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Multi-modal meta-analysis of cancer cell line
omics profiles identifies ECHDC1 as a novel breast
tumor suppressor
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Abstract

Molecular and functional profiling of cancer cell lines is subject
to laboratory-specific experimental practices and data analysis
protocols. The current challenge therefore is how to make an
integrated use of the omics profiles of cancer cell lines for reli-
able biological discoveries. Here, we carried out a systematic
analysis of nine types of data modalities using meta-analysis of
53 omics studies across 12 research laboratories for 2,018 cell
lines. To account for a relatively low consistency observed for
certain data modalities, we developed a robust data integration
approach that identifies reproducible signals shared among multi-
ple data modalities and studies. We demonstrated the power
of the integrative analyses by identifying a novel driver gene,
ECHDC1, with tumor suppressive role validated both in breast
cancer cells and patient tumors. The multi-modal meta-analysis
approach also identified synthetic lethal partners of cancer
drivers, including a co-dependency of PTEN deficient endometrial
cancer cells on RNA helicases.
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Introduction

Cancer cell lines have immensely served the purpose of expanding

our understanding of cancer biology, and also accelerated the

process of developing new targeted therapeutics (Gillet et al, 2013;

Ben-David et al, 2018). Analogous to the patient tumor profiling

efforts (Zehir et al, 2017; Hutter & Zenklusen, 2018), high-throughput

“omics” technologies have enabled a deep molecular and genetic

characterization of large panels of human cancer cell lines. As a

result, a high-resolution molecular portrait of the genome (Shanka-

varam et al, 2009; Barretina et al, 2012; Daemen et al, 2013; Klijn

et al, 2015; Iorio et al, 2016; Marcotte et al, 2016; Ghandi et al,

2019), transcriptome (Shankavaram et al, 2009; Barretina et al,

2012; Daemen et al, 2013; Klijn et al, 2015; Iorio et al, 2016;

Marcotte et al, 2016; Ghandi et al, 2019), proteome (Gholami et al,

2013; Lawrence et al, 2015; Coscia et al, 2016; Roumeliotis et al,

2017; Lapek et al, 2017; Nusinow et al, 2020), epigenome (Shankavaram

et al, 2009; Barretina et al, 2012; Daemen et al, 2013; Iorio et al,

2016; Ghandi et al, 2019), and phospho-proteome (Shankavaram

et al, 2009; Barretina et al, 2012; Daemen et al, 2013; Marcotte et al,

2016; Ghandi et al, 2019) across diverse panels of cancer cell lines

is becoming available. Complementing these efforts, functional

and phenotypic profiling of cancer cell lines using loss-of-function

screens (Koh et al, 2012; Aguirre et al, 2016; Marcotte et al, 2016;

Tsherniak et al, 2017; Wang et al, 2017; Meyers et al, 2017;

McDonald et al, 2017; Behan et al, 2019) and small-molecule drug

response profiling has also been carried out by several laboratories
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(Barretina et al, 2012; Garnett et al, 2012; Basu et al, 2013; Iorio

et al, 2016; Gautam et al, 2016).

Recently, the reproducibility of pre-clinical data and findings

from the high-throughput profiling studies in cancer cell lines has

been extensively investigated due to concerns of inconsistency

between laboratories (Haibe-Kains et al, 2013; Haverty et al, 2016;

Mpindi et al, 2016; Jaiswal et al, 2017; Niepel et al, 2019; Gautam

et al, 2019; Dempster et al, 2019). In particular, the consistency of

high-throughput drug sensitivity phenotypes has been questioned

and re-analyzed by multiple groups (Haibe-Kains et al, 2013; Mpindi

et al, 2016; Bouhaddou et al, 2016; Geeleher et al, 2016; Safikhani

et al, 2016). Similarly, functional gene dependency estimates based

on genome-wide RNAi screens have been reported to be relatively

inconsistent, mainly due to the off-target effects inherent to the

RNAi technique (Jaiswal et al, 2017), while the CRISPR-based

genome-wide knockout screens have been shown to provide fairly

good agreement (Dempster et al, 2019). Furthermore, given the

nature of cell culture techniques by which cell lines are passaged

and seeded from a small population, it is likely that even identical

cell lines accumulate genomic variability and differences in their

clonal composition from one research laboratory to another (Ben-David

et al, 2018). This type of evolutionary variability introduces an

additional level of complexity which influences the repeatability of

phenotypic profiles, research findings, and biological conclusions

(Gillet et al, 2013; Ben-David et al, 2018).

In addition to the experimental issues, it is also known that the

technology platform being used for high-throughput measurements

as well as the computational methods used in their data processing

are important contributors to the consistency of research results

(Mpindi et al, 2016; Haverty et al, 2016). Many of the technology

platforms for molecular profiling are still in a nascent stage of devel-

opment, and thus, the resulting data are error-prone, even when

using state-of-the-art data processing and normalization procedures.

Moreover, there exist major differences in the set of cell lines pro-

filed between research sites, hence making the comparisons and

integration of profiling data intricate and biased due to missing

omics profiles for certain cell lines. Therefore, there is a need for a

comprehensive and quantitative analysis of the relative consistency

of molecular, genetic, and phenotypic characteristics of cancer cell

lines from different research laboratories and technology platforms,

with the aim to improve the robustness of the conclusions drawn

from these studies.

In this study, we first performed a systematic statistical meta-

analysis to estimate the reproducibility of various types of molecular

profiles, or “modalities”, of cancer cell lines. Subsequently, we

built on these analyses, with the aim to identify robust and repro-

ducible gene signatures with consistent evidence across multiple

research laboratories and data modalities, and hence, more likely

to be implicated in cancer. To do so, we developed a novel multi-

omics integrative approach for jointly analyzing heterogeneous

datasets generated from multiple studies for multiple modalities,

which also accounts for differences in the panels of cell lines pro-

filed between the research sites. Using 53 omics datasets from 12

research laboratories encompassing 9 data modalities for 2,018

cancer cell lines, we demonstrate how our data-driven approach

is able to identify well-known driver genes of established rele-

vance in breast cancer, as well as novel targets for therapeutic

opportunities. We expect the comprehensive multi-modal data

resource and the integrated approach will provide useful guideli-

nes on how to integrate heterogeneous data from multiple omics

studies, which may lead to novel biological discoveries in various

cancer types.

Results

Compilation of available omics data modalities of cancer
cell lines

We processed, re-analyzed, and harmonized curated datasets of

various data modalities for cancer cell lines that were origi-

nally generated at 12 research sites (see Methods and Protocols,

Appendix Figs S4 and S5). We focused on analyzing data modalities

available as quantitative measurements for various attributes of

protein-coding genes, including methylation, mutational status,

copy number alteration status, gene and protein expression, and

protein phosphorylation. We further considered functional profiles

such as gene dependency estimates from loss-of-function screens

and drug response measurements, and calculated an additional

functional data modality by transforming drug response profiles to

target protein addiction signatures (Fig 1A). Overall, a given cell

line had maximally omics data across nine modalities generated at

one of the research laboratory sites (Fig 1B). The number of cell

lines profiled for a given data modality ranged from 171 (protein

expression) to 1,689 (mutation profiles, Fig 1C), making the data

integration challenging for the meta-analysis (Dataset EV9).

For instance, the National Cancer Institute (NCI) program (NCI-

60) has extensively characterized a panel of 60 cancer cell lines

▸Figure 1. Overview of data modalities and their consistency.

A Overview of datasets, research sites, and molecular modalities that were analyzed in the study.
B The number of cell lines having data for the 9 types of modalities that were analyzed in the study.
C The number of cell lines for which data were available for each of the modality types.
D Correlation of the different types of data modalities of cancer cell lines profiled at multiple research sites. Spearman’s correlation was calculated between identical

cell lines for the shared set of genes that were overlapping between any two datasets. Gray distributions show the correlation of non-identical cell lines between
datasets from various research sites for comparison. Ng and Nc indicate the median [ranges] of the number of genes and cell lines, respectively, across the pairwise
comparisons made between datasets from different research sites. More details on the breakdown of Nc and Ng by data modality and research site is available in
Appendix Figs S5B and S6, respectively, and Appendix Fig S7C shows the correlation P-values adjusted for the sample size (Ng). For the point mutation view, only
those genes having mutations with an associated functional consequence were considered in the Matthews correlation analysis. Only those datasets for which the
mutation profiles were obtained using the whole-exome sequencing technology were considered in this study. Horizontal lines mark the median value. Target
addiction score (TAS), Drug Sensitivity Score (DSS), Gene dependency (FUNC), protein phosphorylation (PHOS), protein expression (PEXP), gene expression (GEXP), copy
number variation (CNV), point mutation (MUT) and methylation (METH) profiles.
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representing nine different cancer types (Shankavaram et al, 2009).

In contrast, more large-scale efforts such as the Genomics of Drug

Sensitivity in Cancer (GDSC) (Yang et al, 2012; Garnett et al, 2012;

Iorio et al, 2016; Roumeliotis et al, 2017; Behan et al, 2019), Cancer

Cell Line Encyclopedia (CCLE) (Barretina et al, 2012; Basu et al,

2013; Seashore-Ludlow et al, 2015; Tsherniak et al, 2017; Meyers

et al, 2017; Ghandi et al, 2019), and the Genentech Cell Screening

Initiative (gCSI) (Klijn et al, 2015) have characterized approximately

1,000, 1,500 and 675 cancer cell lines, respectively, representing a

wide variety of cancer types. These studies have also performed

phenotypic profiling of drug sensitivity against a library of small

molecules (Fig 1A). Likewise, the DepMap project has systemati-

cally characterized the functional-genomic landscape of ~ 500

cancer cell lines using genome-wide RNAi screens and several

versions of genome-wide CRISPR-Cas9 loss-of-function libraries

(Aguirre et al, 2016; Tsherniak et al, 2017; Meyers et al, 2017; Wang

et al, 2017; Fig 1A). MD Anderson Cell Lines Project (MCLP) has

additionally profiled protein phosphorylation levels using reverse

phase protein arrays (RPPA) for 340 unique cancer signaling related

proteins in ~ 650 cancer cell lines (Li et al, 2017), and at CCLE for

174 proteins in ~ 900 cell lines (Appendix Figs S5 and S6).

Complementing these large-scale pan-cancer programs, we also

re-analyzed datasets from more targeted efforts that have profiled

cell lines of a specific cancer type; these smaller-scale studies were

included in this meta-analysis to increase the information content

on selected tissue lineages. Specifically, multi-modal datasets were

generated at the University Health Network (UHN) (Koh et al, 2012;

Marcotte et al, 2016) at Toronto and the Oregon Health and Science

University (OHSU; Daemen et al, 2013; Costello et al, 2014) studies

for > 80 breast cancer cell lines. Furthermore, proteome-scale

expression levels in breast, ovarian, and colorectal cancer cell lines

have been generated using mass spectrometry (MS) at the Univer-

sity of Washington (UW_TNBC) (Lawrence et al, 2015), Massachu-

setts General Hospital Cancer Center (MGHCC_BREAST) (Lapek

et al, 2017), Max Planck Institute of Biochemistry (MPIB_HGSOC)

(Coscia et al, 2016) and the Sanger Institute (GDSC) (Roumeliotis

et al, 2017); however, the total number of cell lines profiled for MS

protein expression was only 171. Further, an in-house drug sensitiv-

ity profiling dataset of > 50 pan-cancer cell lines generated at the

Institute for Molecular Medicine Finland (FIMM) was also utilized

in the study (Mpindi et al, 2016; Smirnov et al, 2018; Gautam et al,

2019).

To enable the meta-analysis between studies, we only considered

datasets that were generated in a sufficiently larger panel of cell

lines (n > 10) and therefore excluded datasets below the threshold.

In statistical analyses, we assumed that the same cell lines profiled

at each site were cultured independently. All together, we processed

and re-analyzed 53 datasets, encompassing nine modalities gener-

ated at the 12 research study sites. In total, we analyzed data for

2,018 cancer cell lines having measurements for at least one of the

data modalities. A substantial proportion of cell lines (n = 1,047)

had data available for ≥ 6 modalities, thus serving as a comprehen-

sive resource for further analyses (Fig 1B and C). Even though most

cell lines had data available from multiple sites, there were ~ 700

cell lines that had data available from only one study site

(Appendix Fig S5A and B). We reasoned that the substantial overlap

between cell lines across multiple molecular layers between more

than two sites provides a solid basis to perform a quantitative

assessment of the reproducibility of the multiple modalities of

cancer cell lines, which allowed us to fine tune the parameters for a

robust integration of data modalities from multiple research sites

(see Methods and Protocols).

