

This is a self-archived – parallel-published version of an original article. This

version may differ from the original in pagination and typographic details.

When using please cite the original.

AUTHOR

Sina Shahhosseini, DongJoo Seo, Anil Kanduri, Tianyi Hu,
Sung-Soo Lim, Bryan Donyanavard, Amir M. Rahmani, and
Nikil Dutt

TITLE

Online Learning for Orchestration of Inference in Multi-User
End-Edge-Cloud Networks

YEAR 2022, February

DOI https://doi.org/10.1145/352012

VERSION

AAM (Author’s version)

CITATION Sina Shahhosseini, DongJoo Seo, Anil Kanduri, Tianyi Hu,
Sung-Soo Lim, Bryan Donyanavard, Amir M. Rahmani, and
Nikil Dutt. 2022.: Online Learning for Orchestration of
Inference in Multi-User End-Edge-Cloud Networks. -ACM
Trans. Embed. Comput. Syst.
DOI:https://doi.org/10.1145/352012

https://doi.org/10.1145/352012

Online Learning for Orchestration of Inference in
Multi-User End-Edge-Cloud Networks

SINA SHAHHOSSEINI, University of California, Irvine
DONGJOO SEO, University of California, Irvine
ANIL KANDURI, University of Turku
TIANYI HU, University of California, Irvine
SUNG-SOO LIM, Kookmin University
BRYAN DONYANAVARD, San Diego State University
AMIR M. RAHMANI, University of California, Irvine
NIKIL DUTT, University of California, Irvine

Deep-learning-based intelligent services have become prevalent in cyber-physical applications including
smart cities and health-care. Deploying deep-learning-based intelligence near the end-user enhances privacy
protection, responsiveness, and reliability. Resource-constrained end-devices must be carefully managed
in order to meet the latency and energy requirements of computationally-intensive deep learning services.
Collaborative end-edge-cloud computing for deep learning provides a range of performance and efficiency that
can address application requirements through computation offloading. The decision to offload computation is a
communication-computation co-optimization problem that varies with both system parameters (e.g., network
condition) and workload characteristics (e.g., inputs). On the other hand, deep learning model optimization
provides another source of tradeoff between latency and model accuracy. An end-to-end decision-making
solution that considers such computation-communication problem is required to synergistically find the
optimal offloading policy and model for deep learning services. To this end, we propose a reinforcement-
learning-based computation offloading solution that learns optimal offloading policy considering deep learning
model selection techniques to minimize response time while providing sufficient accuracy. We demonstrate
the effectiveness of our solution for edge devices in an end-edge-cloud system and evaluate with a real-setup
implementation using multiple AWS and ARM core configurations. Our solution provides 35% speedup in the
average response time compared to the state-of-the-art with less than 0.9% accuracy reduction, demonstrating
the promise of our online learning framework for orchestrating DL inference in end-edge-cloud systems.

1 INTRODUCTION
Deep-learning (DL) is advancing real-time and interactive user services in domains such as au-
tonomous vehicles, natural language processing, healthcare, and smart cities [31]. Due to user
device resource constraints, deep learning kernels are often deployed on cloud infrastructure to
meet computational demands [2]. However, unpredictable network constraints including signal
strength and delays affect real-time cloud services [14]. Edge computing has emerged to comple-
ment cloud services, bringing compute capacity closer to the user-end devices [42]. A collaborative
end-edge-cloud architecture is essential to provide deep-learning-based services with acceptable
latency to user-end devices [26]. The edge paradigm increases offloading opportunities for resource-
constrained user-end devices. Offloading DL services in a 3-tier end-edge-cloud architecture is a
complex optimization problem considering: (i) diversity in system parameters including heteroge-
neous computing resources, network constraints, and application characteristics, and (ii) dynamicity
of DL service environment including workload arrival rate, user traffic, and multi-dimensional
performance requirements (e.g., application accuracy, response time) [8].

Existing offloading strategies for DL tasks are based on the assumptions that (i) all DL tasks have
similar compute intensity and require similar communication bandwidth, (ii) offloading improves
performance, and (iii) latency is guaranteed with offloaded tasks. However, these assumptions do
not hold in practice due to dynamically varying application and network characteristics, where the

, Vol. 1, No. 1, Article . Publication date: April 2022.

computation-communication and accuracy-performance tradeoffs are inconsistent and nontrivial
[8, 33, 37]. Under varying system dynamics, such offloading strategies limit the gains from using
the edge and cloud resources. Further, model optimization techniques such as quantization and
pruning can reduce the computation complexity of DL tasks by sacrificing themodel accuracy [6, 35].
Consideringmodel optimization techniques in conjunctionwith offloading provides opportunities to
influence the computation-communication trade-off [36]. This exposes an alternative to offloading
in resource constrained devices executing DL inference. Finding the optimal choice between
offloading the DL tasks to edge and cloud layers and using optimized models for inference at local
devices results in a high-dimensional optimization problem.
Understanding the underlying system dynamics and intricacies among computation, commu-

nication, accuracy, and latency is necessary to orchestrate the DL services on multi-level edge
architectures. Reinforcement learning is an effective approach to develop such an understanding
and interpret the varying dynamics of such systems [25, 28]. Reinforcement learning allows a
system to identify complex dynamics between influential system parameters and make a decision
online to optimize objectives such as response time [34]. We propose to employ online reinforce-
ment learning to orchestrate DL services for multi-users over the end-edge-cloud system. Our
contributions are:
• Runtime orchestration scheme for DL inference services on multi-user end-edge-cloud net-
works. The orchestrator uses reinforcement learning to perform platform offloading and DL
model selection at runtime to optimize response time provided accuracy requirements.
• Implementation of our online learning solution on a real end-edge-cloud test-bed and demon-
stration of its effectiveness in comparison with state-of-the-art [32] edge orchestration
strategies.

