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Andreev-reflection spectroscopy of elemental superconductors in contact with nonmagnetic normal metals 

reveals that the strength of normal-reflection varies only slightly. This observation imposes strong constrictions 

on the three possible normal-reflection mechanisms: tunneling through a dielectric barrier, reflection due to the 

different electronic properties of the two electrodes, and diffusive transport caused by elastic scattering in the 

contact region. We discuss in detail the role played by Fermi-surface mismatch, represented by the different 

Fermi velocities on both sides of the contact interface. We find that it is at least not the dominant mechanism and 

possibly completely absent in the Andreev-reflection process. 

PACS: 85.30.Hi Surface barrier, boundary, and point-contact devices; 

73.40.–c Electronic transport in interface structures; 

74.45.+c Proximity effects; Andreev reflection; SN and SNS junctions. 

Keywords: point contacts, metal interfaces, normal reflection, Andreev reflection. 

 

 

1. Introduction 

How do electrons cross a direct interface between a 

normal and a superconducting metal? At a tunnel junction 

the superconducting gap suppresses electron transport at 

small energies around the Fermi level. At a direct contact 

with no or only a very weak tunneling barrier, Andreev 

reflection transfers an additional electron for each incident 

one to form a Cooper pair in the superconductor. In an 

alternative picture the Cooper pair is composed of the inci-

dent electron plus a newly created one by emitting a hole. 

Because of energy and momentum conservation this hole 

travels back through the contact and into the normal con-

ductor along almost the same path taken by the incident 

electron. Normal reflection as the natural counter part of 

Andreev reflection enhances the interface resistance, nor-

mal reflection of the second electron or the retro-reflected 

hole creates the characteristic double-minimum structure 

of the Andreev-reflection resistance spectra. While the role 

of Andreev reflection in the transport process across the 

interface is understood [1], the normal-reflection part is far 

from being settled. 

Normal reflection at a metal interface reduces its 

transmission coefficient 2=1/(1 )Z  to below unity. 

The dimensionless Z parameter represents the strength of 

a -function tunneling barrier that approximates a more 

realistic rectangular barrier of finite height  and width 

w according to = / FZ w v  for electrons with (aver-

age) Fermi velocity Fv  [1]. Two other mechanisms con-

tribute to normal reflection. First, Fermi-surface mismatch, 

again in terms of a -function barrier, adds =FSMZ  

|1 | /(2 ),r r  where 1 2= /F Fr v v  is the ratio of Fermi 

velocities of the two electrodes [2]. Second, diffusive 

transport through the contact region conserves electron and 

hole energies in elastic scattering processes, but not their 

momentum. This allows partial backscattering of the inci-

dent electron as well as the second electron or the retro-

reflected hole. A diffusive contact is thought to consist of 

a certain number of modes, each mode i  has its own 

transmission coefficient .i  An ideal long diffusive junc-
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tion has a distribution of transmission coefficients which 

sums up to a single diff 0.55Z  [3,4]. 

Real contacts could have any combination of those 

three mechanisms. Unless one of them dominates, separat-

ing the different contributions requires that they do not 

depend on each other, for example when the tunneling bar-

rier sits at the end of the diffusive channel, or on one side 

of the interface and not on the other, with the total 

2 2 2
diff .FSMZ Z Z Z  Real contacts are probably more 

intricate than described by a -function barrier [2,5]. How-

ever, before invoking more involved and speculative mod-

elling, one should try to explain the experimental data by 

starting with the most basic mechanisms mentioned above. 

Naidyuk et al. [6] as well as Naidyuk and Yanson [7] 

have noticed that S (superconducting)–N (normal) point 

contacts, including those with unconventional heavy-

fermion and high-temperature superconductors, often have Z 

parameters between 0.4 and 0.5, and that those contacts 

could be in the diffusive limit. During the last couple of 

years we have found similar 0.5Z  values for many S–N 

combinations over a wide range of contact resistances or 

lateral contact sizes that can not be explained by a dielectric 

barrier [8–10]. Since point contacts between conventional 

metals and heavy-fermion compounds with up to two orders 

of magnitude smaller Fv  also have 0.4 0.5Z  [7], Fer-

mi-velocity mismatch does not seem to be a valid approach. 

That is why our initial interpretation of point-contact exper-

iments with superconducting niobium and conventional 

metals [8], which we will revise here, was based on the 

mismatch of Fermi momentum. Additionally, niobium pro-

vides such a wide margin of possible Fermi wave numbers 

from less than 4 nm
–1

 up to 22 nm
–1

 that one can almost 

freely pick a suitable one [8]. 