Reproducibility of molecular modalities of cancer cell lines
from multiple sites

We performed a systematic correlation analysis to evaluate the

consistency of gene-level quantitative measurements of the various

data modalities from identical cell lines profiled across different

research sites. Overall, we observed a wide variation in the degree

of agreement between the research laboratories (Fig 1D,

Appendix Fig S7A). Consistent with previous observations (Haibe-

Kains et al, 2013; Klijn et al, 2015; Haverty et al, 2016), copy

number variation (CNV) profiles and transcriptomic profiles of cell

lines were highly correlated between different study sites (Spear-

man’s correlation rCNV = 0.76 [−0.51 to 0.99] and rGEXP = 0.87

[0.66 to 0.96]), in contrast to mutational profiles (r2MUT = 0.22

[0.02–0.73]) (Fig 1D). We observed a considerable range of varia-

tion in the pairwise correlation of CNV profiles between different

sites, suggesting that the cell lines with poor agreement may have

undergone clonal divergence during cell culture. For all the data

modalities, we observed that non-identical cell lines from same

tissue types had slightly elevated correlation compared to non-

identical cell lines from different tissues, but the opposite for the

PEXP modality (Appendix Fig S7A). Moreover, the cell lines that

had weaker correlation in CNV profiles also tended to have weaker

correlation in MUT profiles (Appendix Fig S7B, Dataset EV10).

In general, methylation profiles of cell lines, corresponding to

methylation levels of CpG sites located at transcription start sites of

genes, were moderately consistent (rMETH = 0.56 [0.23–0.99]) (Fig 1

D). Likewise, protein-level phosphorylation profiles were only

modestly reproducible between different sites, suggesting that the

targeted reverse phase protein array (RPPA) technique is relatively

noisy (rPHOS = 0.49 [−0.42 to 0.84]). The correlation of the global

proteome expression profiled with MS was even lower, on average,

and it also exhibited a wide range of variability in the relatively

small number of available breast and ovarian cancer cell lines

(rPEXP = 0.29 [−0.09 to 0.78]). However, when considering the

dimension of the profiles (median of 44 for PHOS, and 4,304 for

PEXP), the global protein expression correlations had higher signifi-

cance on average (Appendix Fig S7C). As observed previously

(Mpindi et al, 2016; Haverty et al, 2016), we also found that the

reproducibility of drug sensitivity profiles between sites was moder-

ately high (rDSS = 0.63 [0.22–0.95]), similar to the reproducibility of

TAS profiles (rTAS = 0.56 [−0.75 to 0.99]). In contrast, gene depen-

dency estimates based on loss-of-function RNAi and CRISPR screens

exhibited rather poor reproducibility (rFUNC = 0.21 [0.08 to 0.52]).

Given that the distributions of data modalities are quite different,

the correlation estimates (either Spearman’s or Matthew’s coeffi-

cient) are not directly comparable. To set a reference point for the

pairwise comparisons, we further estimated the correlation of

non-identical cell lines between the different studies (Fig 1D, gray

distributions). This analysis is also useful for assessing the expected

baseline correlation of different modality types. As expected, the aver-

age correlation of mRNA expression profiles of even non-identical

cell lines was generally high (rGEXP = 0.75), suggesting that the
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transcriptomic landscapes are quite similar across cancer cell lines

and tissue origins (Fig 1D, Appendix Fig S7A). Compared to the

average correlation of non-identical cell lines, we observed a 1.17-

fold increase in the mean correlation of the identical cell lines for

gene expression profiles (P < 10−10, Wilcoxon test). We observed a

similar fold increase for methylation (1.33-fold, P < 10−10), gene

dependency (1.13-fold, P < 10−10) and drug response profiles (1.59-

fold, P < 10−10). In contrast, a much higher fold increase in the

correlation of identical cell lines was observed for CNV (5.9-fold,

P < 10−10), point mutation (7.8-fold, P < 1.0 × 10−10), protein phos-

phorylation (27.9-fold, P < 10−10), and protein expression profiles

(12.2-fold, P < 1.5 × 10−08).

Reproducibility of technology platforms used to generate the
data modalities

Correlation analysis implied the existence of bi-modal distribution

of consistency estimates for some of the data modalities (Fig 1D,

Appendix Fig S8A–I). We therefore further stratified the correlation

analyses separately for each of the experimental technologies to

investigate whether the observed variability could be explained by

the platform used to generate the data. We observed a significantly

higher reproducibility of methylation profiles between studies gener-

ated using the Illumina 450K BeadChip, compared to the correlation

of methylation profiles of datasets generated using Bisulfite sequenc-

ing (rMETH = 0.97 for 450K/450K vs. rMETH = 0.51 for 450K/Bisul-

fite, P < 1.0 × 10−10, Wilcoxon test) (Appendix Fig S8J). As

expected, a higher correlation was observed between those studies

in which the transcriptomic profiles of cell lines were measured

using RNA sequencing compared to the microarray-based pro-

files (rGEXP = 0.93 for RNA-seq vs. rGEXP = 0.84 for arrays, P <
1.0 × 10−10, Wilcoxon test) (Appendix Fig S8). Similarly, RPPA-

based protein phosphorylation profiles were slightly better correlated

with studies based on RPPA than with MS-based phospho-proteomic

profiles (rPHOS = 0.45 for MS/RPPA vs. rPHOS = 0.49 for RPPA/

RPPA, P = 0.03) (Appendix Fig S8K). Likewise, drug sensitivity

screens and TAS profiles based on CellTiter-Glo (CTG) assay were

significantly more correlated in comparison to those based on

fluorescent nucleic acid stain probes such as Syto60 (rDSS = 0.72

for CTG/CTG vs. rDSS = 0.55 for CTG/Syto60, P < 10−10) (Appendix

Fig S8L).

In the comparison of gene dependency profiles obtained either

from genome-wide RNAi knock-down or CRISPR knockout screen-

ing techniques (Fig 2A), we observed a relatively low correlation

between functional studies based on genome-wide RNAi screens

(rFUNC-RNAi = 0.22) (Fig 2B), in line with previous reports showing

that gene dependency profiles based on this technique are less

robust (Jaiswal et al, 2017; Gautam et al, 2019). In contrast,

genome-wide CRISPR screens exhibited a moderate consistency

between studies (rFUNC-CRISPR = 0.36), significantly higher compared

to genome-wide RNAi screens (P < 10−10). As reported before (Gau-

tam et al, 2019), the correlation between studies based on RNAi and

CRISPR screens was also quite poor (rFUNC-RNAi/CRISPR = 0.19) (Fig 2

A). Moreover, the agreement between the two screens performed at

SANGER and BROAD Avana library was slightly lower compared to

the screens performed exclusively at BROAD (rFUNC = 0.35 for

BROAD Avana/SANGER vs. rFUNC = 0.43 for BROAD Avana/

GeCKO/AML, P = 2.7 × 10−08). These results demonstrate how

laboratory-specific factors contribute to differences in the quantita-

tive estimates of gene dependency profiles.

When investigating potential reason for the bi-modal distribution

of correlation estimates for the MS-proteomic datasets, we found

that the agreement of protein expression profiles varied depending

on the sample preparation method (Fig 2C), Specifically, the

BROAD, MGHCC_BREAST, and SANGER studies utilized tandem

mass tag (TMT)-based peptide labeling before protein abundance

quantification, whereas the other studies used a non-labeled (NL)

approach. The correlation between TMT-labeled and NL proteome

profiles was poor (rPEXP = 0.11), compared to proteome profiles

generated at different study sites using the same method (rPEXP =
0.63 for NL/NL and rPEXP = 0.52 for TMT/TMT) (Fig 2C and D). In

addition to differences in labeling, we found that the data normal-

ization procedure also contributed to the differences in reproducibil-

ity. The TMT-labeled proteomic profiles are typically bridge-

normalized, i.e., the bridge sample intensity in each plex is

subtracted by log-ratio transformation. We observed much higher

correlation between the BROAD (TMT-labeled and NL studies when

using non-bridge-normalized intensities, compared to bridge-

normalized intensities (Appendix Fig S9). However, there was a

slightly better agreement in the coefficient of variation (CV) calcu-

lated for the common set of proteins between MHGCC_BREAST

(TMT-labeled) and UW_TNBC (NL) (rCV-PEXP = 0.44, Fig 2E). This

suggests that both the labeling and normalization procedures have a

drastic impact on the estimates of protein abundance, which may

lead to variability in the proteomic profiles.

An analytical framework for meta-analysis and integration of
multi-modal datasets

The availability of various data modalities of molecular profiles of

cancer cell lines from multiple studies and laboratories, that show

only a moderate overlap and consistency, poses a challenge for inte-

grative approaches that leverage the multiple levels of profiling infor-

mation to identify robust driver genes and biological processes. We

hypothesized that genes that have a consistent molecular pattern

shared across multiple studies and modalities are more likely to have

a functional consequence relevant for cancer. Toward this end, we

developed a non-parametric, rank-based framework, named cell

line-specific gene Identification Pipeline (CLIP), which enables a

systematic meta-analysis and integration of all the datasets collected

and processed in this study (Fig 3). To boost the statistical power

toward finding robust and reproducible signals in these data, the

CLIP framework accounts for the substantial variability in the consis-

tency of the various types of modalities (Fig 3A) between laborato-

ries (Fig 3B) (see Methods and Protocols for details).

To solve the data sparsity challenge, we developed a “bottom-

up” meta-analysis approach based on the concept of cancer cell

line-specific (CCS) genes. A CCS gene exhibits a molecular feature

that is unique for a given cell line in reference to the other cell lines,

i.e., CCS gene has a context-specific property, which may also

potentially contribute to the unique biological characteristics of the

particular cell line. Statistically, CCS genes have the tendency to be

located toward the extremes of a data modality distribution. For

instance, the expression of ERBB2 gene is much higher in ERBB2

(HER2) driven breast cancer cell lines, compared to cell lines from

other tissue types (Appendix Fig S10). The measure of CCS property
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Figure 2. Contribution of laboratory-specific factors to the reproducibility of functional gene dependency profiles and MS-based proteomic profiles.

A Correlation matrix plot of average Spearman’s correlation of gene dependency profiles of cancer cell lines calculated based on genome-wide RNAi screens and CRISPR
screens. Number of overlapping cell lines between any two datasets used for estimating the average correlation ranges between 2 and 284, with a mean of 46.4. The
empty cells indicate that no identical cell lines were profiled between the two datasets.

B Distribution of Spearman’s correlation of gene dependency profiles between different study sites. Triangles represent mean correlation values. Numbers below the
labels represent the number of overlapping cell lines based on which the distributions were drawn.

C Average Spearman’s correlation of MS-based proteomic profiles between different study sites generated using different peptide labeling procedures. The empty cells
indicate that no identical cell lines were profiled between the two datasets. Number of overlapping cell lines between any two datasets used for estimating the
average correlation ranges between 3 and 27, with a mean of 7.8.

D Distribution of Spearman’s correlation of MS-based proteomic profiles between different study sites. Numbers below the labels represent the number of overlapping
cell lines based on which the distributions were drawn. Triangles correspond to the median value.

E Coefficient of variation (CV) of proteins detected and quantified in UW TNBC study (non-TMT-labeled) vs. MGHCC BREAST study (TMT-labeled). Both studies had a
maximal overlap of breast cancer cell lines for a robust estimation of CV. Housekeeping genes are highlighted as red dots. Spearman’s correlation (rcv) was calculated
to estimate the agreement in the CV estimates of common set of proteins between the two studies.

▸Figure 3. Overview of the cell line-specific gene Identification Pipeline (CLIP) for integration of molecular datasets from multiple studies.

A CLIP performs a meta-analysis of datasets from multiple sites for each data modality type: Target addiction score (TAS), Gene dependency (FUNC), protein
phosphorylation (PHOS), protein expression (PEXP), gene expression (GEXP), copy number variation (CNV), point mutation (MUT) and methylation (METH) profiles.

B For each modality type, CLIP iterates over datasets available from multiple sites and quantifies the cancer context specificity (CCS) property for every gene G in cell line j.
C For all unique cell lines, the CSS property is quantified for each gene G in a dataset D. For continuous modalities (METH, GEXP, PEXP, PHOS, FUNC, TAS), we defined

the Outlier Evidence Score (OESG,D,j), calculated by normalizing the observed value by the mean in the dataset for each gene (Xi). SD is defined as the standard
deviation. For binary modalities (CNV-GAIN, CNV-LOSS and MUT), we defined the Proportion Score (PSG,D,j) for each gene G in cell line j, calculated as the frequency of
the alteration (FD,j) normalized by the total samples in each dataset (ND,j).

D For a given cell line j, OESG,D scores across the available datasets are integrated using the Rank Product analysis to find statistically consistent genes that are at the
top of the ranked list of genes (CCSUP) or at the bottom (CCSDOWN).

