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Abstract. We prove that the group of reversible cellular automata (RCA), on any
alphabet A, contains a subgroup generated by three involutions which contains an iso-
morphic copy of every finitely generated group of RCA on any alphabet B. This result
follows from a case study of groups of RCA generated by symbol permutations and par-
tial shifts (equivalently, partitioned cellular automata) with respect to a fixed Cartesian
product decomposition of the alphabet. For prime alphabets, we show that this group is
virtually cyclic, and that for composite alphabets it is non-amenable. For alphabet size
four, it is a linear group. For non-prime non-four alphabets, it contains copies of all finitely
generated groups of RCA. We also prove this property for the group generated by RCA
of biradius one on any full shift with large enough alphabet, and also for some perfect
finitely generated groups of RCA.

1. Introduction. Automorphism groups of subshifts have been a topic
of much interest in recent years [38, 49, 43, 17, 13, 16, 19, 20, 15, 22, 44,
46, 3], with most results dealing with either the case of highly constrained
subshifts such as minimal and low-complexity subshifts, or the case of weakly
constrained subshifts such as SFT’s. This paper is about the second case.

Reversible cellular automata or RCA (on a finite alphabet A) are the au-
tomorphisms, i.e. shift-commuting self-homeomorphisms, of the full shift AZ,
and form a group denoted by Aut(AZ). We write this group also as RCA(A),
and as RCA(|A|) up to isomorphism. Since this group is not finitely gener-
ated [9], from the perspective of geometric group theory it is of interest to
try to understand its finitely generated subgroups. In this paper, we con-
struct “universal” such subgroups, with a maximal set of finitely generated
subgroups.

A simple way to construct RCA is the technique of partitioned cellular
automata. Fix a Cartesian product decomposition A = B1 × · · · ×Bk of the
finite alphabet A. The partial shifts shift one of the tracks with respect to
this decomposition; e.g. identifying x ∈ AZ as (y1, . . . , yk) ∈ BZ

1 × · · · × BZ
k

in an obvious way, we map σ1(y
1, y2, . . . , yk) = (σ(y1), y2, . . . , yk) where

2020 Mathematics Subject Classification: Primary 37B10; Secondary 20B27.
Key words and phrases: full shift, automorphism group, reversible cellular automata.
Received 7 August 2020; revised 16 August 2021.
Published online 27 January 2022.

DOI: 10.4064/cm8368-9-2021 [1] © Instytut Matematyczny PAN, 2022



2 V. SALO

σ is the usual shift map, and similarly we allow shifting the other tracks
independently. The symbol permutations apply the same permutation of A in
each position of x ∈ AZ. These maps are reversible, and thus any composition
of them is as well.

When a partial shift and a symbol permutation are composed (in some
fixed order), we obtain a partitioned RCA. In this paper, we denote the group
generated by symbol permutations and partial shifts by PAut[B1; . . . ;Bk] –
this group contains the partitioned RCA and their inverses, but also sev-
eral other things; see Section 2.2 for details. The group PAut[B1; . . . ;Bk]
is a subgroup of ⟨RCA1(A

Z)⟩, the group of RCA generated by those with
biradius one (meaning the CA and its inverse both have radius one). When
n1, . . . , nk ∈ N, we also write PAut[n1; . . . ;nk] for the abstract group
PAut[B1; . . . ;Bk] where |Bi| = ni, up to isomorphism.

A theorem of [28] shows that up to passing to a subaction of the shift (and
using the induced basis for the algebra of clopen sets), all RCA essentially
come from composing partial shifts and symbol permutations. The “symbol
permutations” for a subaction of course permute longer words, and are called
block permutations in [28]. Such block permutations, applied with several
offsets (i.e. conjugated by the original shift action) can build any reversible
cellular automaton f with zero average information flow (meaning h−(f) = 1
in the morphism of [28]; equivalently, f is inert in symbolic dynamics termi-
nology). Partial shifts are used to eliminate the flow of information.

In the theorem of [28], one needs subactions of increasing index (i.e.
longer and longer blocks) to construct cellular automata of increasing ra-
dius, and indeed this is necessary: one can show that no finite set of block
permutations and partial shifts generates a group containing all reversible
cellular automata. Our main result is that for any robust enough composite
alphabet B × C, even without passing to a subaction of the shift, RCA in
PAut[B;C] can simulate any RCA on any alphabet in the following algebraic
sense.

Definition 1.1. Let G be a group. A subgroup H ≤ G is universal
if there is an embedding G ↪→ H. It is f.g.-universal if for every finitely
generated subgroup K ≤ G there exists an embedding K ↪→ H.

Theorem 1.2. If m≥ 2, n≥ 3, PAut[m;n] is f.g.-universal in RCA(mn).

This is proved in Section 4.1. The embeddings of finitely generated sub-
groups are dynamical, in the sense that we concretely simulate cellular au-
tomata on encoded configurations. It is difficult (though possible) to give a
good abstract formulation for a “dynamical embedding”, so we recommend
the interested reader simply read the first five paragraphs of the proof of
Lemma 4.8.
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The set of finitely generated subgroups of RCA(A) does not depend on A
as long as |A| ≥ 2 by [31], so when PAut[m;n] is f.g.-universal in RCA(mn),
it also contains a copy of every finitely generated subgroup of RCA(k) for
any other k ∈ N+. For the same reason, the theorem implies that for any
non-trivial alphabet A, RCA(A) contains an f.g.-universal finitely generated
subgroup since it contains a copy of each PAut[m;n] (a stronger statement
about sofic shifts is given below).

The group RCA(A) is neither amenable nor locally linear when |A| ≥ 2,
so the following result shows that Theorem 1.2 is optimal.

Theorem 1.3. Let m,n ≥ 1. Then

• PAut[m] ∼= PAut[1;m] ∼= Z× Sm, while
• if m ≥ 2, n ≥ 2 then PAut[m;n] is non-amenable, and
• PAut[2; 2] is a linear group, while
• if m ≥ 2, n ≥ 3 then PAut[m;n] is not a subdirect product of finitely many

linear groups.

Both non-amenability and non-linearity for PAut[m;n] for m ≥ 2, n ≥ 3
follow directly from f.g.-universality, but in Section 4.4 we give instead a
uniform natural construction that proves the second and fourth item simul-
taneously by embedding groups of the form Zωk ∗Zωℓ . Linearity of PAut[2; 2] is
proved in Section 4.3, where we show that PAut(4) ∼= Z2

2⋊GL(2,Z2[xxx,xxx
−1]).

Table 1. The entry G at (m,n) means that finitely generated subgroups of PAut[m;n]
are precisely the finitely generated subgroups of the group G; k ≥ 2 is arbitrary.

m ≥ 3 Z× Sm RCA(k) RCA(k)

m = 2 Z× Sm Z2
2 ⋊GL(2,Z2[xxx,xxx

−1]) RCA(k)

m = 1 1 Z× Sn Z× Sn

n = 1 n = 2 n ≥ 3

Table 1 gives the characterizations of f.g. subgroups of PAut[m;n], by
indicating, in each case, a well-known group whose f.g. subgroups are the
same as those of PAut[m;n].

We can also state the result in terms of alphabet size alone. Write
PAut(A) for the group PAut[B1; . . . ;Bk] seen through any bijection π : A→
B1 × · · · × Bk where |A| = |B1| · · · |Bk| is a full prime decomposition of A.
The subgroup of RCA(A) obtained does not depend (even as a set) on the
choice of the Bi and that of π; see Section 2.2. Again up to isomorphism we
write PAut(n) for the group PAut(A) where |A| = n.

Theorem 1.4. Let n ≥ 2.

• If n ∈ P, then PAut(n) ∼= Z× Sn.
• If n = 4, then PAut(n) ∼= Z2

2 ⋊GL(2,Z2[xxx,xxx
−1]).
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• If n /∈ P ∪ {4}, then PAut(n) is f.g.-universal in RCA(n).

The group is virtually cyclic if and only if it is amenable if and only if n ∈ P.

We also obtain a corollary about the group ⟨RCA1(n)⟩ of RCA generated
by those with biradius one. This classifies the possible sets of f.g. subgroups
for a cofinite set of alphabet sizes, and is proved in Theorem 5.1.

Theorem 1.5. ⟨RCA1(n)⟩≤RCA(n) is f.g.-universal for large enough n.

We moreover construct f.g.-universal groups with small generating sets.
This is proved in Theorem 5.2.

Theorem 1.6. For any n ≥ 2, RCA(n) has an f.g.-universal subgroup
generated by three involutions, as well as one generated by two elements of
which one is an involution.

As mentioned above, one motivation for proving such results is that the
groups Aut(AZ), and more generally Aut(X) for mixing SFT’s X, are not
finitely generated, and thus do not fit very neatly in the framework of ge-
ometric group theory. Thus, it is of interest to look for finitely generated
subgroups which are representative of the entire group. On the other hand,
in cases where we do not obtain universality, such study provides new ex-
amples of “naturally occurring” finitely generated RCA groups.

The set of finitely generated subgroups of Aut(AZ) is relatively big: It is
closed under direct and free products and finite extensions [44], contains the
graph groups (a.k.a. right-angled Artin groups) [31], and contains a group
not satisfying the Tits alternative [46] (we give another proof in Proposi-
tion 4.21). In the extended version of [3] we prove that there is an f.g. sub-
group with undecidable torsion problem. Since the arguments of the present
paper are constructive, Theorem 1.2 combined with [30] provides a new proof
of this (1).

We state one corollary obtained in the symbolic dynamics setting (other
embedding theorems are surveyed in [46]). A sofic shift is a subshift defined
by a regular language of forbidden patterns; in particular all full shifts AZ

are trivially sofic. This is proved in Theorem 5.5.

Theorem 1.7. Let X be an uncountable sofic shift. Then the group
Aut(X) has a perfect subgroup generated by six involutions containing ev-
ery f.g. subgroup of Aut(AZ) for any alphabet A.

The reason we include “perfect” in this statement is that in symbolic dy-
namics one is often interested specifically in “inert” elements of Aut(X) (this

(1) Though the extended version of [3] is not yet submitted or available online, it
precedes the results of this paper and uses different methods—there the work of producing
a “generating set” is done in the group of Turing machines, while here it is done in the
group of RCA.
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means that the natural action on the dimension group [33], i.e. the dimen-
sion representation, is trivial), and elements of its commutator subgroup.
A perfect subgroup is contained in the commutator subgroup, and if the
dimension representation of the automorphism group is solvable, a perfect
subgroup can only contain inert elements.

We also summarize some properties of the abstract group obtained, for
easier reference.

Theorem 1.8. There exists a finitely generated residually finite perfect
group G such that, if G is the class of finitely generated subgroups of G:

• G has decidable word problem and undecidable torsion problem, and does
not satisfy the Tits alternative, and

• G is closed under finite extensions, direct products and free products, and
contains all f.g. graph groups (that is, right-angled Artin groups).

Any group with this list of properties is necessarily not a linear group over
any field, contains every finite group, and every finitely generated abelian
group and free group. We are not aware of many naturally occurring resid-
ually finite groups with such properties; for example the Tits alternative
rules out linear groups, hyperbolic groups (2) and fundamental groups of
3-manifolds [32, 21], and having all finite groups as subgroups rules out au-
tomata groups.

In Section 6, we state some open questions about the groups RCA(A),
and also about the existence of (f.g.-)universal subgroups in other non-finitely
generated groups of interest, namely other cellular automata groups, au-
tomata groups and the rational group, the group of Turing machines [3],
topological full groups and (full) homeomorphism groups.

1.1. Outline of the proof of f.g.-universality of PAut[m;n]. We
outline the proof that PAut[m;n] contains an embedded copy of Aut(BZ)
for any alphabet B, as long as m and n are large enough. Supposing m ≥ 2
and n ≥ 3, we use the first track, over alphabet {0, 1, . . . ,m − 1} as a
“control track”. Its value is never modified (except very temporarily), and
everything interesting happens on the second, “data track”, over alphabet
{0, 1, . . . , n− 1}, which we visualize as being “below” the control track.

First, we prove that if w ∈ {0, 1, . . . ,m − 1}∗ is an unbordered word
(meaning it does not non-trivially overlap its shifted copies), then we can
perform any permutation of length-|w| words “under” the words w and ww.
Second, we prove that this allows us to simulate the action of any finitely
generated group of reversible cellular automata under runs www . . . w ap-
pearing on the first track.