We show here by comparing Andreev-reflection data of 

contacts between elemental superconductors and nonmag-

netic normal metals that Fermi-surface mismatch is not the 

dominant mechanism of normal reflection. Moreover, we 

suggest that even theoretically Fermi-surface mismatch 

does not affect normal reflection of the Andreev-reflected 

holes. 

2. Experiments and results 

We fabricated the point-contact interfaces using the 

shear (crossed wire) method by moving the two sample 

wires towards each other until they touch at one spot [11]. 

Before the contact is set, the wires slide against each other 

and, thus, either remove or break up possible remains of an 

oxide layer, improving the chance that the contacts are 

formed between relatively clean surfaces. The normal con-

ductors were silver (Ag), gold (Au), copper (Cu), palladi-

um (Pd), and platinum (Pt), and the superconductors alu-

minum (Al, Tc = 1.2 K), cadmium (Cd, 0.56 K), indium 

(In, 3.4 K), niobium (Nb, 9.2 K), tantalum (Ta, 4.4 K), tin 

(Sn, 3.7 K), titanium (Ti, 0.5 K), and zinc (Zn, 0.87 K). 

The wires had a diameter of 0.25 mm except Al (0.5 mm), 

Cd (1.0 mm), and In (1.5 mm). Surface treatment did not 

noticeably affect the spectra with two exceptions that had 

otherwise enhanced Z values or stronger normal reflection. 

The oxide layer of Nb was removed using fine abrasive 

paper, and that of Zn by dipping the wire in dilute HCl 

acid. Before installing and cooling down, the wires were 

cleaned in an ethanol ultrasound bath. 

The contacts were measured in the vacuum region of a 

dilution refrigerator. A dc current I  with a small super-

posed ac component dI  ran through the contact, and the 

voltage drop V dV  across the contact was measured to 

obtain the ( )I V  characteristics as well as the differential 

resistance spectrum / ( ).dV dI V  In addition to S–N contacts 

we have also investigated S1–S2 junctions between two 

different superconductors S1 and S2 that had critical tem-

peratures 1 2 ,c cT T  for example Nb–Al or In–Zn, above 

2cT  to drive superconductor S2 normal while S1 still re-

mains superconducting. Strong superconductors S1 = In, 

Ta, and Nb needed temperatures well above 2cT  to sup-

press proximity-induced superconductivity in S2. The 

spectra were fitted using the modified BTK theory [12,13] 

that includes Dynes’ lifetime parameter  [14]. This mod-

el contains only two other adjustable parameters, the ener-

gy gap 2  and the Z  parameter. The differential re-

sistance at large bias voltages coincided with the normal 

contact resistance .NR  Not all contacts revealed the typical 

Andreev-like spectra that could be easily analyzed, but had 

additional anomalies. Find examples for the distribution 

between “good” and “bad” contacts in Ref. 10. 

Figure 1 shows representative spectra of a Zn–Ag con-

tact as function of temperature together with the fit param-

eters. The energy gap 2 ( )T  follows closely the theoreti-

cal BCS curve [15], while ( )Z T  and ( )T  barely depend 

on temperature. The Z  parameter could be determined 

within 0.01Z  when the Andreev-reflection double-

minimum structure is visible. Near cT  we kept Z  constant 

and adjusted only 2  and .  

Figures 2–5 show the Z  parameters as function of con-

tact resistance NR  for various S–N combinations. Note 

that in many cases from small resistances of less than 1  

(contact diameter 30  nm) to above 1k  (contact diam-

eter 1  nm) the Z  parameter stays rather constant at 

around 0.5. At higher resistances above 1k  the contacts 

typically had larger Z  values, probably because small 

interface areas are more susceptible to the surface quality. 

Also the cleaning mechanism of the shear contacts does 

not seem to work well with a soft counter electrode like In 

as shown in Fig. 2(c) where some of the In–Zn contacts 

had large Z  already at small NR . Some of the Al contacts 

in Fig. 3 had Z  down to 0.3 in the 100 1000NR  

range [9]. Since this was accompanied by enhanced 2  

and ,  we suspect that those small Z  values could be 

artefacts caused by inhomogeneous superconductivity in 

the contact region. 
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3. Discussion 

Our main experimental results in Figs. 2–5 confirm ear-

lier observations that S–N contacts have rather similar Z 

parameters around 0.5 [6–10]. Explanations based on a 

dielectric tunneling barrier, Fermi-surface mismatch, or 

diffusive contacts, have to reproduce the very small varia-

tion of Z. 