E Finally, CLIP produces a profile of all the genes that are identified as CCS. In total, 13 different modality features were assessed by the CLIP framework, provided there
are data available for a cell line for all the molecular datatypes. All genes identified as a CCS gene in any modality are highlighted, light orange for up-regulation and
light blue for down-regulation. Genes that have CCS evidence across two or more modality types are considered in our analyses as robust Cancer Context-Specific
(rCCS) genes, highlighted as light green.

F A schematics of CLIP signature of a hypothetical gene, which summarizes its CCS evidence in a selected subset of cell lines, defined as a group based on any relevant
criteria (the example shows all HER2+ breast cancer cell lines). Y-axis is the ratio of number of cell lines in which the gene is identified as a CCS gene vs. the total
number of cell lines in the particular subset.
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for each gene in a dataset was quantified by estimating an Outlier

Evidence Score (OES) for continuous variables, and Proportion

Score (PS) for binary variables. The OES value for each gene was

defined as a z-score over all the cell lines profiled in that study for a

given data modality. Likewise, PS was defined as the proportion of

cell lines in which a particular event is observed (Fig 3C). Next, for

any given cell line, OES and PS scores of all the coding genes for a

specific data modality from different studies were integrated to iden-

tify those genes that were consistently at the top (CCSUP) or the

bottom (CCSDOWN) of the ranked list of genes in a given cell line

(Fig 3D) (see Methods and Protocols).

For continuous data modalities, i.e., GEXP, PEXP. METH, PHOS,

FUNC, and TAS, rank product analysis was performed to integrate

over all the OES values for each gene-cell line combination from

datasets across multiple laboratories. We also used the insights from

our correlation analyses to fine tune the CLIP parameters for a

robust integration of various modalities from multiple research sites.

Genes with percentage of false positives (pfp) below a pre-specified

threshold were considered statistically significant and defined as

CCSUP or CCSDOWN genes for the respective data modality (see

Methods and Protocols). For binarized data modalities, i.e., copy

number gain (CNV_AMP) or loss (CNV_DEL) and MUT profiles, all

the PS measures for that data modality from multiple studies were

combined for a given gene-cell line combination. Specifically, any

alteration that was observed in ≤ 10% cell lines (arbitrary selected

threshold) in any single dataset was considered as a CCS gene.

Taken together, we quantified the CCS evidence of each gene across

all eight types of data modalities.

Conceptually, the two categories CCSUP or CCSDOWN define a

particular property of a gene, for instance, gene expression level

higher or lower in the particular cell line compared to all the other

cell lines. Ultimately, for each cell line, the CLIP meta-analysis

framework provides a list of genes that show statistically robust

evidence for being CCS genes by considering all the 8 types of

molecular modalities in the gene space, where it generates a cell

line-specific CLIP signature for each gene (Fig 3E). We further inte-

grated the CCS evidence of each genes across multiple modalities

to identify the robust CCS (rCCS) genes, based on the rationale

that, if the CCS property persists through multiple modalities, then

the likelihood for being a robust and reproducible CCS gene

increases (Fig 3F).

CLIP identifies established breast cancer cell line and
subtype-specific drivers

To systematically test our meta-analysis approach, we reasoned that

the list of rCCS genes for each cell line should be enriched for genes

that determine the unique phenotypic or molecular characteristics

of the particular cell line. As a proof-of-principle, we applied the

CLIP framework specifically to 106 breast cancer cell lines

(Appendix Fig S11), as they have been extensively profiled by multi-

ple studies. Reassuringly, the meta-analysis approach was able to

identify previously established driver kinases in several breast

cancer cell lines (Szwajda et al, 2015; Fig 4A). The CLIP signature

further revealed that most of the driver genes were identified based

on the target addiction and gene dependency modalities, and a few

others based on protein phosphorylation (up) and gene copy

number (gain), as well as based on their point mutation views. rCCS

hits from CLIP were much more likely to have support from TAS or

PHOS modality compared to the others (Fig 4B). Moreover, the

rCCS genes supported by the GEXP modality were also likely to be

supported by the CNV, METH, and PEXP modalities (Appendix Fig

S12). Thus, in addition to identifying known drivers in breast cancer

cell lines, the CLIP signature also provided insights into the mecha-

nistic basis of the drivers based on multiple levels of supporting

evidence across the data modalities.

Breast cancer cell lines are conventionally categorized based on

the expression levels of ER and HER2 receptors into three subtypes,

indicative of their clinical characteristics (Perou et al, 2000; Van’t Veer

et al, 2002; Koboldt et al, 2012) (Dataset EV11). We reasoned that the

CLIP framework should be able to identify the relevant receptor

proteins as rCCS genes in the cell lines belonging to these subtypes.

Indeed, we observed that ER and HER2 were more frequently identi-

fied as rCCS genes in the subtype-specific cell lines (Fig 4C and E),

suggesting that our data-driven approach to identifying context-

specific players for each cell line was able to recapitulate the known

molecular features of these cell lines. Furthermore, upon investigating

the supporting rCCS evidence from the different molecular modalities,

we found that these genes had shared support at functional, gene

expression, and protein phosphorylation levels (Fig 4D and F). We

further observed that methylation levels of ER were downregulated in

a few of the rCSS-identified ER+ cell lines (Fig 4D). Similarly, in cell

lines driven by ERBB2, the rCCS status was also supported by copy

number gain, as it is known that ERBB2 is frequently amplified

in HER2+ cell lines (Fig 4F). CLIP was also able to systematically

identify a larger fraction of well-established driver genes compared

to analyzing each data modality individually (Fig 4G), and also in

comparison to an alternative approach based on multi-omics latent

factor analysis method MOFA+ (see Methods) (Fig 4G).

A number of previously reported highly expressed genes, such as

GATA3 in ER+ tumors (Perou et al, 2000; Koboldt et al, 2012) and

PGAP3, GRB7, and STARD3 that are frequently co-amplified with

HER2 (Perou et al, 2000; Koboldt et al, 2012), were also identified

by CLIP for the ER+ and HER2+ subtypes, respectively (Dataset

EV12). Similarly, SMAD7 was identified as one of the rCCS genes in

the triple-negative breast cancer (TNBC) subtype (Dataset EV12).

SMAD7 is known to play a role in metastasis and epithelial-to-

mesenchymal (EMT) transition, a feature is frequently exhibited by

the TNBC tumors (Valcourt et al, 2005; Katsuno et al, 2018). These

results suggest that the CLIP framework is able to pinpoint the

established cell line and subtype-specific drivers and also corrobo-

rate the mechanistic evidence for the genes involved in breast

cancer progression from multiple data modalities. Importantly,

many of these drivers would have been missed when looking at one

of the studies or molecular modalities alone, but rather an integra-

tive approach was necessary to identify the robust and reproducible

driver signatures. In addition to the known markers, which were

used here as positive controls, the CLIP framework also identified a

number of novel genes specific to the established breast cancer

subtypes (Dataset EV12), which provide leads for future research.

CLIP identifies ECHDC1 as a novel tumor suppressor in
breast cancer

While many of the known key players of breast cancer, such as

BRCA1, ERBB2, ESR1, GATA3, CDH1, FOXA1, were frequently
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Figure 4. CLIP signature of established breast cancer driver kinases.

A Subset of cell line-specific drivers that were identified as rCCS genes in this study. Highlighted entries indicate that the gene was identified as a rCCS gene in that
modality.

B Proportion of the rCCS genes identified by CLIP and supported by the various data modalities, relative to the average number of genes profiled for each modality in
all cancer cell lines (n = 1,047). Boxes represent the interquartile range, notch in each box represents median value and whiskers the range of the values.

C Proportion of ER+ and ER− breast cancer cell lines that have ESR1 as a rCCS gene. P-value was calculated with the Fisher’s exact test.
D The data modalities that supported the rCCS status of ESR1 and the proportion of cell lines having that evidence in the ER+ cell lines (n = 20).
E Proportion of HER2+ and HER2− breast cancer cell lines that have ERBB2 as a rCCS gene. P-value was calculated with the Fisher’s exact test.
F The data modalities that supported the rCCS status of ERBB2 and the proportion of cell lines having that evidence in the HER2+ cell lines (n = 17).
G Benchmarking the performance of CLIP to identify well-known breast cancer driver genes. True positive (TP) fraction of unique cancer driver genes (n = 201) for the

three defined breast cancer subtypes as identified by CLIP and alternative approaches based on differential analysis in each specific modality alone, and using the
latent factor-based Multi-Omics Factor Analysis (MOFA+) methods for data integration.
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identified as rCCS genes by CLIP (Dataset EV13), we also observed

novel genes, such as ECHDC1, SYCP2, GPX1, and MSN, whose role

in breast cancer have not yet been studied extensively (Dataset

EV13). In particular, ECHDC1 was identified as the most frequent

rCCS gene among 24 out of the 106 breast cancer cell lines consid-

ered in our analysis. ECHDC1 encodes an enzyme, ethylmalonyl-

CoA Decarboxylase 1, with a potential metabolite proofreading

function (Linster et al, 2011). Interestingly, a previous report based

on genome-wide association study implicated the genomic locus

mapping to the ECHDC1 as a breast cancer risk locus in Jewish

Asheknazi women (Gold et al, 2008). Notably, neither metabolic

profiling nor germline genotyping data were used as part of the CLIP

framework, thereby these studies provide an orthogonal support for

a previously unappreciated role of ECHDC1 in breast cancer. More-

over, ECHDC1 was identified much less frequently as an outlier by a

simpler approach to identify CCS in each individual study based on

the METH data modality alone (Appendix Fig S3E), or using an inte-

grative multi-omics factor analysis approach MOFA+ (see Methods

and Protocols, Appendix Fig S3D), highlighting the usefulness of

CLIP in identifying novel cancer-associated genes through robust

integration of multi-modal multi-site datasets.

Our further analysis of the CLIP signature of ECHDC1 revealed

that it was hypermethylated in all the breast cancer cell lines in

which it was identified as a rCCS gene (Fig 5A). In the same cell

lines, ECHDC1 mRNA was downregulated, suggesting that ECHDC1

could be a putative tumor suppressor. Moreover, we also observed

that higher methylation levels or lower gene expression levels of

ECHDC1 were associated with reduced breast cancer-specific

survival probability in breast cancer patients (P = 0.007, log-rank

test: Fig 5B), irrespective of their ER status (Appendix Fig S13),

corroborating its putative tumor suppressive role. To experimentally

challenge this finding, we used CRISPR/Cas9-mediated transcrip-

tional silencing to knockout ECHDC1 in immortalized human

MCF10A breast epithelial and malignant BT-474 cells (for the knock-

out efficiency, see Appendix Fig S14A and B). In the 5-day culture,

ECHDC1-depletion induced MCF10A cell proliferation and growth

already 72 h after embedding cells in 3D collagen matrix (Fig 5C

and Appendix Fig S14C). However, BT-474 phenotype remained

unaltered after the knockout (Fig 5C and Appendix Fig S14D),

further supporting the tumor suppressive role of ECHDC1 in breast

cancer cells.

To further illuminate the mechanistic basis of the tumor suppres-

sive role of ECHDC1, we investigated the metabolic pathway in

which ECHDC1 is involved, namely, the propanoate metabolism

(Fig 5D and Appendix Fig S15). Propanoyl-CoA is an end product of

catabolism of several branched chain amino acids, and oxidation of

cholesterol side chains and odd-chain fatty acids. Propanoyl-CoA is

further converted to succinyl-CoA, which is oxidized and fed into

the TCA cycle. We reasoned that the down-regulation of ECHDC1 in

breast cancer cells could lead to alteration in the levels of intermedi-

ate metabolites resulting in tumorigenesis. Subsequent metabolite

profiling of three such intermediate metabolites revealed that succi-

nate and 2OH-3MBA were significantly up-regulated in the breast

cancer cell lines in which ECHDC1 was identified as a rCCS gene

(Fig 5E). Succinate is known to be elevated in various cancers (Zhao

et al, 2017; Dalla Pozza et al, 2020), and it may potentially contri-

bute to tumor imitation and progression through regulation of mito-

chondrial function, hypoxia and reactive oxygen species production.

These observations further strengthen our data-driven approach

and suggest that ECHDC1 is a novel tumor suppressor of breast

cancer. This role was also supported by a pathway co-regulation

analysis for predicting gene function (see Methods and Protocols),

which suggests ECHDC1 is likely to play a role in TCA cycle and

mitochondrial respiration, namely the electron transport chain, and

fatty acid beta-oxidation pathway (Appendix Fig S16).