(2) It is not known whether all hyperbolic groups are residually finite [24].
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The first part is further proved in two stages. We recall in Section 3 the
basics of how permutations of words can be built from permutations of sub-
words, and from this (mostly known) theory it follows that it is sufficient to
permute words of length two under w. The basic idea for this is that the com-
mutator of two “permutations conditioned on an event” is the commutator
of the permutations, conditioned on the intersection of the events.

The basic idea for permuting words of length two under occurrences of w
is roughly same as in Section 3. This is straightforward for large m and n,
but the cases (m,n) ∈ {(2, 3), (2, 4), (3, 3)} are tricky, and we use an ad hoc
argument. This is performed in Lemma 4.6.

To simulate finitely generated groups of reversible cellular automata un-
der runs www . . . w, we recall the trick of Kari [28] of representing reversible
cellular automata by block permutations and partial shifts. This trick di-
rectly generalizes to finitely generated groups of reversible cellular automata.
Under w, we can use this to simulate the action of the group.

There are some details that need to be dealt with: at boundaries of the
w-runs we need to do something natural to obtain a homomorphism, and
we use the standard trick of joining the words under w-runs into a conveyor
belt. To deal with parity issues, we duplicate the action. This is all done in
Lemma 4.8.

2. Definitions

2.1. Conventions and terminology. Our conventions for the naturals
are 0 ∈ N, N+ = N \ {0}, and the set of primes is P. Intervals are discrete
unless otherwise specified, i.e. [a, b] = [a, b] ∩ Z. Some basic knowledge of
group theory [41], symbolic dynamics [33] and cellular automata is assumed,
and we try to follow standard conventions.

An alphabet is a finite set, and we mainly consider non-trivial alphabets,
namely ones with at least two elements. A subshift is a shift-invariant closed
subset of AZ for an alphabet A, where the shift σ : AZ → AZ is σ(x)i = xi+1.
Elements x ∈ AZ are called configurations or points. IfX is a subshift, a basic
cylinder is a set of the form [a]i = {x ∈ AZ | xi = a} where a is in the
alphabet of X. Basic cylinders form a subbase of the topology.

The automorphisms of a subshift X are the self-homeomorphisms of X
that commute with the shift σ; they form a group denoted by Aut(X). When
X = AZ, we write Aut(X) also as RCA(A), and RCA(|A|) for the abstract
group up to isomorphism.

Words over an alphabet A (see [34]) form a monoid A∗ under con-
catenation, which is denoted u · v or uv. A word u is m-unbordered if
vu = uv′ ⇒ |v| = 0 ∨ |v| ≥ m, and unbordered if it is |u|-unbordered.
Configurations x ∈ AZ are two-way infinite words. Often they have a peri-
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odic left and right tail, and a left tail with repeating word u is written as ωu
and a right tail as uω. The position of the origin is either left implicit when
specifying infinite words or marked with a decimal point. Finite words are
0-indexed in formulas. In the text we use the standard English ordinals, so
the “first symbol” of a word w is w0 rather than w1.

The clopen sets in AZ are precisely the Boolean algebra generated by
basic cylinders. We say a clopen set F is m-unbordered if F ∩ σi(F ) = ∅ for
i ∈ [1,m−1]. Clearly u ism-unbordered if and only if [u]i is anm-unbordered
clopen set in the full shift.

For two words u, v of the same length, we writeD(u, v) for {i ∈ [0, |u|−1] |
ui ̸= vi}. The Hamming distance of two words u, v is |D(u, v)|. The Hamming
distance is the path metric in the Hamming graph (of length n over alpha-
bet Σ) whose vertices are Σn and edges are (u, v) where |D(u, v)| = 1. If
a ∈ A and u ∈ A∗, we write |u|a for the number of a-symbols in u.

The reversal of a word is denoted by wT and defined by wTi = w|w|−1−i.
We also reverse other things such as subshifts, by reversing points in the
sense xTi = x−i, and cellular automata, by conjugating with the reversal
map.

If X and Y are subshifts and X × Y their Cartesian product subshift
(with the diagonal action), then X and Y are referred to as tracks, and the
X-track is also referred to as the top track, and the Y -track the bottom track.
We write RAut(X × Y ) for the subgroup of Aut(X × Y ) containing those f
that never modify the X-track (i.e. ∀x, y : ∃y′ : f(x, y) = (x, y′)).

An RCA f : AZ → AZ is of radius r if f(x)0 depends only on the
word x[−r,r]. A biradius of a reversible cellular automaton f is any number
at least as large as the radii of f and f−1. The neighborhoods are sets N
such that f(x)0 depends only on x|N , and bineighborhoods are defined in the
obvious way.

If N ⊂ Z is a finite neighborhood and A an alphabet, we let RCAN (A) be
the set of RCA with bineighborhood (the union of neighborhoods of the RCA
and its inverse) contained in N . The case where N is a contiguous interval
is of particular interest. In the case N = {−r, . . . , r}, that is, biradius r, we
denote RCAN (A) by RCAr(A).

For two groups G,H, we write H ≤ G for the literal inclusion, and
H ↪→ G when H can be embedded into G.

The symmetric (resp. alternating) group on a set A is Sym(A) (resp.
Alt(A)) and Sn is the group Sym(A) for any |A| = n, up to isomorphism;
similarly An = Alt(A) for |A| = n.

Composition of functions is from right to left, and all groups (includ-
ing permutation groups) act from the left unless otherwise specified. When
permutations are written in cycle notation, we use whitespace or ; as the
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separator of the permutees. Usually we permute initial segments of N and
elements of Σn for a fixed finite alphabet Σ and n ∈ N.

The commutator conventions are

[g, h] = g−1h−1gh, [g1, g2, . . . , gk] = [[g1, g2], g3, . . . , gk].

For g, h elements of the same group, we write gh = h−1gh. If ϕ : X → Y is
a bijection, we also use conjugation in the groupoid sense: if h : Y → Y is
a bijection, we write hϕ = ϕ−1 ◦ h ◦ ϕ : X → X. If A,B are groups, then
an A-by-B group G is one that admits an epimorphism to B with kernel A.
A virtually-H group (here also called a finite extension of H) is one that
admits H as a subgroup of finite index. If A, B or H are properties instead,
the interpretation is existential quantification over groups with said property.

A subdirect product of groups G1, . . . , Gk is a subgroup of G1 × · · · ×Gk
(one need not assume that the projection to each Gi is surjective, but all our
statements are true with this definition as well). A subquotient of a group G
is a quotient of a subgroup.

The (transfinite) derived series of a group G is G(0) = G, G(α+1) =
[G(α), G(α)] for successor ordinals and G(α) =

⋂
β<αG

(β) for limit ordinals.
If this stabilizes at G(k) = 1 for a finite ordinal k (i.e. G is solvable), then k is
called the derived length of G. The series always stabilizes at some ordinal α,
meaning G(α) = G(α+1) for some minimal α, and G(α) is called the perfect
core of G. The (transfinite) lower central series is G0 = G, Gα+1 = [G,Gα]
for successor ordinals and Gα =

⋂
β<αGβ . This series also stabilizes at some

ordinal α, and we call Gα the hypocenter.
A linear group is a (not necessarily finitely generated) subgroup of a

group of finite-dimensional matrices over a field, i.e. a subgroup of GL(n, F )
for some field F and some n ∈ N.

We make a few simple observations about decidability, and an informal
understanding suffices: Let P be a family of propositions. We say P is semide-
cidable if there exists an algorithm that, given a proposition P , eventually
writes the answer “yes” if P ∈ P, and eventually writes “no” or never writes
anything if P /∈ P. We say P is decidable if P and {¬P | P ∈ P} are both
semidecidable.

2.2. PAut(A), PAut[B;C]. If B1, . . . , Bk are finite alphabets, then
PAut[B1; . . . ;Bk] refers to the smallest subgroup of Aut((B1 × · · · × Bk)

Z)
containing the following maps: The partial shifts σi, i ∈ [1, k], defined by

σi(y
1, . . . , yk) = (y1, . . . , yi−1, σ(yi), yi+1, . . . , yk),

where σ : BZ
i → BZ

i is the usual shift map, and the symbol permutations π̄
defined by applying a permutation π in every cell, or

π̄((y1, . . . , yk))j = π((y1j , . . . , y
k
j )),
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in symbols, where π ∈ Sym(B1 × · · · ×Bk) is arbitrary. We usually identify
π̄ with π.

These maps are reversible, so PAut[B1; . . . ;Bk] ≤ Aut((B1×· · ·×Bk)Z).
We write PAut(A) for the following subgroup of Aut(AZ): Let |A| = n

and let n = p1 · . . . · pk where pi are the prime factors of n in any order.
Pick a bijection ψ : A → B1 × · · · × Bk where |Bi| = pi for all i. Define
PAut(A) as the group obtained by conjugating PAut[B1; . . . ;Bk] through ψ.
A priori, the resulting subgroup of Aut(AZ) could depend on the choice of
ψ and the Bi, but this is not the case.

Lemma 2.1. The group PAut(A) is well-defined.

Proof. Let ψ : A → B1 × · · · × Bk and ψ′ : A → B′
1 × B′

2 × · · · × B′
k be

two bijections. By the fundamental theorem of arithmetic, and by reordering
of the product (which clearly does not change the subgroup of Aut(AZ)
obtained), we may assume |Bi| = |B′

i| for all i. Clearly the subgroup of
Aut(AZ) obtained by using a particular bijection does not depend on the
contents of the sets, but only their cardinalities, so we may hide the bijection
coming from |Bi| = |B′

i| and simply assume Bi = B′
i for all i. Let G and G′

be the two subgroups of Aut(AZ) generated by symbol permutations and
partial shifts using the two bijections. Now, by definition, G and G′ are
conjugate subgroups of Aut(AZ), by the symbol permutation ψ−1 ◦ ψ′ by
a direct computation. This symbol permutation is in both of the groups G
and G′, so in fact the groups are equal.

3. Generators for some groups

3.1. Controlled actions. We begin by outlining an intuitive idea. Sup-
pose we are dealing with a group action that is conditioned on some type of
events, and write gE for the “action of g in case E holds” (this is a bijection
as long as the conditioning events are not affected by the action). Then

[gE , hF ] = [g, h]E∩F ,

since in the case of less than two events, the commutator cancels. When
the acting group is perfect (e.g. an alternating group on at least five ob-
jects), the commutators [g, h] are a generating set for the group, so if we
can condition actions of G on some set E of events (and their complements),
we can condition them on any event in the ring of sets generated by E , i.e.
unions, intersections and relative complements of events. Typically we have
a Boolean algebra of events, namely the algebra of clopen sets in some space.

The same idea can be used with S3 and S4, using the fact that they are
not nilpotent, and their hypocenters are A3 and A4, respectively. Concretely,
using for example the formula [(0 1 2), (0 1)] = (0 1 2), we can condition
an even permutation on the intersection of two events, assuming one is a
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“primitive event” (so we can apply an arbitrary permutation conditioned
on it), and the other is any “composite event” (so by induction we can apply
an even permutation conditioned on it). See for example Lemma 4.4 for a
formal result to this effect.

We do not give a general formalization of this idea, as often the events are
entangled with whatever is being acted on, so one should rather consider this
a proof technique. Informally, we refer to actions that “depend on events” as
controlled or conditioned actions, and use terms such as “increase the control”
to refer to the tricks described above. The main application is to subshifts,
whose Boolean algebra of clopen sets is generated by basic cylinders [a]i.

3.2. Alternating groups and 3-hypergraphs. The following lemma
is from [7]. A hypergraph consists of a set V of vertices and hyperedges E ⊂
P(V )\{∅}. A hypergraph G is weakly connected if the graph G′, whose edges
are those 2-subsets of V (G) that are contained in some hyperedge of G, is
connected.

Lemma 3.1. Let G be a hypergraph with all hyperedges of size 3, and
let G be the group generated by the 3-cycles corresponding to the hyperedges
of G. If G is weakly connected, then G = Alt(V (G)).

3.3. Universal families of reversible logical gates. If you can per-
mute two adjacent cells of words (evenly), you can permute words of any
length (evenly), by the following Lemma 3.2 which strengthens a result of [7].
Many results like this are known (see e.g. [1, 6, 50]), but usually (conjugation
by) free reordering of wires, i.e. swapping the order of adjacent symbols, is
allowed, so these results are not directly compatible with ours. In our ap-
plication, wire reordering is not possible. (The swap of two wires is directly
among the generators only if |A| ≡ 0, 1 mod 4.)