The question of a dielectric interface barrier can be re-

solved most easily. Such a barrier, or its remnants, could 

be present because we have prepared the contacts at ambi-

ent conditions. However, if tunneling would be the domi-

nant mechanism one would expect a much larger variation 

of Z  not only from metal-to-metal combination but also 

from contact to contact [10]. The experimental data in 

Figs. 2–5 demonstrate the opposite, therefore 0.5Z  

for contacts with 1k .NR  We can not exclude that 

Fig. 1. (Color online) Spectra of a Zn–Ag contact at discrete tem-

peratures from 0.075 to 0.90 K. The insets show as function of 

temperature T: (a) zero-bias resistance read off the spectra (open 

symbols) as well as that recorded during the following cool down 

(solid line); (b) Energy gap 2  and Dynes’ parameter . The solid 

line is the theoretical BCS curve adjusted for Tc = 0.85 K and 

2 (T  0) = 255 eV; (c) Z parameter. The arrow marks the 

temperature above which Z was kept constant. 

Fig. 2. (Color online) Z parameter of S–N contacts of (a) In–Ag, 

(b) Zn–Ag, and (c) of S1–S2 contacts In–Zn. The In–Ag as well 

as the Zn–Ag contacts were measured 0.1 K, the In–Zn contacts 

at 2.5 K to suppress superconductivity in Zn. Different symbols 

denote measurement series with different sample wires from the 

same batch. The thick solid lines represent an average Z = 0.45 

with a 0.05 bandwidth. 

Fig. 3. (Color online) Z parameter of S–N contacts of (a) Al–Au, 

(b) Al–Pd, and (c) Al–Pt. All contacts were measured at 0.1 K. The 

thick solid lines indicate the average Z with a 0.05 bandwidth. 

Fig. 4. (Color online) Z parameter of S1–S2 contacts of (a) Al–Zn,  

(b) Ta–Al, and (c) Nb–Al. The Al–Zn contacts were measured in the 

normal state of Zn around 0.85 K, while the Ta–Al and Nb–Al con-

tacts were measured at 2.5 K or higher to suppress proximity-induced 

superconductivity in the otherwise normal Al. The thick solid lines 

indicate the average Z with a 0.05 bandwidth. 
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tunneling plays a role for some of the In–Zn and Ti–Ag 

contacts which, nevertheless, agree with the lower bound 

of 0.4 0.5.Z  

The second reflection mechanism, Fermi-surface mis-

match, can also not explain the small variation of the Z  

parameter. Each time we make a new contact, the orienta-

tion of the crystallites that form the interface changes, and 

the Z  parameter should change accordingly. Since this is 

not observed, one should expect that 0.5FSMZ  [10]. 

A second argument against Fermi-surface mismatch 

comes from the magnitude of Z  for inter-related pairs of 

metals. Take for example Zn–Ag and Zn–Cu contacts. They 

both have nearly the same 0.45,Z  that means the Fermi 

velocity of Ag and Cu would be either 2.39 or 1/2.39 = 0.42 

times that of Zn, using = = |1 | /(2 ).FSMZ Z r r  From 

Ref. 16 we get Fermi-velocity ratios of 1.16 for the Zn/Ag 

and 1.32 for the Zn/Cu pair, respectively. These two sets of 

data do not agree well with each other. The fact that Ag in 

contact with other superconductors and those superconduc-

tors in contact with other normal metals have rather similar 

0.5Z  would imply the existence of just two groups of 

superconductors that have 2.62r  and 0.38r  as well as 

three groups of normal metals with 
22.62 ,r  1.0,r  and 

20.38r  as indicated schematically in Fig. 6(a). However, 

we have not found any S–N combination with 1Z  (ve-

locity ratio 22.62r  or 20.38 ).r  Therefore, all normal 

metals would have Fermi velocities near that of Ag, while 

all superconductors have either 2.39r  or 0.42r  with 

respect to Ag. This does not seem plausible. 