CLIP predicts novel genetic interaction partners for known
cancer drivers

To further extend the applicability of our integrative meta-analysis

approach, we reasoned that the CLIP framework could also identify

novel and robust genetic interaction (GI) partners of cancer driver

genes. We considered specifically synthetic lethal (SL) interactions,

i.e., the most negative end of GIs, which exhibit differential depen-

dencies in context-specific genetic backgrounds; for instance, exclu-

sively in the presence of a cancer driver mutation (Kaelin, 2005;

Ashworth et al, 2011; Nijman & Friend, 2013). Such co-addictions

are often observed only in certain cell lineages, making their identi-

fication challenging in smaller-scale studies (Nijman & Friend, 2013;

Huang et al, 2020). As CLIP identifies context-specific rCCS genes in

large panels of cell lines, and using multiple data modalities, we

reasoned that a gene that is both supported by the gene dependency

modality and identified robustly as a rCCS gene specifically in

cancer cell lines mutated for a cancer driver could provide a multi-

modal support for being a SL partner of the driver gene. We used

Fisher’s exact test to evaluate the difference in the proportion of

rCCS genes between two groups of cancer cell lines, mutated and

wild type, but we note that also other types of statistical tests for SL

interactions could be utilized.

To examine this rationale for identifying context-specific

and reproducible SL interaction partners, we first confirmed that

CLIP was able to identify the known oncogenic addictions, such

as KRAS, PIK3CA, and BRAF as rCCS genes, in the specific cell

lines that harbor these oncogenic driver mutations (Fig 6A–D and

Appendix Fig S17A and B, Dataset EV14). Cancer cell lines with

such oncogenic driver mutations are known to be dependent on the

same driver genes, due to oncogenic addiction (Weinstein & Joe,

2008), supporting the use of gene dependency modality in their

detection. We also observed that known oncogenes were signifi-

cantly more frequently identified as rCCS genes by CLIP (Fig 6E).

Notably, even the removal of the FUNC modality did not affect the

performance of CLIP. We observed a similar trend when the analy-

sis was repeated for (i) all the driver genes, i.e., including both

oncogenes and tumor suppressor genes (TSGs); and (ii) only TSGs

(Appendix Fig S17C and D). Interestingly, when identifying TSGs in

the setting for compulsory evidence of rCCS from FUNC modality,

we observed that the difference in the frequency between known

TSGs and non-TSGs was reduced, although it remained still statisti-

cally significant. This suggests that the multi-modal rCCS evidence

for TSGs likely originates from the non-functional modalities.

We next extended this SL analysis to identify also co-addiction

partners of other major cancer driver genes that are also frequently

mutated in specific cell contexts, and in doing so, we identified a

previously reported SL interaction between ARID1A and ARID1B

(Helming et al, 2014), suggesting that the approach is able to reca-

pitulate many confirmed SL interaction partners (Dataset EV14).
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Figure 5. Identification of ECHDC1 as breast cancer tumor suppressor gene.

A The CLIP signature of ECHDC1 suggests that it was hypermethylated and down-expressed in all the breast cancer cell lines (n = 24) in which it was identified as rCCS
gene.

B Breast cancer-specific survival (BCSS) based on gene expression and methylation levels of ECHDC1 in breast cancer patient tumors in the combined Metabric and
Oslo datasets (n = 3,885). Patients in the low GEXP category class have lower BCSS than those in the non-low GEXP group. Numbers above the x-axis line indicate
the number of patients in each group, defined by the color code, at each time point. P-value from age-adjusted Cox-proportion hazard model.

C Benign breast epithelial MCF10A and breast carcinoma BT-474 cells were embedded in 3D collagen as single cells or as spheroids, respectively, and the growth was
followed for 5 days. Light micrographs show filamentous actin (phalloidin) and nuclei (Hoechst) in representative cell colonies. Quantitative assessment of the nuclei
counts per colony show the induced proliferation in MCF10A cells after ECHCD1 sgRNA knockout. At 72 h, MCF10A mock vs. ECHDC1_sgRNA_1 and ECHDC1_sgRNA_2
P < 0.05; at 96 h mock vs. ECHDC1_sgRNA_1, ECHDC1_sgRNA_2 and ECHDC1_sgRNA_3 P < 0.001; at 120 h mock vs. ECHDC1_sgRNA_1, ECHDC1_sgRNA_2, and
ECHDC1_sgRNA_3 P < 0.0001. Nuclei count relative to mock 0 h. Error bars indicate mean � SEM; n ≥ 10 colonies. Statistical significance was assessed with one-
way ANOVA with Tukey’s multiple comparison test. Scale bar 50 µm.

D Metabolic pathway of propanoate metabolism.
E Measured metabolite levels of intermediates in propanoate metabolism in select breast cancer cell lines with or without the ECHDC1 rCCS status (n = 7 in both

groups). Boxes represent the interquartile range, whiskers represent the range of the values and solid line within the box correspond to the median value. Outlier
points indicates values not included between the whiskers. Statistical significance was assessed with Wilcoxon test.
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Overall, we also confirmed that CLIP is able to systematically iden-

tify SL interactions between paralog pairs more frequently compared

to alternative approaches that use only the FUNC modality in each

dataset (see Materials and Methods; Appendix Fig S17E). Moreover,

even after excluding the FUNC modality, CLIP was able to identify a

higher number of genetic interactions between paralogous genes

compared to an analysis using the FUNC modality in each dataset

(Fig 6E, Appendix Fig S17C and D).

Interestingly, we found a statistically strong evidence for DDX27

being a SL interaction partner of the known tumor suppressor PTEN

(P < 0.001, Fisher’s exact test) (Fig 6E, Appendix Fig S17F and G,

Dataset EV14). Specifically, the CLIP signature of DDX27 suggested

that all the PTEN mutant cell lines in which DDX27 was identified

as a rCCS gene had downregulated mRNA levels of DDX27, which

was also essential for their growth (Fig 6F). DDX27 belongs to the

DEAD box nucleic acid helicase family of proteins that have recently

been shown to modulate the formation of RNA molecular conden-

sates, known as stress granules, thereby exerting a role in ribosomal

translation (Fuller-Pace, 2013; Ivanov et al, 2019; Tauber et al,

2020). Recently, DDX27 was also shown to have a pro-tumorigenic

function in colorectal cancer (Tang et al, 2018), and we observed

using the TCGA data that it correlates with poor prognosis in

endometrial cancer (Fig 6G), as well as in liver and renal cancer

(Appendix Fig S18A and B).

It is noteworthy that PTEN is the most frequently mutated gene

in endometrial cancers (Appendix Fig S18C), but with no drugs

available for its direct reactivation. In line with the mutual exclusiv-

ity property of many SL partners (Unni et al, 2015; Varmus et al,

2016), we also found that endometrial tumors harboring loss-of-

function PTEN mutations had much lower expression levels of

DDX27 (Fig 6H, P = 1.29 × 10−21, Wilcoxon test), and this property

was also significant in the TCGA Pan-Cancer dataset (Appendix Fig

S18D, P = 1.06 × 10−19). In support of this observation, patients

with downregulated PTEN and DDX27 tended to have better

survival probability, compared to patients in which is not the case

(Appendix Fig S18E). The mechanistic basis of this co-dependency

is likely through the effects on protein synthesis and translation.

The loss of PTEN induces an increased physical association of
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Figure 6. Identification of novel synthetic lethal interactions.

A Proportion of KRAS-mutated (Mut) and KRAS wild-type (WT) cancer cell lines with KRAS identified as a rCCS gene. P-value was calculated with Fisher’s exact test.
B The modalities that support the rCCS status of KRAS and the proportion of cell lines having that evidence in the KRAS-mutated cell lines (n = 155).
C Proportion of PIK3CA-mutated (Mut) and PIK3CA wild-type (WT) cancer cell lines with PIK3CA identified as a rCCS gene. P-value was calculated with Fisher’s exact test.
D The modalities that support the rCCS status of PIK3CA and the proportion of cell lines having that evidence in the PIK3CA-mutated cell lines (n = 140).
E Systematic identification of cancer driver genes specific to epithelial cancer cell lines (n = 737) under multiple settings of CLIP run. rCCS genes identified by CLIP are

enriched for known cancer drivers compared to non-driver genes, even after excluding the FUNC data modality from the CLIP approach. Boxes represent the
interquartile range, whiskers represent the range of the values and solid line within the box correspond to the median value. Statistical significance was assessed
with Wilcoxon test.

F Proportion of PTEN-mutated (Mut) and PTEN wild-type (WT) cancer cell lines in which DDX27 was identified as a rCCS gene. P-value was calculated with Fisher’s
exact test.

G The modalities that supported the rCCS status of DDX27 and the proportion of cell lines having that evidence in the PTEN-mutated cell lines (n = 77).
H Survival analysis based on mRNA expression levels of DDX27 in patients with endometrial cancer in the TCGA dataset. Expression levels were divided into 2 classes,

high (n = 203) and low (n = 322), based on mean expression level of DDX27 (logFPKM = 18.27). Patients in the high class showed lower survival probability than
those in the low class (P = 4.2 × 10−4; log-rank test).

I mRNA expression levels of DDX27 in PTEN-mutated (Mut, n = 302) and PTEN wild-type (WT, n = 224) endometrial patient tumors in the TCGA dataset. Triangles
correspond to the median value. P-value was calculated with Wilcoxon test.
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mTORC2 and ribosome, which drives cancer growth while making

the cells stress-prone and vulnerable to apoptosis (Keniry & Parsons,

2008; Zinzalla et al, 2011). Down-regulation of transcripts of RNA

helicases together with a compounded loss of its activity could

severely limit the ability of cells to cope with the induced stress by

preventing the formation of RNA:RNA aggregates, thereby making

the cells apoptosis prone (Ivanov et al, 2019; Tauber et al, 2020).

Discussion

In this study, we first provided a comprehensive and quantitative view

of the reproducibility of multiple data modalities of cancer cell lines by

means of a systematic and non-parametric correlation analyses of

molecular profiles of identical cell lines profiled in different laborato-

ries. In particular, we found out that the profiles based on genomic

technologies, such as transcriptome and copy number alterations

(CNV), are highly consistent across the laboratories (Fig 1D). This is

rather expected, given the robustness and maturity of the sequencing

and hybridization techniques. Contrary to our expectations, we found

that that the consistency of point mutational profiles was relatively

low, even though the correlation difference in point mutation profiles

between identical cell lines compared to non-identical cell lines was

still highly significant (Fig 1D). This could be partly attributed to the

correlation metric used for evaluating the reproducibility of binary and

continuous profiles (Matthew’s or Spearman’s), as we observed also a

decrease in correlation of binarized CNV calls compared to continuous

copy number intensity calls (Appendix Fig S19).

While previous studies have also compared the consistency of

genomic profiles between different laboratories (Barretina et al,

2012; Ben-David et al, 2018), their approaches are different from

ours. For instance, Barretina et al (2012) compared the agreement

between cancer cell lines based on mutational frequency of genes in

CCLE with patient tumor-based mutational frequency from the

COSMIC project. Likewise, Ben-David et al (2018) compared the

allelic fraction of somatic variants in 106 cell lines common between

CCLE and GDSC datasets. Interestingly, they observed that 10–90%
of non-silent mutations identified in one dataset were not identified

in the other, suggesting variability in the point mutational profiles

of identical cell lines. We also observed a wide variation in the

correlation of CNV profiles across the laboratories, suggesting that

cell lines might have undergone clonal selection at different research

sites. Such clonal divergence between identical cell lines has

profound implications for the conclusions drawn from experimental

assays performed on cultured cancer cell lines (Ben-David et al,

2018). We also investigated the various technical factors that

contributed to the variability in the reproducibility estimates and

found, for instance, significant discrepancies in the proteomic pro-

files between TMT-labeled and non-labeled MS techniques.

In the next phase, we developed a non-parametric integrative

meta-analysis framework to identify robust molecular determinants,

unique to an individual cancer cell line, that are shared among

multiple data modalities and studies. A particular challenge for the

integrative analysis is that the different research sites have profiled

different panels of cell lines, making it difficult to derive robust esti-

mates for every cell line. Nevertheless, we found extensive profiling

information of breast cancer cell lines across multiple sites, which

served here a purpose for evaluating the performance of our

approach. We demonstrated that our reproducibility-based integra-

tive framework was able to identify well-established breast cancer

driver genes as robust cancer cell line-specific (rCCS) genes using

the available omics data from the set of breast cancer cell lines.

Further, we extended this bottom-up approach for the identification

of individual CCS genes and demonstrated that this approach also

recapitulates the known drivers at a broader sub-group level, such

as the well-established ER+ and HER2+ subtypes of breast cancer.