Lemma 3.2. Let A be a finite alphabet with |A| ≥ 3. If n ≥ 2, then every
even permutation of An can be decomposed into even permutations of A2

applied in adjacent cells. That is, the permutations

w 7→ w0w1 · · ·wi−1 · π(wiwi+1) · wi+2 · · ·wn−1

are a generating set of Alt(An) where π ranges over Alt(A2), and i ranges
over 0, 1, . . . , n− 2. For |A| = 2 the same is true when n ≥ 3 and permuta-
tions are applied in length-3 subwords.

Proof. Suppose first |A| ≥ 3, n ≥ 3. It is enough to show that the 3-cycles
(u; v;w) where for some j, |{uj , vj , wj}| = 3, and ui = vi = wi for i ̸= j,
are generated. Namely, the result then follows by applying Lemma 3.1 to
the hypergraph with vertices An and edges (u, v, w) that only differ in one
position.
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It is enough to show that the permutation that applies the cycle (0 1 2) in
coordinate j if all other coordinates contain 0, and is the identity otherwise,
is generated. Namely, the other generators are conjugate to it or its inverse
by even symbol permutations. Let us fix the coordinate j, and for a set of
coordinates N ̸∋ j and a permutation π, write πN for the permutation that
applies π in coordinate j if all coordinates in N contain 0, and is the identity
otherwise. We need to construct (0 1 2)[0,j−1]∪[j+1,n−1].

By induction, we can assume that the map (0 1 2)[j−ℓ,...,j−1]∪[j+1,...,j+r],
which applies (0 1 2) at j if and only if the ℓ symbols to the left and the
r symbols to the right are all 0, is generated. By symmetry, it is enough to
show that also (0 1 2)[j−ℓ,...,j−1]∪[j+1,...,j+r+1] is generated.

If |A| is odd, define

π = (01; 11)(02; 12) · · · (0(|A| − 1); 1(|A| − 1)) ∈ Alt(A2),

and if |A| is even, define

π = (01; 11)(02; 12) · · · (0(|A| − 1); 1(|A| − 1))(20; 21) ∈ Alt(A2).

In each case, π has the property that, when applied to a word ab, if a = 0
then the value of a changes if and only if b ̸= 0, and it always changes to 1
in this case.

Let ψ be the map that applies π successively in the subwords

[j + r, j + r + 1], [j + r − 1, j + r], . . . , [j + 1, j + 2].

Observe that if wj−ℓ,...,j−1wj+1,...,j+r = 0ℓ+r, then ψ(w)j+1 ∈ {0, 1} and we
have ψ(w)j+1 = 1 ⇔ wj+r+1 ̸= 0.

Let β apply the permutation (00; 10)(02; 12) at [j, j + 1]. Note that βψ
does not modify any coordinate other than j, i.e. the effect of ψ is canceled
after applying β. We claim that

[(0 1 2)[j−ℓ,j−1]∪[j+1,...,j+r], βψ] = (0 1 2)[j−ℓ,j−1]∪[j+1,j+r+1].

To see this, observe that if the coordinates in [j − ℓ, j − 1] ∪ [j + 1, j +
r + 1] all contain 0, then the commutator [(0 1 2), (0 1)] = (0 1 2) is
applied at j, and no other coordinate is modified. If some coordinate in
[j − ℓ, j − 1] ∪ [j + 1, . . . , j + r] is non-zero, this fact is not changed by βψ,
so (0 1 2)[j−ℓ,j−1]∪[j+1,...,j+r] has no effect, and the effect of βψ cancels. If
all coordinates of [j − ℓ, j − 1] ∪ [j + 1, . . . , j + r] contain 0 but the value at
j+ r+1 is not 0, then βψ has no effect, since just before β is applied, ψ has
propagated a 1-symbol to the coordinate j + r + 1.

Suppose then |A| = 2, n ≥ 3. Then it is essentially classical that the
set of all even permutations of A4 generates all even permutations of An for
any n (swaps, flips and the Toffoli gate (a, b, c) 7→ (a, b, c + ab) are even as
permutations of A4), and a quick search in GAP [23] shows that the set of
all even permutations of A4 is generated by the even permutations of A3.
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The lemma does not hold for |A| = 2 and permutations applied in adjacent
cells: all permutations of A2 are affine for the natural linear structure of
A2 ∼= Z2

2, so they will also give only affine maps with respect to the natural
linear structure ofAn. In fact, they do not generate all even permutations ofA3.

As hinted by the title of the section, a typical and useful way to think
of permutations applied to subwords is as “reversible logical gates”. One
can draw reversible gates in picture form by having a “wire” for each i ∈
{0, . . . , n− 1}, and the ith wire carries a signal corresponding to the symbol
wi ∈ A. A permutation π applied to consecutive wires {i, i+1, . . . , i+j−1} is
visualized as a box labeled with the corresponding permutation of Sym(Aj),
and is thought of as a logical gate acting on the signals. The special gate
which performs the operation ab ↔ ba on a, b ∈ A can be represented as a
reordering of wires (the braiding of the wires carries no meaning).

We say a family of gates is universal if it generates all the even gates
on An for large enough n. Combining the previous lemma with any standard
set of generators for Alt(A2), we obtain a set of two gates that generates all
other gates. It is well-known [18] that as n tends to infinity, the fraction of
pairs (g, h) ∈ Alt(k) with ⟨g, h⟩ = Alt(k) tends to 1, so almost any two even
random permutations of A2 form a universal family of reversible gates. We
conjecture that a single gate suffices for n large enough.

4. Structure and universality of PAut[. . .]-groups. We prove The-
orem 1.2 in Section 4.1. Theorem 1.3 is a combination of Lemma 4.9, The-
orem 4.10 and Theorem 4.15, which are proved in Sections 4.2, 4.3 and 4.4,
respectively. In addition to the results mentioned, we discuss some basic
structural properties of subgroups which arise in the course of the proof.

4.1. Universal groups. In this section, we perform the main engineer-
ing task of building copies of every finitely generated group of RCA in the
PAut[B;C] groups.

Definition 4.1. Suppose F ⊂ BZ is an n-unbordered clopen set and
π : Cn → Cn is a permutation. Then define πF ∈ Aut((B × C)Z) by

πF (x, y)j =

{
(xj , π(y[j−i,j−i+n−1])i) if i ∈ [0, n− 1], σj−i(x) ∈ F,

(xj , yj) if ∀i ∈ [0, n− 1] : σj−i(x) /∈ F.

The map πF performs the permutation π on the bottom track under every
occurrence of F on the top track. One should think of this as a conditional
application of π on the bottom track, where the condition is that the top
track contains a point that is in F . The definition makes sense, since due to
the fact that F cannot overlap a translate of itself by less than n steps (by
n-unborderedness), permutations can unambiguously modify a contiguous
interval of n cells to the right of the place where F occurs.
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Example 4.2. Let f = (00; 10; 01)[01]0 . To apply f , locate occurrences of
01 on the top track, and permute the words under the occurrences according
to the permutation (00; 10; 01):

f

(
. . . 0100111001001001001000110010010 . . .

. . . 0101110011010011010101001001010 . . .

)
=

f

(
. . . 0100111001001001001000110010010 . . .

. . . 0101110011010011010101001001010 . . .

)
=

. . . 0100111001001001001000110010010 . . .

. . . 0001110011001011001100101101000 . . .

where we write occurrences of the controlling clopen set [01]0 in blue, words
modified by the permutation in green, and the fixed points of the permuta-
tion (to which it is nevertheless applied) in red.

One can also extract an explicit local rule:

0
0

1
0

0
1

0
0

1
1

0
0

0
1

1
0

0
0

0
0

1
0
1
0

0
0

1
1
1
0

0
1

1
0
1
1

In all non-specified cases we output the contents of the central cell. #

Definition 4.3. Let X be a subshift and G a group acting on a set A.
For a clopen set C ⊂ X and g ∈ G, define gC : X ×A→ X ×A by

gC(x, a) =

{
(x, ga) if x ∈ C,

(x, a) otherwise.

Define the shift by σ(x, a) = (σ(x), a) where σ denotes both the new and the
usual shift map. The group generated by these maps is denoted by GX . We
denote by P (X,G) the subgroup generated by the shift on X and maps gC
where g ∈ G and C is a basic cylinder.

Note that P (X,G) is finitely generated, since g[a]i = (g[a]0)σ
i . The no-

tation P (X,G) is an analog of the “P” in PAut, as these groups can be
simulated rather transparently with elements of PAut. See Section 4.5 for
some basic observations about these groups.

Lemma 4.4. Let X ⊂ ΣZ be a subshift and G a group acting on a set A.
Then for all clopen C, P (X,G) contains gC for all g in the hypocenter of G.

Proof. It is enough to prove this for cylinders, i.e. C = [w]m for a word w
andm ∈ Z. This is true by assumption if C is a basis set. Let then C = [wa]m
where a ∈ Σ. If h is in the hypocenter, then h = [h1, g1] . . . [hj , gj ] for
some hi in the hypocenter and gi in G. It is thus enough to show that
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[hi, gi]
[wa]m ∈ P (X,G). It is easy to verify that

[h
[w]m
i , g

[a]m+|w|
i ] = [hi, gi]

[w]m∩[a]m+|w| = [hi, gi]
[wa]m .

The following lemma separates the PAut[2; 2] case from others, by finding
a large locally finite subgroup in PAut[B;C]. (The conclusion is true also for
|C| = 2, but is trivial in that case.)

Lemma 4.5. Let |B|, |C| ≥ 2. Then for every even permutation ϕ of C
and any clopen F ⊂ BZ, ϕF is in PAut[B;C].

Proof. For every n, the hypocenter of Sn is An. It is easy to see that the
partial shift on either track, together with symbol permutations that only
modify the bottom track, implement the group P (BZ, G) in a natural way
where G = S|C|, and the claim follows from the previous lemma.

Lemma 4.6. Let |B| ≥ 2, |C| ≥ 3. Then for any n-unbordered clopen set
F ⊂ BZ, πF ∈ PAut[B;C] for every π ∈ Alt(Cn).

Proof. We may assume n ≥ 2, since n = 1 is covered by the previous
lemma. Any clopen set F is a union of disjoint basic cylinders [u]i, and it
follows from the assumption that the word u is necessarily n-unbordered for
each u appearing in this decomposition of F . We can take each i and the
lengths |u| to be equal, and if F =

⋃ℓ
j=1[uj ]i for finitely many distinct words

uj ∈ Bm, then the union is disjoint and

πF = π[uℓ]i ◦ · · · ◦ π[u1]i

for any π ∈ Alt(Cn), because by the assumption that F is n-unbordered,
each coordinate can be affected by at most one of these ℓ applications of π.
By conjugation with the shift, it is enough to show that π[u]0 ∈ PAut[B;C]
for any n-unbordered word u and any π ∈ Alt(Cn).

We may suppose B = {0, . . . , |B| − 1}, C = {0, . . . , |C| − 1}. Let (x, y)
stand for some configuration in (B×C)Z. By Lemma 4.5, π[u]i ∈ PAut[B;C]
for all π ∈ Alt(C). Since u is n-unbordered, it follows that the maps ψ[u]0 ,
where ψ = π1×· · ·×πn is a Cartesian product of n even symbol permutations
(applied to consecutive symbols), are in PAut[B;C].

We claim that it is enough to show (00; 10; 20)[u]0 is in PAut[B;C].
To see this, observe that then also (00; 10; 20)[u]j ∈ PAut[B;C] by conju-
gation by partial shifts. By symmetry, also (00; 01; 02)[u]j ∈ PAut[B;C].
Since we can perform even symbol permutations in any coordinate under
occurrences of u, it is easy to see that the sets {v1, v2, v3}, vi ∈ C2, such
that (v1; v2; v3)

[u]j ∈ PAut[B;C], form the hyperedges of a weakly con-
nected hypergraph. Thus, we can perform any even permutation of C2 in
any two consecutive symbols under each occurrence of u by Lemma 3.1. By
Lemma 3.2, we can then perform any even permutation in each segment of
length n under every occurrence of u. Note that by n-unborderedness, these
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permutations indeed happen in disjoint segments of y, for distinct occur-
rences of u in x.