2 BACKGROUND
In this section, we present the relevant background and significance of orchestrating DL workloads
on end-edge-cloud architecture.

2.1 Offloading DL Workloads in End-Edge-Cloud Architecture
Computation offloading techniques offload an application (or a task within an application) to
an external device such as cloud servers [21]. Offloading is typically done in order to improve
performance or efficiency of devices [2]. DL workloads on end-devices are conventionally offloaded
to cloud servers, but delay-sensitive services for distributed systems rely on performing inference
at the edge as an alternative [42]. Inference at the edge can provide cloud-like compute capability
closer to the user devices, reducing data transmission and network traffic load. Edge offloading
can provide relatively predictable and reliable performance compared to cloud offloading, as there
is less workload and network variance [14] [12]. In the context of the end-edge-cloud paradigm,
computation offloading techniques partition workloads and distribute tasks among multiple layers
(local device, edge device, cloud servers) such that the performance and efficiency objectives are
met.

The collaborative end-edge-cloud architecture provides execution choices such that each work-
load can be executed on the device, on the edge, on the cloud, or a combination of these layers.
Each execution choice effects the performance and energy consumption of the user end device,
based on the system parameters such as hardware capabilities, network conditions, and workload
characteristics. A distributed end-edge-cloud system consists of the following layers:
• application layer: provides user level access to a set of services to be delivered by computing
nodes

2

• platform layer: provides a set of capabilities to connect, monitor and control end/edge/cloud
nodes in a network
• network layer: provides connectivity for data and control transfer between different physical
devices across multiple
• hardware layer: provides hardware capabilities for computing nodes in the system

Each layer presents a diverse set of requirements, constraints, and opportunities to tradeoff per-
formance and efficiency that vary over time. For example, the application layer focuses on the
user’s perception of algorithmic correctness of services, while the platform layer focuses on im-
proving system parameters such as energy drain and data volume migrated across nodes. Both
application and platform layers have different measurable metrics and controllable parameters to
expose different opportunities that can be exploited for meeting overall objectives. In the case of DL
inference, different DL model structures present opportunities in the application layer, and different
computation offloading decisions in a collaborative end-edge-cloud system present opportunities
in the platform layer, both for optimizing the execution while meeting required model accuracy.

2.2 Intelligence for Orchestration
Runtime system dynamics affect orchestration strategies significantly in addition to requirements
and opportunities. Sources of runtime variation across the system stack include workload of a spe-
cific computing node, connectivity and signal strength of the network, mobility and interaction of a
given user, etc. Considering cross-layer requirements, opportunities, and runtime variations provide
necessary feedback to make appropriate choices on system configurations such offloading policies.
Identifying optimal orchestration considering the cross-layer opportunities and requirements in
the face of varying system dynamics is a challenging problem. Making the optimal orchestration
choice considering these varying dynamics is an NP-hard problem, while brute force search of a
large configuration space is impractical for real-time applications. Understanding the requirements
at each level of the system stack and translating them into measurable metrics enables appropriate
orchestration decision making. Heuristic, rule-based, and closed-loop feedback control solutions are
not efficient until reaching convergence, which requires long periods of time [34]. To address these
limitations, reinforcement learning approaches have been adapted for the computation offloading
problem [32]. Reinforcement learning builds specific models based on data collected over initial
epochs, and dramatically improves the prediction accuracy [34].

3 MOTIVATION
This section presents a comprehensive investigation of DL inference for multi-users in end-edge-
cloud systems. We examine the scenario using a real setup including five AWS a1.medium instances
with single ARM-core as end-node devices connected to an AWS a1.large instance as edge device
and an AWS a1.xlarge instance as cloud node. We conduct experiments for DL inferences with
the MobileNetV1 model while varying (i) network connection, (ii) number of active users, and
(iii) accuracy requirement. We consider three possible execution choices: (i) on device, (ii) on
edge, and (iii) on cloud. The device, edge, and cloud execution choices represent executing the
inference completely on the local device, on the edge, and on the cloud respectively. The detailed
specifications for the end-edge-cloud setup appear in Section 5.3.