We also benchmarked CLIP’s performance and showed that CLIP

was able to identify a much higher fraction of known breast cancer

driver genes, compared the MOFA+ method (Fig 4F). MOFA+ could

identify only five known driver genes of breast cancer subtypes in

the integrative analysis of BROAD datasets, but was unable to iden-

tify any of the gold standard driver genes in other datasets, suggest-

ing that MOFA+ framework may not be optimal for identifying

subtype-specific driver genes. Moreover, CLIP was robust to the

removal of each individual data modality and was able to identify a

similar fraction of the driver genes (Appendix Fig S1D).

The CLIP framework relies on a meta-analysis approach that

accounts for the variability in the observed measures for a gene

across multiple studies using the rank product integration approach.

Our motivation was to use the knowledge from the comparative

evaluations to inform the noise parameters of the integration pipe-

line and to ultimately identify novel cancer-related genes and

synthetic lethal interactions. While batch correction methods such

as ComBat can be applied to computationally reduce the discor-

dance of the heterogeneous datasets (Dempster et al, 2019), it

assumes that the distribution of measured variables is largely simi-

lar between these datasets. However, in our study, we have used

datasets generated from various platforms from multiple studies,

both for genomic/molecular and functional profiling, which there-

fore have very different distributions of measured values. For

instance, the distribution of array-based gene expression measure-

ments is quite unlike RNA-seq based gene expression measure-

ments, not to speak of binary point mutations or CNV

profiles. Thus, instead of taking a traditional approach to computa-

tionally reduce the discordance of the heterogeneous datasets, we

tried to utilize the data directly from the original studies and imple-

mented rather simplistic methods of quantile normalization and

other preprocessing steps that allows the data integration approach

to be easily extendable also to future omics data and emerging stud-

ies, without the need to always test and implement specific discor-

dance reduction strategy for each data modality separately. We

hope the integrative approach and the harmonization procedures

implemented by us and others (Appendix Fig S4) will become useful

for the community for extending the CLIP approach to other omics

data profiles from emerging studies, as well as for developing other

types of meta-analysis approaches that require integrating multi-

omics data from multiple studies.

As an application case, the CLIP framework identified a novel

driver gene, ECHDC1, with a hitherto unknown tumor suppressive

role in breast cancer. Notably, MOFA+ was unable to identify

ECHDC1 as a latent factor shared across data modalities and driving

heterogeneity in breast cancer cell lines (Appendix Fig S3D). More-

over, ECHDC1 could not be identified by analyzing the methylation

modality only, hence demonstrating the need for multi-modal analy-

sis. In particular, by forcing the constraint that a rCCS must be iden-

tified as a CCS gene in at least two modalities, CLIP improves the
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likelihood of identifying true cancer-associated genes. We confirmed

here the tumor suppressive role of ECHDC1 and highlighted a possi-

ble mechanism by which ECHDC1 may contribute to breast tumor

growth. Specifically, we showed that the level of succinate increases

in breast cancer cells with hypermethylated and lowly expressed

ECHDC1. Moreover, it has been shown previously (Zhao et al, 2017;

Dalla Pozza et al, 2020) that higher levels of succinate are associ-

ated with tumorigenesis and cancer progression via dysregulation of

mitochondrial function, a hypoxic environment and production of

ROS, which all have established roles in the etiology of cancer

development. Additionally, several tumors are also known to have

inactivating mutations in the SDH (Dalla Pozza et al, 2020), succi-

nate dehydrogenase, the enzyme that processes succinate and feds

into the TCA cycle.

We further applied the CLIP framework to identify context-speci-

fic synthetic lethal relationships with well-known cancer driver

genes in a wider panel of cancer cell lines from multiple cell types.

Notably, CLIP identified oncogenes as rCCS genes much more

frequently, even after removing the FUNC modality from the model

(Fig 6E), suggesting the advantage of integrating across multi-modal

datasets. In addition to capturing the known aspects of oncogenic

dependency, we identified a novel co-dependency relationship

between PTEN loss-of-function mutations and RNA helicase enzyme

DDX27. The cancer cell lines that had a higher prevalence of loss-of-

function mutations in PTEN had lower expression of DDX27, and

this mutually exclusive genetic interaction was particularly strong in

endometrial cancers (Fig 6H and I). CLIP also identified a SL

interaction between PTEN and DHX30, also a known RNA helicase.

However, endometrial cancer patients with downregulated PTEN

and DHX30 tended to have worse prognosis, compared to patients

where this is not the case (Appendix Fig S19B); this suggests that

not all the SL interactions identified by CLIP are supported by the

survival analyses in the patient cohorts. This may be attributed

either to the current statistical testing of SL interactions in the cell

line data, that may identify SL interactions that are not clinically

relevant, or to the limitations of the patient cohorts such as small

sample sizes of patient subsets with the CLIP signature or limited

patient annotations (Liu et al, 2018).

In summary, firstly, this study provides to date the most compre-

hensive perspective on the reproducibility of the genomic, molecu-

lar, and functional profiles of cancer cell lines and delineates

specific factors that contribute to the consistency that should be

considered in future studies. Secondly, to provide solution to the

sub-optimal consistency, we developed an integrative meta-analytic

framework for leveraging robust and reproducible signal from vari-

ous modalities of molecular profiles that also accounts for the

observed variation between datasets generated at different laborato-

ries. The analytic choices of the CLIP approach were based on the

reproducibility analysis of the multi-omics datasets. Finally, this

study also demonstrates the potential of such integrative approaches

for identification of novel molecular features having a confirmed

role in breast cancer. We expect this approach will lead to many

more exciting discoveries once more multi-omics profiling data

become available also from other cancer types.

Materials and Methods

Reagents and Tools Table

Reagent/Resource Reference or Source Identifier or Catalog Number

MDA-MB-231 American Type Culture Collection (ATCC) ATCC
® HTB-26™

BT-549 American Type Culture Collection (ATCC) ATCC
® HTB-122™

CAL-148 American Type Culture Collection (ATCC) ACC-460

MFM223 American Type Culture Collection (ATCC) ACC-422

DU4475 American Type Culture Collection (ATCC) ACC-427

BT474 (HTB-20) American Type Culture Collection (ATCC) ATCC
® HTB-20™

CAL120 American Type Culture Collection (ATCC) ACC-459

HS578T American Type Culture Collection (ATCC) ATCC
® HTB-126™

CAL51 American Type Culture Collection (ATCC) ACC-302

CAL851 American Type Culture Collection (ATCC) ACC-440

MCF7 American Type Culture Collection (ATCC) ATCC
® HTB-22™

SKBR3 American Type Culture Collection (ATCC) ATCC
® HTB-30™

BT20 American Type Culture Collection (ATCC) ATCC
® HTB-19™

T-47D American Type Culture Collection (ATCC) ATCC
® HTB-133™

MCF10A American Type Culture Collection (ATCC) ATCC
® CRL-10317™

HEK293T American Type Culture Collection (ATCC) ATCC
® CRL-11268™

Recombinant DNA

LentiCRISPRv2 Addgene Cat #52961

pCMV-VSV-G Addgene Cat #8454
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Reagents and Tools table (continued)

Reagent/Resource Reference or Source Identifier or Catalog Number

pCMV-dR8.2 Addgene Cat #8455

Oligonucleotides and other sequence-based
reagents

ECHDC1 guide RNAs This study Dataset EV5

PCR primers This study Dataset EV6

Chemicals, Enzymes and other reagents

OneTaq® DNA Polymerase New England Biolabs Cat # M0480

Collagen type 1 from rat tail Sigma-Aldrich C7661-50MG

Alexa Fluor 568 phalloidin Life Technologies A12380

Hoechst 33342 Thermo Scientific 62249

Software

CorelDRAW 2020 Corel www.coreldraw.com

ImageJ Abramoff et al (2004) imagej.nih.gov/ij/

Other

Applied Biosystems ABI3730XL DNA Analyzer Applied Biosystems www.thermofisher.com

Zeiss AxioImager.Z1 Carl Zeiss www.zeiss.com

Axiovert 200 Carl Zeiss www.zeiss.com

Methods and Protocols

Publicly available datasets reused in the multi-modal
meta-analysis
The Broad Institute, Cambridge, USA (abbreviation: BROAD)

The Broad institute is carrying out a number of large-scale cell line pro-

filing projects such as the Cancer Cell Line Encyclopedia (CCLE)

(Barretina et al, 2012; Ghandi et al, 2019), Cancer Dependency Map

(DepMap) (Tsherniak et al, 2017; Meyers et al, 2017), and Cancer

Therapeutic Response Portal (CTRP) (Basu et al, 2013; Seashore-

Ludlow et al, 2015). Specifically, we reused the point mutation profiles

of coding genes among 1,570 cancer cell lines from the DepMap project

(DepMap Broad, 2019). We included point mutations that were either

categorized as pathogenic by the authors or had FATHMM (Shihab

et al, 2013) score ≤ −0.75 and binarized the genes for presence or

absence of a mutation with a functional consequence. The processed

copy number profiles of 1,080 cancer cell lines, generated using the

Affymetrix SNP 6.0 arrays, were obtained from CCLE (DepMap Broad,

2019). Gene-level copy number gain and losses were called using a

stringent threshold of ≥ 1 and ≤ −1, respectively. Genome-wide tran-

scriptomic profiles for protein-coding genes generated with RNA

sequencing for 1,156 cancer cell lines were obtained from the DepMap

resource (DepMap Broad, 2019). Likewise, protein phosphorylation

levels of 217 proteins in 899 cancer cell lines profiled using reverse

phase protein arrays (RPPA) were obtained from the CCLE resource

(Ghandi et al, 2019) and averaged for each protein. Quantitative

proteomic profiles for 375 cell lines were generated using TMT-labeled

multiplexed protocol for sample preparation (Nusinow et al, 2020).

We re-analyzed both the bridge-normalized and non-bridge-normalized

proteome profiles. For methylation profiles, we used averaged gene-

level methylation profiles of promoters situated 1 kb upstream of

transcription start sites for all coding genes in 843 cancer cell lines

generated using reduced representation bisulfite sequencing (RRBS)

method), as provided by the authors of the study. Since the genome-

wide CpG level data were not available, we used the original criteria

for defining the promoter (Ghandi et al, 2019). For functional pro-

files, we used loss-of-function data from the Achilles Project that was

generated with a pooled genome-wide shRNA screening of 501

cancer cell lines (Tsherniak et al, 2017; DepMap Broad, 2019). Gene

dependency scores of each coding gene were estimated using the

DEMETER2 algorithm (Tsherniak et al, 2017). We also re-analyzed

gene dependency scores based on the genome-wide CRISPR-Cas9

knockout screens performed using various pooled sgRNA libraries

from the DepMap portal. The Avana library was screened in 485

cancer cell lines (Meyers et al, 2017), the 120K sgRNA GeCKO v2

library was screened in 33 cancer cell lines (Aguirre et al, 2016), and

the Sabatini library was screened in 15 acute myeloid leukemia

(AML) cell lines (Wang et al, 2017). All the raw data for the knock-

out screens were processed by the Ceres algorithm (Aguirre et al,

2016) and downloaded from the DepMap or Achilles data portal.

Drug response profiles of cancer cell lines for CCLE and CTRP v2

were obtained from the PharmacoDB database where the cell line

identifiers were pre-harmonized (Smirnov et al, 2018), and the drug-

induced viability response was estimated using the Drug Sensitivity

Score (DSS2), previously developed in the group (Yadav et al, 2014).

While CCLE screened 24 compounds against 504 cell lines, the CTRP

v2 dataset was generated by screening 544 compounds against 887 cell

lines. Both of the drug sensitivity screens were based on CellTiter-Glo

(CTG) assay to measure cell viabilities.

The Sanger Institute, Hinxton, UK (abbreviation: SANGER)

The Sanger Institute has also carried out several studies for molecu-

lar characterization of cancer cell lines, performed under the Geno-

mics of Drug Sensitivity in Cancer (GDSC) project (Garnett et al,

2012; Yang et al, 2012; Iorio et al, 2016; Van Der Meer et al, 2018).

We re-analyzed mutational profiles of 1,000 cancer cell lines for
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coding genes from the COSMIC Cell Lines project generated by whole

genome sequencing (Bamford et al, 2004). We selected mutations

that were categorized as pathogenic or had FATHMM score ≤ −0.75
and binarized the genes for presence or absence of a point mutation

with a functional consequence. Copy number profiles for 991 cancer

cell lines generated using the Affymetrix SNP 6.0 arrays and

processed with the PICNIC (Greenman et al, 2010) algorithm were

obtained from the GDSC portal (Yang et al, 2012). The resulting total

copy number calls were normalized by the ploidy level as follows:

Copy NumberðCNÞNormalized ¼
Copy NumberPICNIC

Ploidy level
�1

Gene copy number gains and losses were called by setting a

threshold of ≥ 0.5 and ≤ −0.5, respectively, for the normalized copy

number values. The RMA normalized gene expression profiles gener-

ated by Affymetrix Human Genome U219 array for 1,156 cancer cell

lines were available from the GDSC portal (Yang et al, 2012). For

methylation profiles (Yang et al, 2012), raw intensities generated by

Illumina HumanMethylation450 BeadChip were processed using the

Illumina Methylation Analyzer (IMA) R package (Wang et al, 2012).