Suppose first that |B| is even (the argument is slightly cleaner in this
case). Then we claim that the map f defined by f(x, y)i = (xi, yi) if yi+1 ̸= 0,
f(x, y)i = (xi, π(yi)) if yi+1 = 0, is in PAut[B;C] where π = (1 2).

We claim that
f = (σ−1

1 ◦ (1 2)[E]0 ◦ σ1 ◦ (ψ[0]0)↕)2,

where ψ = (0 1)(2 3) · · · ((|B| − 2) (|B| − 1)), E = {0, 2, 4, . . . , |B| − 2} ⊂ B,
and ↕ : (B × C)Z → (C × B)Z exchanges the tracks. Conjugation by ↕ is
performed in the groupoid sense, and means that we modify the top track
conditioned on the bottom track. To see that the formula holds, observe that
since the set of positions where 0 occurs in y never changes, the effect on x
is canceled. If yi+1 = 0, then the symbol at xi will be even during exactly
one of the two applications, while otherwise it is even either zero times or
two times, and the flip cancels out.

Then consider [f, (0 1 2)[u]0 ]2. Since [(1, 2), (0, 1, 2)]2 = (0, 1, 2), it applies
the permutation (0 1 2) at yi at least if x[i,i+|u|−1] = u and yi+1 = 0, which is
what we want. Let us analyze its side-effects. If x[i,i+|u|−1] = u and yi+1 ̸= 0,
then since n ≥ 2, yi+1 is non-zero after all partial applications (since u is
n-unbordered and f does not modify the set of coordinates where 0 occurs
on the bottom track), so in this case the rotation (0 1 2) cancels, and yi
retains its value. This means that if x[i,i+|u|−1] = u, the modification of the
coordinate yi is correct.

Suppose next that x[i,i+|u|−1] ̸= u and x[i+1,i+|u|] ̸= u. In this case,
(0 1 2)[u]0 does not modify the value of yi or yi+1, and a short calcula-
tion shows its conjugate by f does neither, so [f, (0 1 2)[u]0 ] = ((0 1 2)[u]0)f ◦
(0 1 2)[u]0 (and thus its square) does not change the value of yi.

Suppose then x[i+1,i+|u|] = u (so x[i,i+|u|−1] ̸= u since u is n-unbordered).
Suppose first that yi+2 ̸= 0. Then an application of [f, (0 1 2)[u]0 ] does not
modify yi+1 by the previous arguments, and its only possible effect is an
application of (1 2) at yi, so this effect cancels when we take the square.

Consider then the case x[i+1,i+|u|] = u and yi+2 = 0. In this case, a short
calculation shows that applying [f, (0 1 2)[u]0 ]2 flips yi if yi+1 ∈ {0, 1}. Since
it also rotates yi+1 by (0 2 1), the square applies the flip (1 2) at yi if and
only if yi+1 ∈ {0, 1}. We conclude that this is the only undesired side-effect
of [f, (0 1 2)[u]0 ]2.

We now deal with the side-effects, i.e. coordinates yi where x[i+1,i+|u|]=u,
yi+1 ∈ {0, 1} and yi+2 = 0. Let us continue by applying

([f, (0 1 2)[u]0 ]2)(0 2 1)[u]0 ,

i.e. we apply the same map, but conjugated by the application of (0 2 1)
at the coordinates i + 1 such that x[i+1,i+|u|] = u. The effect on yi+1 is as
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above, namely rotation by (0 1 2), since rotations form an abelian group.
Thus, in total we perform (0 2 1) at yi+1. But now at yi we actually perform
the flip (1 2) under the exact same condition on the original value of y1, i.e.
y1 ∈ {1, 2}, since before the second application, we rotated it back to its
original value. Thus this undesired flip is undone.

Repeating all of the above twice, we perform (0 1 2) at yi under the same
condition yi+1 = 0, x[i,i+|u|−1] = u. In other words,(

([f, (0 1 2)[u]0 ]2)(0 2 1)[u]0 ◦ [f, (0 1 2)[u]0 ]2
)2

= (00; 10; 20)[u]0

is in PAut[B;C], and the result follows from Lemma 3.2 as explained above.
Next, suppose |B| is arbitrary, let a ̸= u1 and consider the definition

f ′ = (σ−1
1 ◦ (1 2)[a]0 ◦ σ1 ◦ (ψ[0]0)↕)|B|,

and ψ = (0 1 2 · · · (|B| − 1)). This map applies (1 2) at yi iff yi+1 = 0 or
xi+1 = a. We can repeat the previous argument almost verbatim.

Consider [f ′, (0 1 2)[u]0 ]2. It performs (0 1 2) at yi if x[i,i+|u|−1] = u and
yi+1 = 0. If x[i,i+|u|−1] = u and yi+1 ̸= 0, then yi retains its value. Again
the only coordinates yi where there might be side-effects are ones where
x[i+1,i+|u|] = u. In such a coordinate, we apply the flip (1 2) if and only if
either yi+2 = 0 and yi ∈ {0, 1}, or u0 = a.

Whether or not u0 = a, as in the case when |B| is even,(
([f ′, (0 1 2)[u]0 ]2)(0 2 1)[u]0 ◦ [f ′, (0 1 2)[u]0 ]2

)2
is precisely the desired map (00; 10; 20)[u]0 .

Remark 4.7. The two cases depending on the parity of |B| are really
about the two cases (|B|, |C|) ∈ {(2, 3), (3, 3)}, which were solved last. For
larger |C|, we can separate data and control, and for example for |C| ≥ 6
(and any |B| ≥ 2), since Alt(C \ {0}) is perfect, one can rather directly
write a formula for an arbitrary even permutation of C \{0} at yi controlled
by x[i,i+|u|−1] = u and yi+1 = 0, without side effects. After this, one again
concludes by Lemmas 4.5 and 3.2.

Lemma 4.8. Let |B|, |C| ≥ 2 and A = B × C, and let G ≤ Aut(AZ).
If r ≥ 1 and there is an unbordered word w of length ℓ ≥ 24r such that
the maps π[w]i and π[ww]i are in G for all π ∈ Alt(Cℓ) and i ∈ Z, then
⟨RCAr(C)⟩ ↪→ G.

Proof. Let us assume ℓ = 24r; for ℓ > 24r we can simply ignore the
C-symbols under the length ℓ − 24r suffix of w, which is only a notational
complication (this cannot make even permutations odd). We first associate
to any f ∈ Aut(CZ) (with any radius) an element f̂ ∈ RAut((B×C)Z) which
simulates the action of f in a natural way, so that f 7→ f̂ is an embedding.
See Figure 1 for an illustration of the procedure.
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11

w w

0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 0 1 0 1 0 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0
11

u1 v1 u′
1 v′1 u2 v2 u′

2 v′2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

(a) The configuration with ω1wω on the B-track, . . . vT3 v
T
2 v

T
1 u1u2u3 . . . a (two-sided)

Fibonacci word and . . . v′T3 v′T2 v′T1 u′
1u

′
2u

′
3 . . . a Thue-Morse word. The subfigure shows

2+ 2 · 24 = 50 cells, i.e. two non-coding cells and the first two blocks at the left boundary
of the simulated conveyor belts.

w w w w w

u1=010010 u2=100100 u3=101001 u4=010010 u5=010100

v1= 001010 v2= 100101 v3= 010100 v4= 001010 v5= 101001

u′
1=011010 u′

2=011001 u′
3=011010 u′

4=010110 u′
5=011010

v′1= 101001 v′2= 011001 v′3= 101001 v′4= 100101 v′5= 101001

(b) The same situation with more geometric alignment of conveyor belts. Bits interpreted
in reverse are written in reverse, 5 · 24 = 120 cells shown.

w w w w w

0 1
0 0 1 0

1 0 1 0
0 1 0 0

0 0 1 0
1 0 0 1

0 1 0 1
0 0 1 0

1 0 0 1
0 1 0 0

0 0

0 1
0 1 0 1

0 0 1 0
1 0 1 0

0 1 0 0
0 0 1 0

1 0 0 1
0 1 0 1

0 0 1 0
1 0 0 1

0 1

(c) The situation after computing stairs under occurrences of w. Only non-primed simu-
lated tracks shown, encoding details omitted.

w w w w w

0 1
0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1

0 1
0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0

(d) The situation after computing the image under ww’s (non-primed tracks).

11

w w

1 0 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1
11

ū1 v̄1 ū′
1 v̄′1 ū2 v̄2 ū′

2 v̄′2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

(e) The final configuration after rewriting the leftmost stairs (to the word ( 100 )T 100 =
100100) and coding back to the original form.

Fig. 1. Illustration of proof of Lemma 4.8 with B = C = {0, 1}, f = σ, r = 1, w = 0231,
x = ω1wω (so there are two right-infinite simulated conveyor belts). The relevant part of y
is described in the caption of subfigure (a).
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The map f̂ is defined as follows: Suppose (x, y) ∈ BZ ×CZ and consider
an occurrence of wm in x which is not part of an occurrence of wm+1. Note
that points x with the property that every maximal run of w’s is finite are
dense, so it is enough to define f̂ uniformly continuously on such (x, y) and
extend by continuity. We split the subword of y under the occurrence of wm

into u1v1u′1v′1 . . . umvmu′mv′m where |ui| = |vi| = |u′i| = |v′i| = 6r for all i.
The application of f̂ will be defined for f of any radius, but let us already

address what will happen when the biradius is at most r. When f has biradius
at most r, we will be able to construct f̂ (which is defined below) inside G
by performing a sequence of operations that changes the words ui and vi, by
applying permutations to the subwords uivi and the (non-contiguous) sub-
words vi−1ui below the occurrence of wm. The words u′i and v′i are changed
exactly the same way, i.e. when we apply a permutation to the word uivi, we
apply the same permutation to u′iv

′
i, and a permutation applied to vi−1ui is

also applied to v′i−1u
′
i. The main simulation happens on the words ui and vi,

while the purpose of the primed versions is simply to ensure that all the per-
mutations performed are even: for any permutation π : X → X, the diagonal
permutation π × π : X ×X → X ×X is even.

We think of ui as being on top of the word vi, and think of the boundaries
of the maximal run wm as completing the top and bottom word into a
conveyor belt; similarly for the primed words u′i, v

′
i. Accordingly, to define f̂ ,

we apply f to the periodic point (u1u2 . . . um(vm)
T (vm−1)

T . . . (v1)
T )Z and

decode the contents of [0, 12rm] into the new contents below the occurrence
of wm; similarly for the primed words. Denote the new configuration be-
low wm as ū1v̄1ū′1v̄′1 . . . ūmv̄mū′mv̄′m.

This defines the global rule of f̂ uniquely, as the unique continuous exten-
sion, and it is easy to see that f̂ is always an automorphism (since f̂−1 is an
inverse). If the biradius of f is r′, then that of f̂ is 4r′+ ℓ where the factor 4
comes from skipping over words representing the contents of other simulated
tapes, e.g. skipping over vi, u′i, v

′
i when rewriting ui, and ℓ is needed because

we need to know whether the sequence of w’s continues. Since the word to
which f is applied only depends on x, and we are directly simulating the ac-
tion of f on an encoded configuration, the map f 7→ f̂ is a homomorphism,
and since wm can appear in x for arbitrarily large m, this is an embedding
of Aut(CZ) into Aut(AZ). See [44] for more detailed explanations of similar
arguments.

Now, we show that for any f ∈ RCAr(C), the cellular automaton f̂ is
indeed in G.

We recall the concept of stairs from [28]. Define L ⊂ C4r as the left stairs
of f , i.e. the possible contents u

v of stairs in spacetime diagrams (where
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the arrow of time points down), or in symbols

L = {uv ∈ C4r | u, v ∈ C2r, ∃x ∈ CZ : x[0,2r−1] = u, f(x)[r,3r−1] = v},

and R ⊂ C4r as the right stairs of f defined symmetrically.
Then |L| |R| = |C|6r by the argument of [28], namely the local rules of f

and f−1 set up an explicit bijection between suitably concatenated left and
right stairs and words of length 6r. Define γL : C6r → L and γR : C6r → R
as the maps which extract the left and right stair corresponding to a word,
and γ̇L : C6r → L̇ and γ̇R : C6r → Ṙ as the corresponding versions for fT ,
writing L̇ and Ṙ for the left and right stairs of fT (recall that we define
fT (x) = f(xT )T where for configurations x we have xTi = x−i).

