 2016).

Using a newly developed Landsat TM/ETM+ image com-
posite for Amazonia (Van doninck and Tuomisto 2018), we 
here provide evidence that multispectral data are ecologically 
relevant for thematically detailed studies at the basin-wide 
extent and effectively complement climatic data. The ordina-
tion analyses showed that the main floristic gradient (PCoA 
axis 1) in our study was most strongly related to Landsat 
variables and the secondary gradient (PCoA axis 2) to cli-
matic variables (Table 1, Tuomisto et al. 2019a). The infor-
mation value of Landsat data was also clearly evident from 
the species accumulation curves (Fig. 2). Adding sites based 
on maximum climatic distance resulted in the highest initial 
rate of species accumulation, but this was soon overtaken by 

accumulation based on Landsat dissimilarities as the num-
ber of plots increased. The species accumulation curve based 
on Landsat data stayed above the random curve throughout, 
indicating that Landsat data continued to consistently iden-
tify compositional dissimilarities as survey sites were added 
(Tuomisto  et  al. 2003a, Rocchini  et  al. 2005). This is use-
ful when planning new field surveys: spectral dissimilarity to 
previously sampled sites can be used to estimate the likeli-
hood of finding new species or forest types. Finally, species 
distribution models that included Landsat-derived data layers 
as predictor variables had a better discriminatory ability than 
climate-only models (Fig. 3), again supporting the view that 
Landsat reflectance indicates environmental variation of eco-
logical relevance for understory ferns and lycophytes.

Environmental data layers derived from multispectral 
sensors can be expected to have the greatest added value to 
climatic data in SDMs when they provide distinct informa-
tion, in areas of broadly similar climate where features other 
than climate alter vegetation characteristics (Bradley  et  al. 
2012). This was clearly the case in our study over lowland 
Amazonia, where the climatic gradient is relatively short and 
meteorological stations are sparse, which limits the quality 
of CHELSA and other climatic data layers. The limitations 
of using climate-only data in tropical ecology studies were 
apparent in the species accumulation curves, which were 
indistinguishable from random curves when large numbers 
of plots were sampled (Fig. 2), and from the overall lower dis-
criminatory capacities of SDMs based on climatic data alone 
(Fig. 3, Supplementary material Appendix 1 Fig. A1).

Translating environmental predictor variables derived 
from multispectral imagery into meaningful ecological enti-
ties is challenging (He et al. 2015), especially compared to 
the more straightforward interpretation of bioclimatic vari-
ables. The multispectral variables used in this study (Table 
1) are influenced by canopy properties such as tree species 
composition, leaf chemistry, physiology and branching struc-
ture. While it is possible that some of these features directly 
impact understory habitat suitability, e.g. through light 
availability, it is more likely that these canopy properties 
are themselves affected by the same environmental variables 
that the understory plants react to, such as soil base cation 
concentration, drainage and climate (Tuomisto et al. 2003a, 
Ruokolainen et al. 2007). In Amazonia, where soil properties 
vary more than climate does, the Landsat TM/ETM+ sur-
face reflectance mostly serves as a proxy for soil properties 
even at the basin-wide extent (Van doninck and Tuomisto 
2018, Tuomisto et al. 2019a). This was most noticeable for 
the modelling technique with the largest overall discrimina-
tory capacity (RF), where adding surface reflectance data to 
climate-only models improved model performance especially 
for soil specialist species (Fig. 4). Additionally, examples for 
two species with similar climatic but distinct edaphic niches 
showed more realistic predictions of species distribution 
when adding remote sensing layers to climate-only mod-
els, especially in an area encompassing a known geological 
boundary (Fig. 5).
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Variability in model performance among species

We observed high variability in the discriminatory capacity 
of SDMs both among the three modelling techniques and 
among the 69 fern and lycophyte species (Fig. 3). Among the 
modelling techniques, MaxEnt resulted in the lowest overall 
AUCs. A possible reason for this is that background samples 
required for calibrating the MaxEnt models were extracted 
over the entire Amazon biome, and potentially included ref-
erence samples that were environmentally more distant from 
the validation samples than those used in the models based 
on observed species presences and absences. Our study did 
not take advantage of one of the main strengths of MaxEnt: 
the possibility to use presence-only data. Calibration datasets 
for MaxEnt could be easily extended using observations regis-
tered in herbaria or online repositories. However, this would 
have required significant additional taxonomic standardiza-
tion efforts.

Even for the combination of modelling technique and 
environmental datasets that was best overall, AUC values 
varied strongly for the different species (Fig. 3). Using AUC 
to validate SDMs has been criticised on the grounds that 
AUC should not be used to compare modelling performance 
among species that differ in their relative area of occurrence 
(Lobo et al. 2008). By design of the metric, rare species are 
expected to have higher AUC values. Such a pattern was not, 
however, observed in our analyses (Supplementary material 
Appendix 1 Fig. A2), and results using TSS instead of AUC as 
a metric of model performance were similar (Supplementary 
material Appendix 1 Fig. A1, A3).

An important issue to consider in species distribution 
modelling is the uncertain nature of recorded absences, which 
may be due to species’ rarity in spite of favourable conditions 
(Lobo et al. 2010). Uncertainty of absences can be expected 
to be an issue in our dataset, given the high floristic diver-
sity of Amazonian forests and the use of relatively small plots 
of 400–500 m2. Earlier studies on ferns and lycophytes have 
used a sampling unit size of 2500 m2, as the species accu-
mulation by that time has generally slowed down (Tuomisto 
and Poulsen 1996). Species that are abundant when envi-
ronmental conditions are suitable can be expected to be less 
prone to false absences, leading back to the expectation that 
AUC should be influenced by species’ abundance (Lobo et al. 
2008). Again, however, our results did not show such an 
effect (Supplementary material Appendix 1 Fig. A2, A3).

In order to highlight the added value of multispectral 
remote sensing in tropical biodiversity modelling, all model-
ling in this study was based on a limited and fixed set of four 
climatic variables from the CHELSA dataset and three spec-
tral layers from Landsat. While this set of variables described 
well the general compositional trends of fern and lycophyte 
species across lowland Amazonia (Table 1), they are not nec-
essarily the most relevant predictive variables for each indi-
vidual species. Including species-specific climatic and spectral 
variables, and additional relevant environmental layers might 
further improve predictive model accuracies. Moreover, 
the improved radiometric and spectral resolution of newer 

generation multispectral sensors such as Landsat OLI and 
Sentinel 2 can be expected to make these even more suitable 
for these types of applications, than Landsat TM/ETM+.

Conclusions

We found multispectral satellite data improved basin-wide 
distribution models of terrestrial fern and lycophyte species, 
and predict that they will be found informative for many 
other groups of tropical forest taxa as well. Obviously, this 
goes for the canopy species themselves, but also for any plant 
or animal group whose distribution is directly or indirectly 
related to canopy structure and species composition.
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