Quality control was performed by removing CpG sites with missing

rate > 5% and detection P > 0.05. For the Illumina array-based

methylation data, pre-annotated indices of CpG sites within the

1,500 kb (as supplied by the manufacturer) were used as the closest

approximations for defining gene promoter methylation. Gene-level

methylation intensities were obtained by averaging the methylation

levels of CpG sites located in the annotated promoter site of each

gene within a range of 200–1,500 base pairs (bp) upstream of the

transcription start site. Ultimately, methylation levels for ~ 19,000

coding genes in 1,026 cancer cell lines were available for further

analyses. Drug response profiles of 250 compounds tested in 1,075

cell lines were quantified using the DSS2 method (Yadav et al, 2014)

for GDSC1000 dataset, as obtained from the PharmacoDB database

(Smirnov et al, 2018). Drug sensitivity screens were based on fluores-

cent nucleic acid stain probe Syto 60 assay to measure cell viabilities.

Additionally, proteomic and phospho-proteomic profiles of 50

colorectal cancer cell lines generated by multiplexed quantitative

mass spectrometry (MS)-based proteomics technology were made

available at the Sanger Institute (Roumeliotis et al, 2017). Multiplex-

ing was performed by the isobaric labeling technology with tandem

mass tag (TMT) reagents. Normalization step involved row-mean

scaling of column-normalized calculation of intensities. Since we

observed a minimal overlap between the phospho-peptides of

proteins that were identified using MS in this study, when compar-

ing to the protein residues profiled using targeted RPPA in other

studies, we averaged multiple phospho-peptides corresponding to

the same protein to generate protein-level phosphorylation esti-

mates. Gene dependency profiles were generated at the Sanger Insti-

tute as a part of Project SCORE for 324 cell lines with a pooled

genome-wide CRISPR-Cas9 knockout screens performed using two

pooled sgRNA libraries, the Human CRISPR Library v.1.0 and v.1.1

(Behan et al, 2019). We used the copy number bias-corrected count

fold changes as a measure of gene dependency in our analyses.

Genentech Inc., USA (abbreviation: gCSI)

We reused gene expression profiles and mutation calls for 675 cell

lines generated by RNA sequencing (Klijn et al, 2015). For the point

mutation data, we included the mutations whose annotations were

already provided by the study authors, categorized as deleterious

using variant function annotator methods, such as SIFT (Kumar

et al, 2009), Condel (Gonz�alez-P�erez & L�opez-Bigas, 2011), and

PolyPhen (Ramensky, 2002). To be consistent, for the subset of

unannotated mutations, we further annotated the variants using

FATHMM (Shihab et al, 2013) and selected mutations with score

≤ −0.75, and binarized the genes for presence or absence of a muta-

tion with a functional consequence. Gene copy number profiles for

668 cancer cell lines were generated using the Illumina Huma-

nOmni2.5 4v1 arrays and processed with the PICNIC algorithm. We

used ploidy-corrected copy number calls to categorize the amplifi-

cations and deletions. Copy number gains and losses were called by

setting a threshold of ≥ 0.5 and ≤ −0.5, respectively. Drug response

estimates for 16 compounds tested in 409 cell lines and quantified

using the DSS2 method (Yadav et al, 2014) were available from the

PharmacoDB database (Smirnov et al, 2018). Drug sensitivity

screens were based on CellTiter-Glo (CTG) assay to measure cell

viabilities.

National Cancer Institute, USA (abbreviation: NCI60)

The NCI-60 cancer cell line profiling data were extracted through

the CellMiner data portal (Shankavaram et al, 2009), followed by

further processing for the meta-analyses. Mutational profiles were

generated by exome sequencing. We included the mutations that

were categorized as deleterious by the SIFT (Kumar et al, 2009) and

MA (Reva et al, 2011) variant function annotators, which were

provided by the CellMiner data portal. We further annotated the

variants using FATHMM (Shihab et al, 2013), selected those vari-

ants with score ≤ −0.75, and binarized the genes for presence or

absence of a mutation with a functional consequence. We used

summarized log-scale intensities representing copy number profiles

generated by combining probe intensities from four platforms (Agi-

lent Human Genome CGH Microarray 44A, Nimblegen HG19 CGH

385K WG Tiling v2.0, Affymetrix GeneChip Human Mapping 500k

Array Set, and Illumina Human1Mv1_C BeadChip). A threshold of

≥ 0.4 and ≤ −0.4 was used to call copy number gains and losses,

respectively. Similarly, processed GCRMA normalized gene expres-

sion profiles generated with Affymetrix Human Genome U133 plus

2.0 array was used. For methylation data, raw intensities generated

by Illumina HumanMethylation450 BeadChip were processed. Gene-

level methylation intensities were obtained by averaging the methy-

lation levels of CpG sites located in the annotated promoter site of

each gene within a range of 200 to 1,500 bp upstream of the tran-

scription start site to calculate gene promoter level methylation as

described in the earlier section. Log intensities of protein phospho-

rylation site levels on 94 proteins generated using 162 antibodies by

RPPA were averaged for each protein. For proteomic profiles of the

NCI60 panel cell lines, we used the label-free iBAQ-based quantita-

tive estimates of protein levels (Gholami et al, 2013).

University Health Network, Canada (abbreviation: UHN)

We downloaded the processed datasets from the Breast Functional

Genomics data portal (Marcotte et al, 2016). Log ratios representing

copy number profiles generated using the Human Omni-Quad Bead-

Chip array and processed using the Circular Binary Segmentation

(CBS) algorithm (Olshen et al, 2004) were available for 79 breast

cancer cell lines. A stringent threshold of ≥ 0.4 and ≤ −0.4 was used
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to call copy number gains and losses, respectively. Transcriptomic

profiles were generated for 82 breast cancer cell lines. Log intensi-

ties of protein phosphorylation levels of 193 proteins were generated

using 245 antibodies by RPPA and averaged for each protein. For

gene dependency profiles, we used data from pooled genome-wide

shRNA screen performed on 120 cancer cell lines from breast,

pancreatic, and ovarian tissue types (Koh et al, 2012; Marcotte et al,

2016). Gene dependency scores of each coding gene were estimated

using the DEMTER2 algorithm (Tsherniak et al, 2017).

Oregon Health and Science University, USA (abbreviation:

OHSU_BREAST)

All the processed datasets for breast cancer cell lines were down-

loaded from the Synapse portal (Daemen et al, 2013; Costello et al,

2014). Transcriptomic and genomic profiles were produced by RNA

sequencing and exome sequencing, respectively. Point mutations

were annotated as described in earlier sections using FATHMM

(Shihab et al, 2013). Log ratios representing copy number profiles

generated using the Affymetrix Genome-Wide Human SNP Array

6.0 and processed with the Circular Binary Segmentation (CBS)

algorithm (Olshen et al, 2004) were available for 77 breast cancer

cell lines. A threshold of ≥ 0.5 and ≤ −0.5 was used to call gene

copy number gains and losses, respectively. For methylation data,

raw intensities generated with Illumina Infinium Human Methyla-

tion27 BeadChip Kit were used for the genome-wide detection of

27,578 CpG loci, spanning a total of 14,495 genes. Probe intensities

were processed to derive gene-level methylation intensities by aver-

aging the methylation levels of CpG sites located in the annotated

promoter site of each gene within a range of 200 to 1,500 bp

upstream of the transcription start site. Log intensities of protein

phosphorylation levels of 146 proteins generated by reverse phase

protein lysate arrays were available. We utilized drug response pro-

files of 89 compounds tested in 71 cell lines and quantified using the

DSS2 method (Yadav et al, 2014), extracted from the PharmacoDB

database (Smirnov et al, 2018). Drug sensitivity screens were based

on CellTiter-Glo (CTG) assay to measure cell viabilities.

University of Texas, MD Anderson Cancer Center, USA

(abbreviation: MCLP)

We re-analyzed log intensities of protein phosphorylation levels of

382 proteins generated using 452 antibodies by RPPA for 650 cancer

cell lines were (Li et al, 2017). Intensities for multiple phospho-sites

from each protein were averaged.

Massachusetts General Hospital Cancer Center, USA

(abbreviation: MGHCC_BREAST)

Quantitative proteomic profiles of 41 breast cancer cell lines were

generated using multiplexed quantitative mass spectrometry (MS)-

based proteomics technology (Lapek et al, 2017). Multiplexing was

performed using the isobaric labeling technology with ten-plex

tandem mass tag (TMT) reagent, and the bridge-normalized intensi-

ties were used in the analyses.

University of Washington, USA (abbreviation: UW_TNBC)

We processed the label-free iBAQ-based quantitative proteomic pro-

files of 20 breast cancer cell lines generated using non-multiplexed

label-free quantitative mass spectrometry (MS)-based proteomics

technology (Lawrence et al, 2015).

Novartis, USA (abbreviation: DRIVE)

We made use of gene dependency profiles for 8,195 genes in 398

cancer cell lines for which raw data were generated by pooled

genome-wide shRNA libraries (McDonald et al, 2017). shRNA level

scores were collapsed to gene dependency scores of each coding

gene using the DEMTER2 algorithm (Tsherniak et al, 2017).

Institute for Molecular Medicine Finland (abbreviation: FIMM)

Drug response estimates for 52 compounds tested in 50 cell lines

and quantified using the DSS2 method were obtained from the Phar-

macoDB database (Mpindi et al, 2016; Smirnov et al, 2018; Gautam

et al, 2019). Drug sensitivity screens were based on CellTiter-Glo

(CTG) assay to measure cell viabilities.

Max Planck Institute of Biochemistry, Germany

(abbreviation: MPIB_HGSOC)

We re-analyzed label-free quantitative (LFQ) estimates of proteomic

profiles of 30 ovarian cancer cell lines generated with a label-free

quantitative mass spectrometry-based proteomics technology (Cos-

cia et al, 2016).

Calculation of target addiction score
Since drug response profiles exist in the compound space, we

projected them into gene space to create an additional functional

data modality. To do this, we used our previously described pipeline,

target addiction scoring (TAS), which transforms the drug response

profiles into target addiction signatures (Jaiswal et al, 2019). The

TAS pipeline makes use of drug poly-pharmacology to integrate the

drug sensitivity and target selectivity profiles through systems-wide

interconnection networks between drugs and their targets, including

both primary protein targets as well as secondary off-targets. The

TAS approach is individualized in the sense that it uses the drug

sensitivity profile of each cancer cell line screened separately against

a library of bioactive compounds and then transforms the observed

phenotypic profile into a cell line-specific target addiction profile,

hence enabling ranking of potential therapeutic targets based on

their functional importance in the particular cell line.

We applied the TAS pipeline separately to each cell line drug

response profile considered in the study. First, we obtained the set of

potent protein targets for each drug from various drug-target data-

bases as described previously (Jaiswal et al, 2019; Dataset EV1). For

instance, we retrieved at least one potent target for 349 of the 495

compounds profiled in the CTRP dataset. The rest of the compounds

are either non-targeted drug treatments or compounds with unknown

target profiles. Likewise, protein targets were identified for 201/250

compounds in GDSC; 44/52 compounds in FIMM; 33/89 compounds

in OHSU; 13/16 compounds in gCSI; and 19/25 compounds in CCLE

dataset. For each individual target t, TASt was calculated by averaging

the observed drug response (here, DSS2) over all those nt compounds

that target the protein t. Eventually, we were able to derive the func-

tional TAS profiles for a median of 222 targets in each dataset.

TASt ¼ ∑
nt

i¼1

DSSi
nt

Statistical analyses for reproducibility analyses
Spearman’s correlation analysis was conducted to evaluate the

reproducibility of continuous molecular data types between any two
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studies. The reproducibility analyses were performed on the identi-

cal set of cell lines and on the common set of genes between any

two datasets. Matthews correlation coefficient (MCC) was calculated

to assess the consistency between binarized data types, such as

gene-level mutational profiles, or copy number gain and loss pro-

files. Only the correlation values with P < 0.05 calculated based on

the molecular profiles with ≥ 10 genes or proteins were considered

for further analysis.