Consider other combinations between one normal and 

two superconductors like the Ag, In, and Zn triple. For 

In/Ag we get from Ref. 16 a velocity ratio of 1.25. But now 

we can also measure normal Zn in contact with supercon-

ducting In. They have the same = 0.45.Z  Again use Ag as 

reference in Fig. 6(b). According to the first two experi-

ments on Zn–Ag and In–Ag contacts, Zn and In should have 

Fermi velocities of either 2.39 or 0.42 times that of Ag. The 

third experiment with In–Zn contacts indicates that Zn 

should have a Fermi velocity of 2.39 or 0.42 times that of In, 

that is 0.42·0.42 = 0.18, 0.42·2.39 = 1.00, or 2.39·2.39 = 

= 5.72 times that of Ag. This contradicts the In–Ag data 

even if we allow for an uncertainty of 0.05.Z  One can 

construct similar patterns also for other inter-related metal 

combinations, like for the Ag, Al, and Nb triple in Fig. 6(c). 

Thus Fermi-surface mismatch in its common form [2] can 

not account for the observed Z  parameters. 

How good is the free electron model for Andreev-

reflection spectroscopy? It assumes a spherical Fermi sur-

face and one, two, or three conduction electrons per atom. 

It describes reasonably well the alkali metals (which we do 

not use here) but not the transition metals like Nb and Ta 

or the noble metals Pt and Pd that have rather complex 

Fermi surfaces [17]. Since electrons from different parts of 

the Fermi surface contribute to charge transport, it should 

be rather difficult to identify a specific Fermi velocity in 

those cases. 

Point-contact spectroscopy uses electrical transport 

properties as information source. Therefore it appears natu-

ral to extract an average Fermi velocity from the Bloch–

Grüneisen law for the temperature dependence of the elec-

trical resistivity [18]. At high temperatures the resistivity 

( )T  varies linearly with temperature, and does not de-

pend on impurities. The proportionality factor contains the 

Fermi velocity, the size of the Fermi surface of the conduc-

Fig. 5. (Color online) Z parameter of S–N contacts of (a) Ti–Ag, 

(b) Cd–Ag, and (c) Sn–Ag, measured at 0.1 K The thick solid 

lines indicate the average Z with a 0.05 bandwidth. The Ti–

Ag data scatter over more than twice this width. 

Fig. 6. (Color online) Fermi velocity r (thick horizontal bars) nor-

malized with respect to that of Ag. (a) Fermi-surface mismatch 

only causes all superconductors (S) to fall into two categories with 

r ≈ 2.62 or r ≈ 0.38, assuming an average Z ≈ 0.50. In turn all nor-

mal metals (N) either have r ≈ 6.85, 1.00, or 0.16. (b) Fermi veloci-

ties of In and Zn derived from In–Ag and Zn–Ag contacts as well 

as that of Zn calculated from In–Zn junctions. The shaded areas 

indicate error margins of Z = 0.05. The two ways to derive r of 

Zn clearly do not match. (c) Likewise the Fermi velocities of Al 

and Nb are derived from Al–Ag and Nb–Ag contacts, then the 

velocity of Nb is calculated from Nb–Al contacts. 
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tion electrons, the surface area of the Debye sphere, and 

the strength of the electron–phonon interaction. One can 

write [19,20] 

 
2 2

( )

F D

T
T

MLv
, (1) 

where  is the Sommerfeld constant of the electronic spe-

cific heat, D  is the Debye temperature, M  is the molar 

mass, and L  is a length scale that depends on the electron–

phonon interaction. Although the Bloch–Grüneisen law 

describes relative changes of the resistivity quite well [18], 

it is not commonly used to extract absolute values. How-

ever, for our purposes we need only ratios of Fermi veloci-

ties, and can get rid of the less well known L’s by assum-

ing they are roughly the same for all metals, defining 

 
2

=
( )

BG

D

T

T M
v  (2) 

to use instead of the Fermi velocity. Table 1 summarizes 

the parameters which allow to calculate BGv  and thus the 

velocity ratios 1 2= /BG BG BGr v v  for all investigated metal 

combinations. We refrain from estimating error margins or 

how well BGv  maps the true Fv  and consider it as a num-

ber that characterizes the Fermi surface. Note that BGv  

does not vary much for those metals which have a free-

electron Fv  given in Ref. 16 except for Ti. BGv  is large 

for metals with a nearly spherical Fermi surface, but small 

for all others. A rather small Fv  of Ti has been noted by 

Zhang Dianlin et al. [22] and Hao Zhu et al. [23]. Also Nb 

is claimed to have a small Fermi velocity [24]. 