The left stairs of fT are in bijection with the right stairs of f and vice
versa: we have γ̇L = γR(w

T )T in a natural sense. Therefore we have |L| |L̇| =
|L| |R| = |C|6r and similarly for the right stairs. Let αL : L× L̇ → C6r and
αR : R× Ṙ→ C6r be any bijections.

Define also the maps βL, βR : C6r → C3r which simply extract the left
and right halves of a word.

We now do a sequence of rewrites. First, for all i (simultaneously) we do

uiviu
′
iv

′
i 7→

αL(γL(ui), γ̇L(vi))αR(γR(ui), γ̇R(vi)) · αL(γL(u′i), γ̇L(v′i))αR(γR(u′i), γ̇R(v′i))
7→
αL(γL(ui), γ̇L(vi))αL(γL(u

′
i), γ̇L(v

′
i)) · αR(γR(ui), γ̇R(vi))αR(γR(u′i), γ̇R(v′i)),

which can be performed by applying a suitable even permutation on the
bottom track, conditioned on having w on the top track. To see that this
permutation is even, observe that the first permutation is diagonal (i.e. of
the form π × π for a permutation π) and the second is even as the words
ui, u′i, vi, v′i are of even length (so in fact any permutation of the order of
the words is even).

Now “between” consecutive occurrences of w for 1 ≤ i < m, i.e. in the
middle of each occurrence of ww, do

αR(γR(ui), γ̇R(vi))αR(γR(u
′
i), γ̇R(v

′
i))

· αL(γL(ui+1), γ̇L(vi+1))αL(γL(u
′
i+1), γ̇L(v

′
i+1))

7→ αR(γR(ui), γ̇R(vi))αL(γL(ui+1), γ̇L(vi+1))

· αR(γR(u′i), γ̇R(v′i))αL(γL(u′i+1), γ̇L(v
′
i+1))

7→ βR(ūi)βL(ūi+1)βR(v̄i)βL(v̄i+1) · βR(ū′i)βL(ū′i+1)βR(v̄
′
i)βL(v̄

′
i+1)

7→ βR(ūi)βR(v̄i)βR(ū
′
i)βR(v̄

′
i) · βL(ūi+1)βL(v̄i+1)βL(ū

′
i+1)βL(v̄

′
i+1).

In the second transformation in the above formula, we use the fact that
the word βR(ūi)βL(ūi+1) can be determined from γR(ui) and γL(ui+1) (and
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indeed the correspondence is a bijection), and similarly the pairs

(γ̇R(vi), γ̇L(vi+1)) ↔ βR(v̄i)βL(v̄i+1),

(γR(u
′
i), γL(u

′
i+1)) ↔ βR(ū

′
i)βL(ū

′
i+1),

(γ̇R(v
′
i), γ̇L(v

′
i+1)) ↔ βR(v̄

′
i)βL(v̄

′
i+1)

are intercomputable. This argument is from [28].
To clarify, the above permutations are applied to words of length ℓ on

the bottom track, conditioned on [ww]−12r on the top track. The permuta-
tions are thus applied with an offset, and an individual application under an
occurrence of ww will not modify the 12r leftmost and rightmost symbols
under the occurrence. In total at this step we modify all but the 12r left-
and rightmost cells under a maximal occurrence of wm.

Now, we deal with the remaining 12r coordinates under left corners of
maximal occurrences wm by applying the (even) permutation

αL(γL(u1), γ̇L(v1))αL(γL(u
′
1), γ̇L(v

′
1)) 7→ βL(ū1)βL(v̄1)βL(ū

′
1)βL(v̄

′
1)

of words of length 12r on the bottom track, conditioned on [w]c−ℓ ∩ [w]0 =
[w]0 \ [ww]−ℓ on the top track (the latter form shows that we have this
controlled application in G). Here, observe that since the words ūi, ū′i, v̄i, v̄

′
i

were defined by applying f to a periodic point in a conveyor belt fashion,
the word βL(ū1)βL(v̄1) can be deduced from (γL(u1), γ̇L(v1)), and similarly
for the primed versions. We deal with the right borders similarly.

Finally, to obtain the correct contents under wm, we only need to perform
the position swap

βL(ūi)βL(v̄i)βL(ū
′
i)βL(v̄

′
i) · βR(ūi)βR(v̄i)βR(ū′i)βR(v̄′i)

7→ βL(ūi)βR(ūi)βL(v̄i)βR(v̄i) · βL(ū′i)βR(ū′i)βL(v̄′i)βR(v̄′i) = ūiv̄i · ū′iv̄′i
under each occurrence of w. Note that this permutation is even, as we are
simply applying the permutation (1)(2 5 3)(4 6 7)(8) to the ordering of
words of length 3r.

Theorem 1.2. If m≥ 2, n≥ 3, PAut[m;n] is f.g.-universal in RCA(mn).

Proof. Lemma 4.6 implies that for any unbordered w, any π ∈ Alt(C |w|)
controlled by any |w|-unbordered clopen set is in PAut[B;C], in particular
this is true for the clopen sets [w]i and [ww]i for any i. From Lemma 4.8
we see that the groups ⟨RCAr(C)⟩ can be embedded for arbitrarily large r.
As RCA(C) =

⋃
r⟨RCAr(C)⟩ and every finitely generated group of cellular

automata over any alphabet embeds in RCA(C) [31], we conclude.

Observe that Lemma 4.8 also directly applies to the commutator sub-
group of RCA(B × C) (since large enough alternating groups are perfect),
so we also deduce that the commutator subgroup of RCA(B × C), for any
|B|, |C| ≥ 2, is f.g.-universal. See Theorem 5.5 for a stronger result.
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4.2. The prime case

Lemma 4.9. If n ∈ P, then PAut(n) ∼= ⟨σ⟩ × Sn.

Proof. Let |A| = n and observe that PAut(A) = PAut[A]. The shift σ
commutes with symbol permutations, no symbol permutation is a non-trivial
shift map on a full shift, and PAut[A] is by definition generated by symbol
permutations and the shift ⟨σ⟩. Thus, the shift and the symbol permutations
form a complementary pair of subgroups in PAut[A], and thus PAut[A] is
an internal direct product of ⟨σ⟩ and the symbol permutations, which form
a finite group isomorphic to Sym(A).

4.3. The linear case. By Lemma 4.9, PAut(A) is linear (even over R)
for somewhat uninteresting reasons when |A| is prime. The case |A| = 4 gives
a linear group as well, but a more interesting one. The crucial point is that
all permutations of Z2

2 are affine, so all symbol permutations are “affine”.
Write Z2[xxx,xxx

−1] for the ring of Laurent polynomials over the two-element
field Z2. Write Z2((xxx)) for the field of formal Laurent series over Z2 (with only
finitely many negative powers of xxx), which contains the ring Z2[xxx,xxx

−1]. For
any (commutative unital) ring R, write GL(n,R) for the group of invertible
n-by-n matrices over R.

Theorem 4.10. The group PAut(4) is linear, and has a faithful 8-di-
mensional representation over Z2((xxx)). In fact,

PAut(4) ∼= Z2
2 ⋊GL(2,Z2[xxx,xxx

−1]).

Proof. We begin with the second claim. By renaming, we may assume
the Cartesian product decomposition is A = {(0, 0), (0, 1), (1, 0), (1, 1)}, and
we give A the Z2

2-structure that arises from bitwise addition modulo 2 with
respect to this decomposition. We also give AZ the structure of an abelian
group, by cellwise addition.

Consider maps of the form x 7→ f(x) + aZ, where a ∈ A and f is a
reversible linear cellular automaton in the sense that f(x+ y) = f(x)+ f(y)
for all x, y ∈ AZ. A straightforward computation shows that such maps form
a subgroup G of Aut(AZ). The subgroup K of maps x 7→ x + aZ for a ∈ A
is isomorphic to Z2

2, and a direct computation shows that it is normal in G.
The subgroup H of reversible linear cellular automata is also a subgroup,
and we have KH = G, K ∩H = 1. It follows that G = K ⋊H is an internal
semidirect product.

We can in a standard way see H as the group GL(2,Z2[xxx,xxx
−1]), by writ-

ing the local rule of a cellular automaton f satisfying f(x+y) = f(x)+f(y)
as a matrix, so G ∼= Z2

2 ⋊GL(2,Z2[xxx,xxx
−1]).

The generators of PAut(4) are contained in G since all symbol permu-
tations of A are affine, and conversely it is straightforward to show that
linear symbol permutations and partial shifts are a generating set for H (see
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e.g. [29]), and the maps x 7→ x+ aZ are among the generators of PAut(4) as
well. It follows that PAut(4) = G.

For the first claim, since [G : H] = 4 and H is a 2-dimensional matrix
group, where the entries can be seen to be in the field Z2((xxx)), the induced
representation of G is 8-dimensional over the same field.

The action ϕ of GL(2,Z2[xxx,xxx
−1]) on Z2

2 is the following: Let

h : GL(2,Z2[xxx,xxx
−1]) → GL(2,Z2)

be the group homomorphism obtained by applying the ring homomorphism
extending xxxi 7→ 1 in each entry. The action ϕ is the pullback of the natural
action of GL(2,Z2) on Z2

2 through h.
The group PAut(A) contains free groups when |A| = 4, as shown in the

next section. It also contains a copy of the lamplighter group Z2 ≀Z (actually
two natural embeddings of it, one acting on the top track and one on the
bottom).

4.4. Non-linearity and non-amenability. We prove that apart from
trivial cases (where the group is virtually cyclic and thus linear over any
field admitting invertible matrices of infinite order), none of PAut[B;C] are
amenable, and PAut[2; 2] is the only linear case. This follows from natural
embeddings of groups of the form (Z/mZ)ω ∗ (Z/kZ)ω, where m ≤ |B|,
k ≤ |C|.

In all cases |B|, |C| ≥ 2 except PAut[2; 2], all groups of the form Gω ∗Hω

are in PAut[B;C] for finite groups G,H, by f.g.-universality and by clo-
sure properties in Theorem 5.8, but we give the simple direct argument and
explain why the groups (Z/mZ)ω ∗ (Z/kZ)ω are indeed typically not even
subdirect products of linear groups. The embedding is by RCA with one-sided
bineighborhoods, thus we also obtain these subgroups in Aut((B × C)N).

For any group G, write Gω for the direct union of Gn as n → ∞ (with
the natural inclusions). For groups G,H write G ∗H for their free product.

Lemma 4.11. Let |B| = m, |C| = k. Let G,H be abelian groups with
|G| ≤ m, H ≤ k. Then Gω ∗Hω ≤ PAut[B;C].

Proof. Let B = {0, . . . ,m− 1} and C = {0, . . . , k − 1}. The assumption
that |G| ≤ m, H ≤ k is equivalent to the assumption that G and H act
on B and C, respectively, with at least one free orbit. Fix such actions. By
renaming, we may assume 1 ∈ {0, . . . ,m − 1} and 1 ∈ {0, . . . , k − 1} are
representatives of the free orbits of G and H, respectively.

The group Gω is generated by the following maps: for g ∈ G and i ∈ Z,
define

fg,i(x, y)0 =

{
(g(x0), y0) if y−i = 1,

(x0, y0) otherwise.
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Extend fg,i to a cellular automaton by shift-commutation. These maps are
easily seen to be in PAut[B;C], as fg,0 is a symbol permutation and the
others are conjugate to it by partial shifts. Clearly we obtain a copy of G by
fixing i. Varying i makes the maps commute since G is abelian. By applying
them to (0Z, ω0.10ω) we see that they do not satisfy any additional relations,
and thus we have a copy of Gω. Define similarly fh,i for h ∈ H, by exchanging
the roles of the tracks.

Of course, if we restrict i to N+, the maps fg,i and fh,i still give copies
of Gω and Hω, respectively. Denote these copies by G′ ∼= Gω and H ′ ∼= Hω.
We show that together they satisfy no other relations, that is, the maps
fg,i, fh,i for i > 0 generate a copy of G′ ∗H ′ ∼= Gω ∗Hω.