Data processing for meta-analysis and integration
Binarized datasets of gene copy number gains and copy number

losses were generated from their continuous CNV profiles using the

study-specific thresholds, as specified above. Protein phosphoryla-

tion intensities from multiple residues mapping to the same protein

were averaged to generate protein-level phosphorylation estimates.

Since the GDSC phospho-proteome study in colorectal cancer cell

lines used global MS technique for protein phosphorylation profiles

(Roumeliotis et al, 2017), only those proteins that were also profiled

in other research sites using targeted RPPA were considered for the

meta-analysis.

Meta-analysis and data integration framework CLIP
In the cell line-specific gene Identification Pipeline (CLIP), we first

define the notion of a Cancer cell line-specific (CCS) gene, and then

quantify the strength of evidence for each gene across data modali-

ties and datasets from different laboratories. In this study, we only

considered data modalities in the gene/protein space, and exclude

drug response-based profiles; however, TAS profiles were derived

from the drug response phenotypes.

For continuous data modalities, i.e., gene expression, protein

expression, gene methylation, protein phosphorylation, drug sensi-

tivity, and gene dependency profiles, the strength of CCS evidence

was estimated using one-class rank product analysis performed

separately for each gene and cell line combination from datasets

across multiple laboratories using RankProduct package (Del Carratore

et al, 2017). For methylation, gene expression, protein expression,

and protein phosphorylation data modalities, genes with pfp < 0.10

were considered significant. As we observed lower consistency

for functional gene dependency profiles, we used a less stringent

threshold of pfp < 0.25 to increase the coverage of identifying

robust CCS genes. These choices were informed by the reproducibility

analyses of the multi-modal profiles.

For binarized data modalities, i.e., copy number gain and loss

and gene point mutation profiles, any alteration that was observed

in ≤ 10% cell lines in any single dataset was considered as a CCS

gene. For cell lines that were profiled in only one study, the rank

product analysis could not be performed, and therefore, we selected

all the top-ranked genes: top-100 genes (0.5% of all genes) for the

continuous variable datasets, except for functional gene dependency

modality (FUNC), where the top-200 genes were considered (1% of

all genes) to account for the higher noise in functional gene

dependency profiles. For the protein phosphorylation datasets,

we selected the top-10 genes (0.5% of all proteins), considering

that 200 proteins were assayed by reverse phase protein arrays

on average.

Genes that were identified as CCS genes in two or more data

modality types are considered in our analyses as robust CCS (rCCS)

genes. Fisher’s exact test was performed to identify the genes that

are enriched in different breast cancer subtypes or pre-defined

subgroups of cancer cell lines. Overall, we applied the CLIP

approach to 1,047 cancer cell lines for which data was available for

≥ 6 modalities (Dataset EV2).

Selection of thresholds for binary CNV calls for CLIP
The categorized CNV modalities (CNV_AMP and CNV_DEL) were

used as inputs in the CLIP pipeline, instead of the continuous CNV

data. Notably, while datasets from BROAD, OHSU, UHN, and NCI60

have been originally processed using the CBS algorithm, data from

GDSC and gCSI have been processed using the PICNIC algorithm.

To make the integrative approach more systematic and unbiased,

we inspected the copy number distributions of two well-known

CNV alterations in breast tumors; ERBB2 which is known to be

frequent amplification, and PTEN which is known to be a frequent

deletion in breast cancer patients (Koboldt et al, 2012). For ERBB2,

we looked at the distribution of its copy number values across all

cell lines in each dataset (Appendix Fig S1A). We then identified the

threshold for calling an amplification in each dataset at the value

where we observed a sharp deflection. For BROAD, this analysis led

to the threshold of ≥ 1 for calling amplifications. For, GDSC, gCSI,

and OHSU, values ≥ 0.5; and for UHN and NCI60, value ≥ 0.4

were considered as amplifications. Similarly, for calling deletions;

BROAD < 1; GDSC, gCSI, and OHSU < 0.5; and UHN and NCI60 <
0.4 were selected for the CLIP meta-analysis based on the analysis

of PTEN deletions (Appendix Fig S1B). We also executed CLIP at

various detection thresholds and did not observe significant dif-

ferences in its ability to identify breast cancer subtype-specific driver

genes that were used for benchmarking the performance of CLIP

(Appendix Fig S1C).

Benchmarking the performance of CLIP against other methods
As the first reference approach, we assessed the relative perfor-

mance of the CLIP framework in comparison to each independent

data modality alone for their ability to identify breast cancer

subtype-specific driver genes. For this benchmark, we first defined

the set of “true” cancer driver genes as identified in the recent study

(Bailey et al, 2018), separately for pan-cancer and breast cancer

tumor types, totaling to a set of 201 genes (Dataset EV3). To evalu-

ate the performance of each data modality, we assumed the gene or

protein expression up-regulation, hypermethylation, and copy

number gains as molecular phenotypes that are likely to correspond

to subtype-specific driver genes. Using the empirical Bayes frame-

work of limma R package (Ritchie et al, 2015), we performed dif-

ferential analysis between the two groups of breast cancer cell lines,

“subtype+” and “subtype−” groups for each data modality and each

study site. Next, for each data modality, we performed rank product

analysis to integrate the evidence for the odds of differential levels,

measured by B-statistic (Ritchie et al, 2015), separately for datasets

from every research site to identify robust subtype-specific driver

genes. Then, we characterized the subtype-specific genes as up-

regulated vs. downregulated, hypermethylated vs. hypomethylated,

gain vs. loss, based on the direction of average fold changes.

Finally, we compared the fraction of true cancer drivers that were

identified by CLIP and each individual data modality for each breast

cancer subtype.

To assess how much the different modalities contributed to the

performance of CLIP, in addition to the base setting of CLIP in
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which all the modalities were included, we also re-ran the CLIP by

removing each data modality one at a time, and measured the frac-

tion of true positive driver genes identified after the removal of the

input datasets (Appendix Fig S1D).

In addition, we also benchmarked our approach against the

Multi-Omics Factor Analysis (MOFA+) method, which models

latent factors for integration of multi-omics datasets (Argelaguet

et al, 2020). MOFA+ is an unsupervised framework for discover-

ing hidden factors that capture biological variability across multi-

ple data modalities as well as within an individual modality.

While MOFA+ has been primarily applied for integrating multi-

omics datasets from a single study site, in principle it can be

applied also to multi-omic datasets from multiple sites. However,

due to the differences in distribution of the omics measurements,

resulting from the various technological platforms that were used

at the various sites for generating the datasets, we chose to apply

MOFA+ to breast cancer cell lines from BROAD, GDSC, OHSU,

and UHN only. Furthermore, we reasoned that the multi-group

framework in MOFA+ could be used to identify the latent factors

that are specific to each breast cancer subtype, even though the

authors of MOFA+ acknowledge that the multi-group framework

is not designed for capturing differential changes between the

groups, but rather to identify the principal sources of variability

that drive each group.

Specifically, we pursued the following strategy for the omics

datasets from each site: (i) For BROAD, we considered CNV,

MUT, METH, GEXP, PEXP, FUNC_CRISPR, and FUNC_RNAI data

modalities. Each dataset was quantile-normalized and subset to

the set of breast cancer cell lines, before running the multi-group

MOFA+ model using its default settings. (ii) The proportion of

variance explained for each group by each data modality/view for

15 latent factors were inspected (Appendix Fig S2), and the

factors and views with the highest variance were then selected

further. (iii) Top-20 (top-10 positive weights and top-10 negative

weights) view-specific features loading on to each factor were

extracted from the MOFA+ model and then compared against the

established gold standard driver genes from a recent study (Bailey

et al, 2018, Dataset EV3).

ECHDC1 identification using alternative approaches
To further challenge the performance of CLIP as multi-modal and

multi-site data integration approach, we assessed whether ECHDC1

could be identified by alternative methods that integrate multi-omics

dataset. First, we applied the MOFA+ method (Argelaguet et al,

2020), which combines datasets from a single research site. Because

ECHDC1 was supported by GEXP and METH modality from CLIP,

we applied MOFA+ method independently to all the datasets that

profiled for methylation in breast cancer cell lines, namely BROAD,

OHSU and GDSC. GEXP modality data from BROAD and OHSU were

log-transformed before input into MOFA+. Otherwise, the MOFA+
method was run using its default options without defining any

groups. We performed the same steps (i)–(iii) as detailed in the

previous section for the BROAD (CNV, GEXP, METH, MUT,

FUNC_AVANA, FUNC_ACHILLES), GDSC (CNV, GEXP, METH,

MUT, FUNC), and OHSU (CNV, GEXP, METH, MUT) datasets. The

other modalities, such as PHOS and TAS, were not considered

because of very low number of features compared to the other

modalities (Appendix Fig S3).

Alternatively, we also devised a simplistic approach to investi-

gate whether ECHDC1 could be identified by analyzing the METH

modality only. As for CLIP, we performed z-scaling for each gene on

quantile-normalized gene-averaged methylation levels on breast

cancer cell lines from each dataset. Next, to identify the outlier

genes (i.e., the CCS genes in CLIP), specific to each cell line, we

selected all the genes that had z-scores above or below 1.66 stan-

dard deviations from the mean z-score in each dataset. Following

this, we checked the frequency of ECHDC1 being identified as an

outlier gene in all the breast cell lines that were profiled in each

dataset. We implemented this approach on methylation datasets

from BROAD and GDSC (Appendix Fig S3). The method could not

be implemented in the OHSU dataset because ECHDC1 methylation

levels were not measured.

Systematic identification of cancer drivers and
oncogenic addictions
We further assessed the ability of CLIP to identify known oncogenic

addictions by utilizing the set of cancer drivers, as defined in Bailey

et al (2018), as true positives. After sub-setting the list of driver

genes to only those that were defined as oncogenes for pan-cancer

and epithelial cancer types, we had a total of 227 oncogenic driver

genes. Next, to benchmark CLIP, we counted the frequency of each

rCCS gene across all the epithelial cancer cell lines. We reasoned

that the true oncogenic addictions will be identified more frequently

as a rCCS gene, when compared to the non-oncogenes. We ran the

CLIP pipeline on the subset of epithelial cell lines, in the following

three settings to identify rCCS genes: (i) including datasets of all

modalities (number of epithelial cell lines = 737); (ii) including

datasets of all modalities, but constraining rCCS gene selection crite-

ria by compulsory identification as a rCCS gene in the FUNC modal-

ity (number of epithelial cell lines = 679); and (iii) including

datasets of all modalities, except FUNC modality (number of epithe-

lial cell lines = 736). Next, we compared the difference in rCCS

frequency between oncogenes and non-oncogenes groups in each

setting using the Wilcoxon test.

Statistical detection of genetic interactions and synthetic
lethal partners
To statistically identify candidate genetic interactions (Gis) between

genes, Fisher’s exact test was performed to evaluate the difference

in the proportion of rCCS genes between two groups of cancer cell

lines, mutated and wild type, for all the well-known cancer driver

genes. For defining the subset of potential synthetic lethal (SL) inter-

actions, we considered genetic interaction partners of only those

rCCS genes that were also identified as essential genes, based on the

evidence from the gene dependency modality (Dataset EV4). Out of

the 2,018 cell lines that were included in the meta-analyses, we

considered 1,047 cell lines for which molecular data were available

in ≥ 6 of the eight data modalities in gene space. Furthermore, we

removed cell lines derived from bone, skin, nervous, and

hematopoietic systems, restricting our interaction analyses to

epithelial cancer cell lines (n = 679). For selecting the mutated

driver genes with relevance in patient tumors, we considered the

highly frequent driver genes in patient tumors from a recent pan-

cancer study of mutational landscape in The Cancer Genome Atlas

(TCGA) dataset (Kandoth et al, 2013) and used a subset of the driver

genes that were mutated in at least five cell lines.
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Benchmarking CLIP for identification of genetic interactions
between paralogs
We assessed the ability of CLIP to identify Gis between paralogous

genes in comparison to using only the FUNC modality dataset. First,

we obtained the list of paralogous genes in the human genome from

the Duplicated Genes Database (DGD) (Ouedraogo et al, 2012). In

total, we had a list 3,543 paralogs in the human genome that are

constituted by 945 unique paralog groups. For instance, ARID1A

and ARID1B are paralogs that belong to a unique group. Briefly, we

conducted a Fisher’s exact test to assess the difference in propor-

tions for rCCS genes between mutant and WT cell lines for each

paralog group. For example, if ARID1A is mutated, then we tested

whether ARID1B is enriched in proportion as a rCCS gene in mutant

vs. WT cell line comparison. Or, vice versa, if ARID1B is mutated,

then we evaluated whether ARID1A is enriched as an rCCS gene in

those cell lines. We performed the genetic interaction analyses on

paralogs that are mutated in at least 10 epithelial cell lines to have

sufficient power to detect robust associations. If any gene from a

paralog group was detected as statistically significant, we record

that as a paralog GI association. Finally, we plot the proportion of

number of unique paralog groups that have a paralog SL/GI associa-

tion in relation to the total number of unique paralog groups that

were tested. Moreover, we ran this analysis in different settings to

evaluate the contribution of FUNC modality to the performance of

CLIP; (i) FUNC Compulsory: GI analysis on rCCS genes from CLIP,

but rCCS gene should be compulsorily identified as a rCCS gene in

the FUNC modality (number of epithelial cell lines = 679). This is

the default setting to identify SL relationships, since a gene has to

be essential and rCCS. (ii) All modalities: GI analysis on rCCS

gene from CLIP (number of epithelial cell lines = 737). Since

essentiality is not mandatory criteria for rCCS calling, these associ-

ations can be generally categorized as genetic interactions. (iii)

FUNC excluded: GI analysis on rCCS gene from CLIP by including

all modalities, except for FUNC modality (number of epithelial cell

lines = 736). Since, gene essentiality is not the included criteria for

rCCS calling, these associations can be generally categorized as

genetic Interactions.