Figure 7 compares theory and experiment. It demon-

strates that the Z parameter depends only weakly on the 

velocity ratio, and that there is a huge background. There-

fore another mechanism must be responsible for the main 

contribution to Z. Assume an independent one represented 

by Z0 and write 

 

2
2 2

0

(1 )

4

BG

BG

r
Z Z

r
 (3) 

with a weight factor .  The data in Fig. 7 indicate 0.1  

so that one can not reliably separate Fermi-surface mis-

match even if it would exist. 

In summary, all three arguments, i) the little variation of 

Z from contact to contact, ii) the nonmatching inter-related 

pairs of S–N junctions, as well as iii) the small variation of 

Z with the velocity ratio BGr  take the same line that Fer-

mi-surface mismatch is not the dominant normal reflection 

mechanism. Note that arguments i) and ii) apply not only 

Table. 1. Bloch–Grüneisen parameters of the various metals.  is the electrical resistivity at T = 298 K, D is the Debye temperature, 

M is the molar mass, and  is the Sommerfeld constant of the electronic specific heat. These data have been collected from [21]. vBG is 

the Bloch–Grüneisen derived velocity Eq. (2) and vF the free-electron Fermi velocity [16] 

Metal  , ·cm D, K  M, g/mol  , mJ/(mol·K
2
)  vBG, arb. units vF, Mm/s  

  Ag   1.59   221   108   0.646   7.35   1.39  

  Al   2.65   390   27   1.35   4.47   2.02  

  Au   2.21   178   197   0.69   5.55   1.38  

  Cd   7.27   221   112   0.687   3.27   1.62  

  Cu   1.68   310   64   0.695   6.41   1.57  

  In   8.75   129   115   1.66   3.25   1.74  

  Nb   14.5   260   93   7.8   0.64  – 

  Pd   10.54   275   106   9.45   0.61  – 

  Pt   10.6   225   195   6.54   0.65  – 

  Sn   11   254   113   1.78   1.43  – 

  Ta   13.15   225   181   5.87   0.64  – 

  Ti   42   380   48   3.39   0.54   1.88  

  Zn   5.96   237   65   0.64   4.59   1.82  

 

Fig. 7. (Color online) The average Z parameters of contacts be-

tween (a) Al and other metals M and (b) superconductors S and 

Ag as function of their velocity ratio , ,Al= /BG BG M BGr v v  and 

, ,Ag/ ,BG S BGv v  respectively. The thin solid line describes the 

expected Z due to Fermi-surface mismatch [2], the thick solid line 

is a guide to the eye using 2 2 2= 0.45 0.1 (1 ) /4 .BG BGZ r r  
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to the velocity mismatch but also to the case of the mo-

mentum mismatch. 

This leaves the third reflection mechanism. Diffusive 

contacts have 0.55Z  in the ideal case of a long channel 

[3,4]. Thus diffusion would conveniently explain our re-

sults, especially the large background Z0. However, a more 

realistic short instead of long diffusive channel or a strong-

ly disordered interface should lead to different Z values. 

We will investigate this possibility elsewhere. 

Why is Fermi-surface mismatch absent, or at least 

strongle suppressed? Electrons as well as Andreev-

reflected holes travel through a dielectric tunneling barrier 

with a certain probability. Those not transmitted are re-

flected and enhance the contact resistance. The retro-

reflected holes that move towards the dielectric barrier can 

tunnel through with the same probability as the incident 

electrons. This produces the typical Andreev reflection 

double-minimum structure of the resistance spectra from 

which one can extract Z. The same applies to diffusive 

processes. However, Fermi-surface mismatch works dif-

ferently because it allows electrons that have correspond-

ing states on the other side to cross the interface and bars 

all others. That means the transmission probability is either 

1 or 0. A retro-reflected hole is not affected again by Fer-

mi-surface mismatch because it has already the right prop-

erties to find a corresponding state on the other side. Thus 

Fermi-surface mismatch affects the absolute value of the 

contact resistance but not the shape of the Andreev-

reflection spectra. Fermi-surface mismatch might play 

some role in the case of spin-polarized normal metals be-

cause there the two spin species have different Fermi sur-

faces, and the retro-reflected holes flying back to the con-

tact can face conditions that differ from that of the incident 

electrons. 

4. Conclusion 

We have found that Fermi-surface mismatch barely af-

fects the normal-reflection part of Andreev reflection. This 

makes Andreev-reflection spectroscopy unsuitable for 

measuring relative Fermi velocities of the electrodes, and 

leaves diffusive transport through the contact, that is elastic 

scattering at or near the contact interface, as the most prob-

able mechanism to explain the usually observed double-

minimum Andreev-reflection anomalies. 
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