Suppose that fw = fℓ ◦ · · · ◦ f2 ◦ f1 is a reduced element where fi ∈ G′

for odd i, fi ∈ H ′ for even i, and that ℓ is even (the other three cases are
completely symmetric). For each odd i there is a “maximal” copy of G used
by fi, i.e. the reduced presentation of fi contains some fgi,ri with ri ≥ 1
maximal and gi ∈ G\{1G}. Similarly, for even i there is some maximal copy
of H used; let ri ≥ 1 be maximal such that fhi,ri appears for hi ∈ H \ {1H}.

Now, a direct computation shows the fw acts non-trivially on the follow-
ing configuration:
ω( 00 ) (

0
1 ) (

0
0 )
r1−1

(
g−1
1 ·1
0

)
( 00 )

r2−1
(

0
h−1
2 ·1

)
( 00 )

r3−1 · · · ( 00 )
rℓ−1

(
0

h−1
ℓ ·1

)
( 00 )

ω
.

For this, observe that g−1
i · 1 ̸= 1 and h−1

i · 1 ̸= 1 since 1 is a representative
of the free orbit on both tracks, and thus the rightmost “active” 1 moves to
the right at each step.

Lemma 4.12. Let G and H be non-trivial groups. Then Gω ∗Hω is not
amenable.

Proof. A stronger fact is true: a free product of two non-trivial groups
G,H does not contain the free group on two generators if and only if it is
amenable if and only if it is virtually cyclic if and only if G ∼= H ∼= Z2.
Namely, Z2 ∗ Z2 is the infinite dihedral group, which is virtually cyclic. If
g, g′ ∈ G \ {1G}, g ̸= g′ and h ̸= 1H , then gh and g′h freely generate a free
group by the normal form theorem of free products [35].

The following lemma is classical. We give a direct proof mimicking [41,
Theorem 8.1.11] as suggested by user Panurge on the MathOverflow web-
site [39].

Lemma 4.13. If G is a linear p-group over a field of characteristic q ̸= p,
then G is finite. The order of G is at most ed3 where e is the exponent and
d the dimension of the vector space.

Proof. We may assume G acts on a vector space V of dimension d over an
algebraically closed field F . Suppose ge = 1 for all g ∈ G, where e is a power



24 V. SALO

of p. It follows from ge = 1 that each root of the characteristic polynomial
of g is an eth root of unity (consider for example the Jordan normal form
of g). There are at most e such roots λ1, . . . , λe′ , e′ ≤ e, so there are at
most ed choices for the trace tr(g) =

∑d
j=1 λij of any element of g ∈ G.

Suppose first that G is irreducible. In this case, by [41, Theorem 8.1.9],
the fact that elements of G have finitely many possible traces implies that G
itself is finite; in fact [41, Theorem 8.1.9] gives the formula |G| ≤ (ed)d

2
= ed

3 .
Suppose next thatG is not irreducible. Then there is a non-trivial subspace

U ≤ V closed under the action of G. Suppose the dimension of U is d′, so the
dimension of V/U is d′′ = d − d′. By induction on dimension, and the fact
the exponent cannot increase in subactions and quotients, the subgroup L′

(resp. L′′) of G that acts trivially on U (resp. V/U) has index at most ed′3

(resp. ed′′3). The subgroupL = L′∩L′′ ofG fixes bothU and V/U ; it has index
at most ed′3ed′′3 ≤ ed

3 . We will show that L = 1, which concludes the proof.
Now, picking any basis of m vectors for U and extending it by n vectors

to a basis of V , we see that the corresponding matrix representation of L
(acting from the right) is by unitriangular matrices: each matrix is a block
matrix of the form

(
In N
0 Im

)
where Im, In are the m ×m and n × n identity

matrices, respectively, and N is an n×m matrix.
Suppose now M ̸= Im+n is a unitriangular matrix over a field of char-

acteristic q, and has order dividing e. Let i be the leftmost column of M
containing a non-zero off-diagonal entry.

Now clearly the exponent of M , acting on the subspace of row vectors
where all but the i leftmost coordinates are 0, is divisible by q. Thus the
exponent of M on the whole space is also divisible by q. Since the order of M
divides e, a power of p, the order of M must be 1, which is in contradiction
with M ̸= 1. This means we must indeed have L = 1.

Lemma 4.14. Let G and H be non-trivial finite groups. If G and H are
not p-groups for the same prime p, then Gω ∗Hω is not a subdirect product
of finitely many linear groups.

In particular the assumption includes the case where one of G,H is not
a p-group for any p.

Proof of Lemma 4.14. The assumption implies that p | |G| and q | |H| for
some distinct primes p, q, so by Cauchy’s theorem there exist g ∈ G, h ∈ H
such that ord(g) = p, ord(h) = q. It is then enough to prove that Zωp ∗ Zωq is
not a subdirect product of finitely many linear groups.

Suppose it is, and let Zωp ∗ Zωq ∼= K ≤ G1 × · · · × Gℓ where the Gi are
linear groups. Let the characteristics of the underlying fields be p1, . . . , pℓ,
respectively. Let Ip, Iq ⊂ {1, . . . , ℓ} be defined by i ∈ Ip ⇔ pi = p and
i ∈ Iq ⇔ pi = q. Let πi be the natural projection πi : K → Gi.
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By the previous lemma, πi(Zωp ) is finite for i /∈ Ip. Thus, the intersection
of the kernels of all these maps is some Kp ≤ Zωp of finite index, in particular
Kp is non-trivial. Similarly we have a finite-index subgroup Kq ≤ Zωq . Then
Kp,Kq ≤ K commute, which is a contradiction, since the subgroup they
generate should be a free product Kp ∗Kq ≤ K.

The previous lemma implies in particular that a free product of linear
groups need not be linear (or even a subdirect product of finitely many linear
groups) when the characteristics of the fields over which they are linear are
distinct, since the group Zωp is a linear group for every prime p (for example
a linear group of RCA by a matrix implementation of Lemma 4.11). By [37]
(see also [51]), the group Gω ∗ Hω is linear if and only if Gω and Hω are
both linear over a field of the same characteristic.

Theorem 4.15. If |B|, |C| ≥ 2, then PAut[B;C] is non-amenable. If
further |C| ≥ 3, then PAut[B;C] is not a subdirect product of finitely many
linear groups.

Proof. For non-linearity, if |B| ≥ m and |C| ≥ k, then (Z/mZ)ω ∗
(Z/kZ)ω ≤ PAut[B;C] by Lemma 4.11. If m = k = 2, Lemma 4.12 gives
non-amenability. If m = 2, k = 3, Lemma 4.14 gives the second claim.

Proposition 4.16. Let A = B×C, and let G,H be abelian groups with
|G| ≤ |B| and |H| ≤ |C|. Then Gω ∗Hω ≤ Aut((B × C)N).

Proof. In the construction of Lemma 4.11, the generators are involutions
and their neighborhoods are contained in −N. Flipping the neighborhoods
does not change the group, and gives reversible maps in Aut(AN).

For |A| ≥ 8, Aut(AN) is non-linear, as it does not even satisfy the Tits
alternative [46]. By the previous proposition, Aut(AN) is also non-linear for
|A| = 6.

4.5. Modifying just one track. The proof of Lemma 4.5 implements
the maps ϕF by elements of PAut[B;C] which only modify the bottom track.
This is an interesting example of a finitely generated subgroup of PAut(A),
for any alphabet |A| /∈ P ∪ {4}. Out of general interest, we take a brief look
at its structure, which is much easier to understand than that of PAut(A).

This provides a new proof of the two-sided case of [46].

Proposition 4.17. Let |B|, |C| ≥ 2, and let RPAut[B;C] ≤ PAut[B;C]
be the subgroup generated by the partial shift on the bottom track, and sym-
bol permutations that only modify the bottom track. Then RPAut[B;C] ∼=
P (BZ,Sym(C)).

Proof. Clearly the group RPAut[B;C] does not change if we replace the
partial shift on the bottom track by the one on the top track. Observe also
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that every cell on the bottom track behaves independently. The isomorphism
simply tracks what happens at the origin.

This motivates the study of the groups P (BZ, H), especially when H is
a symmetric group.

Proposition 4.18. Let |B| ≥ 2, let H ≤ Sym(C) be a finite permutation
group, and let G = P (BZ, H). If H has derived length ℓ, then G has derived
length ℓ+ 1. If H is not solvable, G is not virtually solvable.

Proof. Let ϕ : G → Z be the homomorphism that tracks the movement
of the top track. Then G is kerϕ-by-Z. Let K = kerϕ, and observe that
[G,G] ≤ K since Z is abelian.

Elements g ∈ K do not modify the “controlling configuration” BZ and
only perform permutations on C depending on the controlling word. Thus,
K is a subgroup of the uncountable direct product Hℶ1 where ℶ1 = 2ℵ0 .
Whenever every element of [H,H] can be expressed as a bounded product
of commutators, we have [HX , HX ] = [H,H]X for any set X. It follows that
when H is finite, the derived length of Hℶ1 is the same as that of H, so the
derived length of G is at most one more than the derived length of H.

On the other hand, [G,G] ≤ K contains a subgroup mapping homo-
morphically onto H: consider the elements [σ, g[1]0 ] where g runs over G. If
x = ω0.10ω, then [σ, g[1]0 ] acts as g on C, so the homomorphism that maps
elements of K to their action under the controlling configuration x is indeed
surjective onto H. It follows that the derived length of G is at least one more
than that of H.

If H is not solvable, G is not virtually solvable since it has Hn as a
subquotient for all n, which can be seen by conjugating elements g[1]0 by
shifts and considering the action on elements of the form (σi(x), a) with
again x = ω0.10ω.

Corollary 4.19. Let |B|, |C| ≥ 2. Then G = P (BZ, Sym(C)) is (locally
finite)-by-Z. If |C| ∈ {2, 3, 4}, the group has derived length |C|. If |C| ≥ 5,
it is not virtually solvable.

Proof. In the previous proof, it was observed that G is kerϕ-by-Z, and
the kernel of ϕ is clearly locally finite when H is finite since Hℶ1 is locally
finite. Thus G is (locally finite)-by-Z. For the claims about derived length,
observe that S2 is abelian, S3 is metabelian and S4 has derived length three,
while Sn for n ≥ 5 is non-solvable.

Proposition 4.20. If |B| ≥ 2, |C| ≥ 3, then RPAut[B;C] is not linear.

Proof. The group is easily seen to contain copies of Zn2 and Zn3 for arbi-
trarily large n, since conjugating g[1]0 , where g is a generator of Zk, by the
shift, we obtain a commuting set of maps which generate an internal direct
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product of copies of Zk, and the action is faithful, by considering the points
(σi(x), a) with x = ω0.10ω. This contradicts Lemma 4.13 by setting n > 3d

3

where d is the degree of the purported representation.

The group is never nilpotent: let g ∈ Sym(C) be arbitrary and let g0 =
g[1]0 and gi+1 = [σ, gi]. Then gi(

ω010ω, a) = (ω010ω, ga) for all i (and of
course if |C| ≥ 3 then already Sym(C) is not nilpotent).

We recover the two-sided case of [46].

Proposition 4.21. If |B| ≥ 2, |C| ≥ 5, then R[B;C] does not satisfy
Tits’ alternative.

Proof. If |B| ≥ 2, |C| ≥ 5, then P (BZ, Sym(C)) is (locally finite)-by-
cyclic, thus elementarily amenable, thus does not contain a free group on
two generators. It is not virtually solvable by Corollary 4.19.

Note that the group RPAut[B;C] in Proposition 4.17 is not equal to the
group RAut(BZ × CZ) ∩ PAut[B;C] in general: the f.g.-universality proofs
in fact build copies of f.g.-universal cellular automata groups precisely inside
RAut(BZ × CZ) ∩ PAut[B;C].

5. Corollaries

5.1. The optimal radius for an f.g.-universal group of CA. One
interesting class of naturally occurring RCA groups is obtained by varying
(|A|, N) and studying the group ⟨RCAN (AZ)⟩ they generate.

In the context of the present paper, one could concretely ask, for example,
which of these groups are linear and which contain all finitely generated
groups of cellular automata. As an immediate corollary of the main theorem,
we obtain the minimal contiguous bineighborhood size and biradius for f.g.-
universality, for all but finitely many alphabets.

Theorem 5.1. Let n ≥ 2 and let Gn = ⟨RCA1(n)⟩. The group G2 is
virtually cyclic, while Gn ≤ RCA(n) is f.g.-universal whenever n ≥ 6 is
composite, or n ≥ 36. If N = {a, a+ 1} for some a, then ⟨RCAN (n)⟩ is not
f.g.-universal for any n.