To benchmark the performance of CLIP, we performed GI analy-

sis in each individual FUNC dataset. Using the limma package

(Ritchie et al, 2015), we performed a linear model differential

expression analysis between mutant vs. WT cell lines for difference

in gene essentiality scores. As described above, we subset to para-

logs that are mutated in at least 10 epithelial cell lines. Associations

with P < 0.05 were considered statistically significant. To compare

the differences in proportions of paralogous GI associations using

multiple strategies, we performed two proportions z-test for dif-

ference in proportions of every comparison relative to CLIP setting

(FUNC compulsory).

Survival analysis in the patient tumor cohorts
To perform survival analysis in breast cancer patients with high

statistical power, we combined two patient cohorts with 20-year

follow-up data and molecular profiling: the Metabric cohort (Curtis

et al, 2012), which contains around 2,000 breast cancer patients

with gene expression data, and the Oslo cohort (Fleischer et al,

2014, 2017), which contains 334 breast cancer patients with DNA

methylation data. For the patients with DNA methylation data, an

average DNA methylation level for all pre-annotated indices of CpG

sites within the range of 200–1,500 bp upstream of the TSS was

calculated for each patient. We grouped the patients into two groups

based on gene expression or promoter methylation of ECHDC1. To

capture the effect of loss of tumor suppressor function, we identified

the patients with either low expression or high methylation by

selecting the patient tertile (one-third of the patients) with the

lowest expression or highest methylation (low GEXP group), which

was compared to the rest of the patients (non-low GEXP group).

Subsequently, we performed survival analysis on the two groups

(log-rank test), where age was included as continuous covariate in a

multivariate Cox model. The sex and race were not considered as

relevant factors in Nordic breast cancer patients. Race information

was not available for Metabric patients. The analyses were

performed in R using the packages; survival and rms.

Experimental validation of ECHDC1 knockout
Cell lines

Immortalized breast epithelial cell line MCF10A and breast carci-

noma cell line BT-474 (both American Type Culture Collection;

ATCC) were cultured according to manufacturer’s instructions in a

humidified incubator with 5% CO2 at 37°C and routinely checked

and tested negative for mycoplasma contamination using MycoA-

lertPlus™ Mycoplasma Detection Kit (Lonza) according to manufac-

turer’s instructions.

CRISPR/Cas9-mediated ECHDC1 knockout

Oligonucleotides (Merck) encoding single guide RNAs (sgRNA)

against ECHDC1 (see Dataset EV5 for sequences) were cloned into

LentiCRISPRv2 plasmid (#52961, Addgene) as described previously

(Sanjana et al, 2014). Lentivirus particles were generated by seeding

HEK293T cells at a density of 105 cells per cm2. After 16 h, cells

were transfected with transfer plasmid, packaging plasmids pCMV-

VSV-G (Stewart et al, 2003; #8454, Addgene), and pCMV-dR8.2

(Stewart et al, 2003; #8455, Addgene) using Lipofectamine 2000

(Life Technologies). Supernatants were collected 48 h after transfec-

tion. Cells were infected in 24-well plates with lentiviral particles

(MOI ~ 5) for 24 h in the presence of 8 µg/ml polybrene. The

culture media were replaced for puromycin (Lentiguide; 1 µg/ml)

containing media, and cells were selected for 3 days respectively.

PCR amplification and Sanger sequencing

To confirm the gene knockout, the ECHDC1 target regions were

amplified with corresponding primers (Dataset EV6) using OneTaq®

DNA Polymerase (New England Biolabs; Cat: M0480). After the

initial denaturation at 94°C for 9 min, 30 polymerase chain reaction

(PCR) cycles were performed as follows 94°C for 40 s, 65°C for 30 s,

and 72°C for 40 s. PCR-amplified products were purified using a

PCR purification kit (Macherey-Nagel) and sequenced using Sanger

sequencing (Applied Biosystems ABI3730XL DNA Analyzer).

Invasive growth assay

Control and ECHDC1 knockout, MCF10A and BT-474 cells were

embedded as 5 × 103 single cells (MCF10A) or 5 × 102 cell-

spheroids (BT-474) in 3D collagen drops. BT-474 cells were allowed

to form tumor-representing cell-spheroids for 24 h as 5 µl hanging
drops in complete media. Rat tail collagen type I (Sigma-Aldrich)

was dissolved in 0.25% acetic acid and diluted 1:1 with 2× MEM

(Gibco) to final concentration of 2.25 mg/ml. Cells and pre-formed
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spheroids were embedded in 30 µl collagen and incubated at 37°C
up to 5 days. Cell growth was followed daily by phase-contrast

imaging using inverted epifluorescence microscope (Axiovert 200;

Carl Zeiss). Collagen 3D drops were fixed at 0, 24, 48, 72, 96, and at

120 h using 4% PFA for 1 h at room temperature (RT).

Immunofluorescence and imaging

Fixed 3D collagen drops were post-fixed with ice-cold 1:1 acetone-

methanol for 45 s and blocked with 15 % FBS—0.3% Triton-X in

PBS for 2 h at RT. Drops were incubated with Alexa Fluor 568 Phal-

loidin (1:40; ThermoFisher Scientific) for 4 h at RT, washed with

0.45 % Triton-X in PBS followed by Hoechst 33342 staining (10 µg/
ml; ThermoFisher Scientific) for 30 min at RT. After PBS, wash

drops were mounted with Vectashield Antifade Mounting Medium

(Vector laboratories).

Light micrographs were taken by using Zeiss AxioImager.Z1

upright epifluorescence microscope with Apotome combined with a

computer-controlled Hamamatsu Orca R2 1.3-megapixel mono-

chrome CCD camera and ZEN software. 20× Plan Apochromat 0.8

NA objective was used. Immunofluorescence quantifications were

done by using ImageJ (Abramoff et al, 2004), and post-acquisition

image processing was performed using CorelDRAW 2020 software

(Corel). Statistical analysis was carried out using one-way ANOVA

with Tukey’s multiple comparison test.

Metabolite assay of intermediates in ECHDC1 pathway
A total of 14 breast cell lines (see Dataset EV7), 7 for ECHDC1 rCCS

positive (rCCS+) and 7 for rCCS negative (rCCS−), were selected for

subsequent metabolite assays based on their ECHDC rCCS status. In

total, 42 samples (14 lines with 3 replicates) were run with UPLC-

MS (MRM) method, each sample containing ca. 4 × 106 cells.

Culture conditions for each cell line are detailed in Dataset EV7.

Quenching protocol for adherent cells involved the following

steps: Cells were washed with 2× volume of cold phosphate-

buffered saline (PBS) and incubated with trypsin (TrypLE™ Express

Enzyme (1×), #12605010, Invitrogen) at 37°C until the cells

detached. Trypsin was inactivated by adding an equal volume of

cold fetal bovine serum (FBS, #10270-106, Invitrogen). The cells

were counted and centrifuged at 400 × g for 5 min at 4°C. The cells

were washed with 2× volume of cold PBS, each time centrifuging at

400 × g for 5 min at 4°C. For each sample, 4 × 106 cells were resus-

pended in 500 μl of cold PBS and centrifuged at 400 × g for 5 min at

4°C in 1.5 ml microcentrifuge tube. The cells were quickly washed

with 2× volume of deionized water, not disturbing the pellet and

not exposing the cells to water for more than 4–5 s. All water was

aspirated from the tube. The cells were frozen in liquid nitrogen and

stored at −80°C.
The protocol for cell disruption and extraction was adapted from

a previously described method (Dettmer et al, 2011). Briefly, cells

disrupted with a combination of freeze-thaw cycle (−80/+4°C) and
sonication. 1,000 µl of 80% MeOH (Honeywell, Riedel-de-Ha€en™,

Seelze. Germany) and 10 µl of internal standard (ISTD) (conc.

10 µg/ml) was added to the purified cells. Then samples were ultra-

sonicated in ice bath for 10 min, put to liquid nitrogen back and

forth three times. After cell disruption, samples were vortexed for

an hour, centrifuged at 21,500 g for 5 min at +4°C. The second

extraction was performed with 600 µl of 100% MeOH for 30 min.

The supernatant (1,600 µl) was dried under vacuum (MiVac Duo

concentrator, GeneVac Ltd, Ipswich, UK), reconstituted to 50 µl of
0.1% formic acid in acetonitrile (ACN)/H2O (Honeywell, Riedel-de-

Ha€en™, Seelze. Germany), and run with UPLC-QTRAP/MS with ESI

(+) and (−) switching (ExionLC UPLC, ABSciex; 6500+ QTRAP-MS,

ABSciex).

Ten microliter (μl) of extract was injected into the LC column

with the mobile phase flow of 0.4 ml/min at +35°C. The LC separa-

tion was carried out on a reversed-phase UPLC-column (Waters

Acquity BEH C18, 150 × 2.1 mm, Ø 1.7 µm). A gradient elution of

the analytes was achieved using a program with mobile phases A

(aqueous 0.1% formic acid) and B (0.1% formic acid in ACN). The

linear gradient started at 99% A and 1% B was held for 2 min and

proceeded from 1% B to 10% in 2 min, 10% B to 90% in 2 min,

held at 90% for 1 min, then switched back to 1% B and left to stabi-

lize for 2 min. Total run time of 9 min.

In total, 12 metabolites were analyzed from the cells: aspartate

(Asp), glutamate (Glu), glutamine (Gln), α-ketoglutarate (α-KG),
fumarate, succinate, malate, citrate, isocitrate, 2-hydroxy-3-methyl-

butyrate (2OH-3MBA), malonate, and methylmalonate (MMA). D3-

methylmalonate (D3-MMA) was used as an ISTD. Multiple Reaction

Monitoring (MRM) transitions for 13 analytes were monitored: m/z

134/74 for Asp, 148/56 for Glu, and 147/84 for Gln in positive

mode; and m/z 145/83 for α-KG, 114.9/71 for fumarate, 117.1/73

for succinate, 132.8/71 for malate, 190.8/111 for citrate, 190.8/73

for isocitrate, 117.1/71 for 2OH-3MBA, 103/59 for malonate, 117/73

for MMA and 120/76 for D3-MMA (ISTD) in negative mode. Cali-

bration curves with five standard mixes (conc. 100, 10, 1, 0.1, and

0.01 μg/ml) were used for quantification for all 12 metabolites.

The samples were not normalized to cell count, but only for ISTD,

hence unit μg/ml.

Prediction of ECHDC1 function with gene co-regulation analysis
We used the Gene-Module Association Determination (G-MAD)

algorithm, implemented in the GeneBridge toolkit (Li et al, 2019), to

predict the gene function of ECHDC1. G-MAD considers transcrip-

tome data sets from six species (human, mouse, rat, fly, worm, and

yeast), and performs a competitive gene set testing method—Corre-

lation Adjusted mEan RAnk gene set test (CAMERA) (Wu & Smyth,

2012), which adjusts for inter-gene correlations to compute the

enrichment between gene-of-interest and biological modules. Gene-

module connections with enrichment P-values that survive multiple

testing corrections of the gene or module numbers are scored

and normalized (range: −1 to 1). We restricted our analysis to

breast tissue datasets (n = 153), compiled in the GeneBridge

expression database to enrich for breast tissue-specific associations

(Dataset EV8).

Data availability

The datasets and computer code utilized in this study are available

in the following repositories:

• Computer scripts: GitHub (https://github.com/jaiswal-alok/clip-

meta).
• Datasets: Figshare (https://doi.org/10.6084/m9.figshare.13473168).

Expanded View for this article is available online.
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