Proof. In the case |A| = 2, N = {−1, 0, 1} we obtain the so-called el-
ementary cellular automata. It is known that the group generated by re-
versible elementary cellular automata is Z × Z/2Z, generated by the shift
and the bit flip.

Let U be the set of all numbers n such that ⟨RCA1(n)⟩ is f.g.-universal
in RCA(n). By Theorem 1.2, U contains all composite numbers except pos-
sibly 4, since PAut(n) ≤ ⟨RCA1(n)⟩.

Let now k,m ∈ N be arbitrary. Then if |A| = n = k2 + m, we can
decompose the alphabet A as A = B2⊔C where |B| = k. A radius-1 cellular
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automaton can treat elements of C as walls (which are never modified), and
use the elements of B2 as two B-tracks, wrapping into a conveyor belt next to
elements of C. From this we obtain an embedding of the group ⟨RCA1(k)⟩
in ⟨RCA1(n)⟩. Since ⟨RCA(k)⟩ has the same subgroups as ⟨RCA(n)⟩, the
f.g.-universality of ⟨RCA1(k)⟩ in ⟨RCA(k)⟩ then implies f.g.-universality of
⟨RCA1(n)⟩ in ⟨RCA(n)⟩. Thus, U2 + N ⊂ U , so 6 ∈ U implies [36,∞) ⊂ U .

For the last claim, consider a contiguous neighborhood of size 2. Such a
neighborhood is either entirely in N or in −N, so if f and f−1 both have such
a neighborhood for all generators, they can be seen as elements of Aut(AN).
No subgroup of Aut(AN) contains every finite group [8], so such a group
cannot be f.g.-universal.

In general, as |A| grows, the subgroups of ⟨RCA{0,1}(A
Z)⟩ range over all

finitely generated groups of one-sided cellular automata by standard blocking
arguments, so these groups can be very interesting, even though they are
never f.g.-universal in Aut(AZ).

The last claim is only true for contiguous neighborhoods of size two, and
the theorem does not apply to e.g. N = {−1, 1}. Indeed, for the purpose of
group embeddings one can consider the case N = {−1, 1} to be the case of
“radius-1/2 RCA”, and by a standard blocking argument (see [36]) and with
a little bit of work one can indeed generate f.g.-universal groups this way
(for some alphabets).

5.2. The minimal number of generators

Theorem 5.2. Let G′ ∈ {Z∗Z2,Z2∗Z2∗Z2} be arbitary and m ≥ 2. Then
there is a homomorphism ϕ : G′ → RCA(m) such that ϕ(G′) is f.g.-universal.

Proof. First consider G′ = Z ∗ Z2. It is enough to show the statement
for some m. We let B with |B| ≥ 2 be arbitrary and C = {0, 1} and use the
alphabet A = B × C, m = |A|. Let H be any f.g.-universal f.g. subgroup
of RCA(m). By Lemma 4.8, for any large enough ℓ and unbordered word
|w| = ℓ, if G ≤ RCA(B × C) contains

π[w]i and π[ww]i

for all π ∈ Alt({0, 1}ℓ) and all i ∈ Z, then G contains a copy of H.
Now, let w ∈ Bℓ be unbordered, where ℓ is as above, and sufficiently

large. We construct a 2-generated group G containing the maps π[w]i and
π[ww]i , such that one of our generators is an involution.

Let F : {0, 1}n → {0, 1}n be a function such that F 2 = id and, defining
f : {0, 1}Z → {0, 1}Z by f(x.vy) = x.F (v)y, the maps σi ◦ f ◦ σ−i generate
the group of all self-homeomorphisms g of {0, 1}Z for which there exists m
such that

∀x ∈ {0, 1}Z : ∀|i| ≥ m : g(x)i = xi.
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Such F exists, in fact by [47, Theorem 3] one can pick n = 3 and

F (a · b · c) =

{
a · b · c if a = 0 ∧ c = 1,

a · (1− b) · c otherwise

(where · denotes concatenation).
Our generators are the partial shift on the first track, i.e. σ1(x, y) =

(σ(x), y), and the map f0 = F [w]0 (so we need ℓ ≥ n). Let

G = ⟨σ1, F [w]0⟩.

Note that fi = F [w]−i = f
σ−i
1

0 ∈ G.
Let F ′ be a universal family of reversible gates in the sense of Lemma 3.2,

i.e. F ′ is a finite set of even permutations of sets of the form {0, 1}k such that
every even permutation of {0, 1}m for any large enoughm can be decomposed
into application of permutations in F ′ in contiguous subsequences {i, i + 1,
. . . , i + k − 1} of the indices {0, 1, . . . ,m − 1} (indeed one can fix k = 3).
Note that {F} need not be such a set: we may need to use more than m
coordinates to build permutations of {0, 1}m using translates of F .

For any i, as w is unbordered and of length ℓ, the maps fi, fi+1, . . . , fi+ℓ−n
compose in the natural way, just like translates of F inside {0, 1}ℓ. By uni-
versality of F , as long as ℓ is large enough, the maps f ′[w]−i , f ′ ∈ F ′, are
generated. By the universality property of F ′, we then have π[w]i ∈ G for all
π ∈ Alt({0, 1}ℓ) for all i ∈ Z.

Now, we need to show that also π[ww]i ∈ G. For this, pick a large mutually
unbordered set U ⊂ {0, 1}ℓ, i.e. any set such that u1, u2 ∈ U have no non-
trivial overlaps. For example we can pick U = 0ℓ−k−21{0, 1}k1 for any k
such that k < ℓ−4

2 . By the above, we can perform any even permutation of
U under occurrences of w. For two permutations π1, π2 ∈ Alt({0, 1}ℓ), with
supports contained in U , a direct computation shows

[π
[w]i
1 , π

[w]i+ℓ

2 ] = [π1, π2]
[ww]i ,

so for |U | ≥ 5 (take ℓ large enough so that 2⌊
ℓ−4
2

⌋−1 ≥ 5) we have π[ww]i ∈ G
for all π ∈ Alt({0, 1}ℓ) with supports contained in U .

For two permutations π1, π2 ∈ Alt({0, 1}ℓ), a direct computation shows

(π
[ww]i
1 )π

[w]i
2 = (ππ21 )[ww]i ,

so that, since Alt({0, 1}ℓ) is simple (supposing ℓ ≥ 3), G in fact contains
π[ww]i ∈ G for all π ∈ {0, 1}ℓ. This concludes the proof since G is clearly a
quotient of G′ = Z ∗Z2, as it was generated by an RCA of infinite order and
an involution.

Let us then show the claim for G′ = Z2∗Z2∗Z2. For this, pick B = {0, 1}
and add a third component B′ = {0, 1} on top, so the alphabet becomes
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A = B′ × B × C, m = 8. Thinking of x ∈ (B′ × B × C)Z as having three
binary tracks, and writing σ0 and σ1 for the shifts on the first two tracks,
it is easy to see that σ−1

0 × σ1 is the composition of two involutions, say
σ−1
0 × σ1 = a ◦ b. Take f0 the same map as before, but ignoring the B′-track

entirely.
In the group G = ⟨a, b, f0⟩ we now have the elements idB′Z × π[w]i and

idB′Z × π[ww]i for any w unbordered of large enough length ℓ and i ∈ Z, by
the same proof as above. Clearly the group they generate is isomorphic to
the subgroup of (B × C)Z generated by π[w]i and π[ww]i , thus Lemma 4.8
gives f.g.-universality.

5.3. Sofic shifts and the perfect core

Lemma 5.3. Let |B| = m, |C| = n. Then the maps (a, a′, b, b′) 7→
(b, a′, a, b′) and (a, a′, b, b′) 7→ (a, b′, b, a′) are in Alt(B × C × B × C) if
and only if 2 |

(
m
2

)
n and 2 |

(
n
2

)
m.

Proof. The permutation (a, a′, b, b′) 7→ (b, a′, a, b′) is even if and only if
the number of unordered pairs {(a, a′, b, b′), (b, a′, a, b′)} is even. The number
of such pairs is

(
m
2

)
n2. Symmetrically, (a, a′, b, b′) 7→ (a, b′, b, a′) is even if

and only if 2 |
(
n
2

)
m2.

Lemma 5.4. Suppose m,n ≥ 2, 2 |
(
m
2

)
n and 2 |

(
n
2

)
m. Then PAut[m;n;

m;n] has a perfect subgroup G generated by six involutions, such that
PAut[m;n] ↪→ G.

Proof. Let |B| = m, |C| = n and A = B×C×B×C. The symbol permu-
tations ↕B, ↕C defined by ↕B(x, x′, y, y′) = (y, x′, x, y′) and ↕C(x, x′, y, y′) =
(x, y′, y, x′) are in Alt(A) under the conditions of Lemma 5.3. Now de-
fine ↙↗B = ↕σ1◦σ2B = ↕σ1B ∈ PAut[B;C;B;C] and ↙↗C = ↕σ1◦σ2C = ↕σ2C ∈
PAut[B;C;B;C]. Define also

σB = [↕B,↙↗B] = σ21 ◦ σ−2
3 ∈ PAut[B;C;B;C],

σC = [↕C ,↙↗C ] = σ22 ◦ σ−2
4 ∈ PAut[B;C;B;C].

For every symbol permutation π ∈ Sym(B × C), the diagonal permutation
π × π : A→ A is even.

It is well-known that Alt(A) is generated by three involutions, so let
|F | = 3 be any set of symbol permutations corresponding to such a gener-
ating set. Then F ∪ F σ1◦σ2 generates all of ↕B, ↕C , ↙↗B and ↙↗B, thus it
generates σB and σC .

Now, it is easy to see that σB and σC and the symbol permutations
π × π simulate four independent copies of PAut[B;C] in PAut[B;C;B;C]:
one in the even cells of the top track, one in the odd cells, and similarly
two copies on the bottom track. Thus the group G = ⟨F ∪ F σ1◦σ2⟩ contains
an embedded copy of PAut[B;C]. Since Alt(A) is perfect, all the generators
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of G can be written as products of commutators of elements in Alt(A), so
also G is perfect.

Theorem 5.5. Let X be a sofic shift. Then the following are equivalent:

• The group Aut(X) has a perfect subgroup generated by six involutions con-
taining every f.g. subgroup of Aut(AZ) for any alphabet A.

• The group Aut(X) is not elementarily amenable.
• X has uncountable cardinality.

Proof. Suppose first that X is uncountable. Standard embedding the-
orems [31, 44] show that Aut(AZ) ↪→ Aut(X) for any alphabet A. The
choice |B| = 2, |C| = 4 satisfies the assumptions of Lemma 5.4. Let A =
B×C×B×C, so that PAut[B;C] is f.g.-universal and contained in PAut(A).
Let G be the group provided by Lemma 5.4. Then G is a finitely generated
perfect subgroup of PAut(A), generated by six involutions, which contains
every group of cellular automata on any alphabet. We have G ≤ PAut(A) ≤
Aut(AZ) ↪→ Aut(X).

For any countable subshift X, Aut(X) is elementarily amenable by [48],
thus cannot contain a free group, thus cannot contain every finitely gen-
erated subgroup of Aut(AZ) for any non-trivial alphabet A. That paper is
unpublished, but the case of countable sofics can be obtained by adapting
[42, Proposition 2].

Note that we do not claim that Aut(X) has an f.g.-universal f.g. subgroup
for any X other than a full shift. See Question 6.8.

The perfect core c(G) of a group G is the largest subgroup H such that
H = [H,H]. The group c(G) is contained in the commutator subgroup of G
and contains every perfect subgroup of G. Note that in the case where X is
a full shift, the conclusion of the previous theorem is stronger than simply
finding an f.g.-universal f.g. subgroup of the perfect core, since a perfect
group can contain non-perfect subgroups.

5.4. The abstract statement

Theorem 1.8. There exists a finitely generated residually finite perfect
group G such that, if G is the class of finitely generated subgroups of G:

• G has decidable word problem and undecidable torsion problem, and does
not satisfy the Tits alternative, and

• G is closed under finite extensions, direct products and free products, and
contains all f.g. graph groups (that is, right-angled Artin groups).

Proof. Pick G ≤ PAut(64) as in the proof of Theorem 5.5; so G is finitely
generated and perfect, and contains every finitely generated group of cellular
automata on every alphabet.
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Groups of RCA on full shifts are residually finite, and f.g. groups of RCA
have decidable word problems [9], so G has these properties. The periodicity
of RCA is undecidable [30]. The f.g.-universality of G, together with the fact
our proofs are algorithmic, then implies that G has an undecidable torsion
problem.

Since the Tits alternative does not hold in Aut(AZ) [46] and all f.g. graph
groups are subgroups of Aut(AZ) [31], the same results hold for G. The set G
has the same closure properties as the set of subgroups of Aut(AZ), which
by [31] includes finite extensions and by [44] includes direct products and
free products.

5.5. Finitely subgenerated cellular automata groups. We make
some basic observations about which (not necessarily finitely generated) sub-
groups of Aut(AZ) can be embedded in our f.g.-universal f.g. groups, based
on abstract arguments only.

For any group G, write SG for its set of subgroups, and write SFG for
its finitely subgenerated subgroups, i.e. those subgroups H ≤ G such that
H ≤ K for some finitely generated subgroup of G. Write G′ = SF RCA(A)
for some non-trivial alphabet A (recall that this does not depend on A).

Lemma 5.6. Let G be a group. We have SG = SFG if and only if G
has a universal finitely generated subgroup, i.e. G ↪→ K ↪→ G for some
f.g. group K.

Proof. If SG = SFG, then since G ∈ SG there is a finitely generated
subgroup K ≤ G containing G. If G ↪→ K ≤ G, then also H ↪→ K for all
subgroups H ≤ G.

Lemma 5.7. Suppose G has an f.g.-universal f.g. subgroup. If SG is closed
under countable free products (resp. countable direct products), then so is
SFG. If SG is closed under direct products and finite extensions, then so is
SFG.

Proof. For finite direct and free products, the result follows since Kn

and K ∗ · · · ∗K are finitely generated for any f.g.-universal f.g. group K. For
infinite ones, observe that in particular K ∗ K ≤ K and K × K ≤ K for
any f.g.-universal f.g. K, which implies that the set of subgroups of K is also
closed under countable free and direct products [44].

Every finite extension of a group H is a subgroup of H ≀ Sn for large
enough n, and conversely H ≀Sn has Hn as a finite-index subgroup. Suppose
H ∈ SFG, i.e. H ≤ K for an f.g.-universal f.g. K. Since SG is closed under
direct products and finite extensions, the wreath product of K by any sym-
metric group Sn is in SFG, thus H ≀ Sn ≤ K ≀ Sn ≤ K, implying that every
virtually-H group is in SFG.
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Theorem 5.8. The class G′ is closed under countable free and direct
products and finite extensions.

From these closure properties, we also deduce that the free product of all
finite groups, constructed as a CA group in [2], is in G′.

We conjecture that all countable locally finite residually finite groups
are in G′, as it seems clear that the construction in [31] can be performed
directly. We do not know whether the group constructed in [11] is in G′.

6. Questions

6.1. Automorphism groups of full Z-shifts. The following question
was mentioned in the introduction.

Question 6.1. Let A be a non-trivial finite alphabet. Does Aut(AZ) have
a finitely generated subgroup containing Aut(AZ) as a subgroup? Is the com-
mutator subgroup [Aut(AZ),Aut(AZ)] such a group?

The latter question is two questions in one: the author does not know
whether the commutator subgroup is finitely generated (this has been pre-
viously asked in [45]), and does not know whether it is a universal one. The
question is also open at least for all transitive SFT’s, but outside full shifts
we do not even know when Aut(X) and Aut(Y ) have the same subgroups
(or even finitely generated subgroups).

In Theorem 1.5, we do not know the f.g.-universality status of ⟨RCA1(n)⟩
for

n ∈ {3, 4, 5, 7, 11, 13, 17, 19, 23, 29, 31}.
We have not looked at these cases in detail.

Throughout the article, we have allowed the use of any symbol permuta-
tion. One obtains a large class of RCA groups by varying the permutation
group allowed.

Question 6.2. Let G ≤ Sym(B1 × · · · × Bk) be a permutation group.
What can be said about the group PAutG[B1; . . . ;Bk] generated by partial
shifts and symbol permutations in G?

If we restrict to even permutations, then for many alphabets, in particular
whenever |B| and |C| are large enough, the arguments of the present paper
can be used to establish f.g.-universality.

For a finitely generated group G = ⟨g1, . . . , gk⟩, we say f ∈ G is distorted
if ⟨f⟩ is infinite and satisfies wn(fn) = o(n) where

wn(g) = min {ℓ | ∃i1, . . . , iℓ : g = gi1 . . . giℓ}.
It is open whether Aut(AZ) contains elements which are distorted in some
finitely generated subgroup [15] (a related question is asked in [31]). Note
that if G is finitely generated and f ∈ G is distorted in a subgroup H ≤ G,
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then f is also distorted in G. Thus, by our main result, we can use PAut(A)
as the canonical subgroup, and state the problem equivalently without quan-
tification over f.g. subgroups:

Question 6.3. Does PAut(A) contain distortion elements for some A?

By the universality result, the question stays equivalent if we fix |A| = 6.
In [14], a notion of range-distortion is defined. This notion is implied by distor-
tion, and occurs in automorphism groups of all uncountable sofic shifts [25].
Since our group embeddings are by simulation, it is not hard to show that
PAut(A) also contains range-distorted elements.

Finitely generated linear groups can contain distorted elements, as for
example the discrete Heisenberg group (of invertible unitriangular 3× 3 ma-
trices over Z) has distorted cyclic center. However, distortion cannot happen
in linear groups over fields with positive characteristic by [40, Lemma 2.10],
so PAut(A) with |A| = 4 does not contain distortion elements.

Two other questions we do not know the answer to are whether PAut(A)
contains torsion (that is, periodic) finitely generated infinite subgroups, or
whether PAut(A) contains subgroups of intermediate growth, discussed pre-
viously in [46]. Again PAut[2; 2] cannot have such subgroups by linearity.

Another natural direction to take is to further study the poset P of
finitely generated subgroups of Aut(AZ) up to embeddability (and identify-
ing G ≈ H ⇔ G ↪→ H ↪→ G). For example, this poset contains all finitely
generated free groups as one element. This poset embeds in a natural way in
the lattice L whose elements are subgroup- and isomorphism-closed collec-
tions of f.g. subgroups of Aut(AZ), under inclusion. The lattice L obviously
has a maximal element, namely the family of all f.g. subgroups of Aut(AZ).
Our main result states that this top element is actually in P.

Finally, it would also be of interest to study universality for submonoids
of End(AZ), the endomorphism monoid of AZ consisting of all cellular au-
tomata under composition, taking the identity CA id as the monoid identity.
The invertible part of a universal or f.g.-universal submonoid must then be
universal or f.g.-universal in Aut(AZ), so this problem is at least as hard as
the problem studied here.

One can also consider the semigroup of cellular automata without fixing
an identity element, and define universality and f.g.-universality similarly,
allowing any idempotent CA to play the role of the identity CA.

6.2. Universality in other groups. In this section, we ask universality
questions for some of our favorite groups and make some basic observations.
Of course, one can ask about universality in other groups, and we invite the
reader to add their favorite groups to the list.
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We begin by noting that there are some well-known non-finitely-generated
groups that have universal finitely generated subgroups:

Example 6.4. The abelian group (Qd,+) is not f.g. but Zd is an f.g.-
universal f.g. subgroup. On the other hand, (Rd,+) has no f.g.-universal
f.g. subgroup or a countable universal subgroup (consider a Hamel basis). #

Example 6.5. The (non-abelian) free group on ℵ0 (free) generators has
a universal finitely generated subgroup, namely the free group on two gener-
ators, since free groups with finitely or countably many generators all embed
into each other. The free group on ℵ1 generators does not have a universal
finitely generated subgroup (since f.g. groups are countable), but the free
group on two generators is an f.g.-universal subgroup of it, for the same
reason as in the previous case. #

In these examples, the reason for non-universality was rather trivial (car-
dinality). Is there a countable group containing an f.g.-universal f.g. sub-
group which is not universal, or (equivalently) is there one containing an
f.g.-universal f.g. subgroup but no universal f.g. subgroup? We expect that
the answers are positive, but do not know such examples (though Aut(AZ)
could be an example for all we know).

The groups Aut(AN) for different |A| have a different set of subgroups in
general, as there are strong restrictions on even the finite subgroups [8]. Thus,
we cannot expect a finitely generated subgroup that contains a copy of every
cellular automata group on every alphabet, unlike in the two-sided case.
However, for a fixed alphabet we do not see a reason why f.g.-universality
would not be possible. (The case |A| = 2 is trivial [26].)

Question 6.6. Is there an (f.g.-)universal f.g. subgroup of Aut(AN) for
some finite alphabet |A| ≥ 3?

Very little is known about embeddings between automorphism groups of
higher-dimensional subshifts, even two-dimensional full shifts, for example
it is not known whether we can have Aut(AZd′

) ≤ Aut(BZd
) for d′ > d,

|A|, |B| ≥ 2, and whether Aut({0, 1}Z2
) ≤ Aut({0, 1, 2}Z2

) (see [27]). The
following question seems to lead to similar problems.

Question 6.7. Let d ≥ 2. Does Aut(AZd
) have an (f.g.-)universal f.g.

subgroup?

Another obvious direction to look at is sofic shifts. For some simple sofics
it is easy to show there are no f.g.-universal subgroups, and some even have
finitely generated automorphism groups, but for most of them we have no
idea. In particular, we do not know the answer for any mixing SFT which is
not a full shift.
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Question 6.8. Let X be a sofic shift. When does Aut(X) have an (f.g.-)
universal f.g. subgroup?

This problem does not seem feasible at the moment: It is not known
when Aut(Y ) embeds into Aut(X) for mixing SFT’s X,Y . Trying to find
non-trivial self-embedding of subgroups of Aut(X) into Aut(X) runs into
similar difficulties.

The author does not know another class of subshifts where such a uni-
versality question would be interesting. We note, however, that the non-f.g.
automorphism groups of minimal subshifts constructed in [9, 43] both have
an f.g.-universal f.g. subgroup, namely ⟨σ⟩. In [9], (Q,+) is constructed,
in [43], the dyadic rationals.

It is shown in [5] that the asynchronous rational group (consisting of
all asynchronous finite-state transductions defining a self-homeomorphism
of AN, for a finite alphabet A) is not finitely generated, so one can ask for
universality results. The set of subgroups of the asynchronous rational group
does not depend on the alphabet.

As for synchronous automata groups, as with one-sided subshifts, one
needs to fix a single alphabet, or even finite groups pose a problem for uni-
versality (since there is no boundedly branching rooted tree where all finite
groups act faithfully by automorphisms). When one alphabet is fixed, the
group of all synchronous automata transductions is not finitely generated, as
it has infinite abelianization (consider the signs of permutations performed
on different levels of the tree).

Question 6.9. Is there an (f.g.-)universal automata group over a finite
alphabet A? Does the asynchronous rational group have an (f.g.-)universal
f.g. subgroup?

Especially in connection with [4, Theorem 3.3], one could also ask whether
there are universal automata groups within automata groups of bounded ac-
tivity.

Question 6.10. Is there an (f.g.-)universal f.g. subgroup of the group of
reversible Turing machines of [3]?

A large finitely generated subgroup of “elementary Turing machines” is
constructed in the extended version of [3], but the author does not know
whether it is f.g.-universal.

Topological full groups are another class where such a question can be
asked. It seems plausible that marker arguments can be used to prove uni-
versality results at least on full shifts.

Question 6.11. Let X be a subshift. When does the topological full group
of X have an (f.g.-)universal f.g. subgroup?
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Some other groups with similar symbolic flavor are Thompson’s V [12]
and 2V [10], but these groups are finitely generated.

All the groups considered above of course act on Cantor space. The home-
omorphism group of Cantor space or any manifold of positive finite dimension
is uncountable, and thus not finitely generated. The homeomorphism group
of Cantor space contains uncountably many non-isomorphic f.g. subgroups,
and thus cannot contain an f.g.-universal subgroup, but it is not immediately
clear to the author what happens with, for example, manifolds of positive
finite dimension.

Question 6.12. Let X be a topological space. When does the homeomor-
phism group of X contain an (f.g.-)universal f.g. subgroup?
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