3.1 Impact of System Dynamics on Inference Performance
Network. We consider two possible levels of network connections: (i) a low-latency (regular)

network that has the signal strength for better connectivity, and (ii) a high-latency (weak) network
that has a weaker signal with poor connectivity. Figure 1 (a) shows the response time of MobileNet

3

Fig. 1. Impact of varying system and application dynamics on performance for MobileNet application. (a)
Response time on user-end device, edge and cloud layers with regular and weak network conditions. (b)
Average response time with varying number of active users for different computing schemes. (c) Average
response time achieved with varying levels of average accuracy.

application on user device, edge, and cloud layers with regular and weak networks. With a regular
network, the response time is highest for executing the application on the user end device. The
response time decreases as the computation is offloaded to edge and cloud layers, with the higher
computational resources. With a weak network, the response time of the edge and cloud layers is
higher, as the poor signal strength adds delay. The response time of the edge node in this case is
higher than the cloud layer, given the lower compute capacity of the edge node. Performance of the
user end device is independent of the network connection, resulting in lowest response time. This
demonstrates the spectrum of response times achievable with compute nodes at different layers,
under varying network constraints. For example, the best execution choice with a regular network
is the cloud layer, whereas it is the local execution with a weak network.

Users. We examine user variability by considering multiple simultaneously active users ranging
from 1 to 5. Figure 1 (b) shows the average response time with varying number of users. The
average response time remains constant when running the application on a user end device, i.e.,
each user executes the application on their local device. When offloaded to the edge layer, the
average response time increases significantly as the number of users increase. This is attributed to
the increased network load with multiple simultaneously active users as well as limited resources
at the edge layer to handle several user requests concurrently. The average response time also
increases when offloaded to the cloud layer as the number of simultaneous users increases. However,
the response time is lower when compared to the edge layer, since the cloud layer has a larger
volume of resources to handle multiple simultaneous user requests.

Accuracy. We demonstrate the impact of varying DL models on performance under different
system dynamics. We select between eight models with Top-5 accuracy between %72.8 and %89.9,
while also considering all three layers for execution, and between 1 and 5 simultaneously active
users. Figure 1 (c) shows the average response time achieved with varying levels of average accuracy
over a multi-dimensional space of different execution choice and different number of users. Each
point in Figure 1 (c) represents a unique case of an execution choice (among device, edge, and
cloud), number of active users (among 1 to 5), and accuracy level. We present the average response
time achieved with different levels of accuracy. As expected, the response time increases with

4

Table 1. Reinforcement Learning Based Works. CO represents the computation offloading technique. HW
and APP represents knobs belong to the hardware and application layer, respectively.

Related Works Real System
Evaluation Multi-User End-to-End Actions

[3, 5, 23, 29, 40] ✗ ✗ ✗ CO
[15] ✓ ✗ ✗ CO, HW

[1, 4, 13, 16, 20, 32, 38] ✗ ✓ ✗ CO
Ours ✓ ✓ ✓ CO, APP

increase in model accuracy. However, we observe tradeoffs among different response times between
accuracy and number of active users. For instance, it is possible to support multiple users within
the response time of servicing a single user, by lowering the model accuracy.

Considering the three major sources of variations in number of users, network conditions, and
model accuracy, finding an optimal choice of execution for end-edge-cloud architectures at runtime
is challenging. As such architectures scale in the number of users and edge nodes, the accuracy-
performance Pareto-space becomes increasingly cumbersome for finding an optimal configuration
among the fine-grained choices. Brute force and smart search algorithms do not offer practically
feasible solutions to orchestrate applications in real-time. While machine learning algorithms
can identify near-optimal configuration choices, they require exhaustive training, considering
continuously varying system dynamics. We propose to employ online reinforcement learning to
understand the volatility of system dynamics and make near-optimal orchestration decisions in
real-time to improve the response time of DL inferencing on end-edge-cloud architectures.

3.2 Related Work
We categorize research related to optimally deploying DL services at the edge in two ways: (i) work
related to deploying DL inference tasks over the end-edge-cloud collaborative architecture, and (ii)
work related to adopting reinforcement learning methods to optimally offload tasks.

DL Inference in End-edge-cloud Networks. Prior works propose frameworks to decompose DL
inference into tasks and perform distributed computations. In these works, a DL model can be
partitioned vertically or horizontally along the end-edge-cloud architecture. Generally, DL models
are partitioned according to the compute cost of model layers and required bandwidth for each layer
to be distributed among the end-edge-cloud [11, 12, 30, 41]. These works find the optimal partition
points based on traditional optimization techniques and offer design-time optimal solutions. Some
efforts try to reduce the computation overhead of DL tasks through various model optimization
methods such as quantization. These methods transform or re-design models to fit them into
resource-constrained edge devices with little loss in accuracy [7, 9, 22]. AdaDeep [18] proposes
a Deep Reinforcement Learning method to optimally select from a pool of compressed models
according to available resources. However, AdaDeep relies only on the model selection technique
while our work combines computation offloading and model selection techniques to achieve the
optimal response time.

Learning-based Offloading. Prior works address the offloading problem to optimize different
objectives including latency and energy consumption. Most of the works formulate the offloading
problem with limited number of influential parameters and adopt online learning techniques
with numerical evaluation [1, 3–5, 13, 16, 23, 29, 38, 40]. Lu et. al. [20] propose a Deep Recurrent
Q-Learning algorithm based on Long Short Term Memory network to minimize the latency for
multi-service nodes in large-scale heterogeneous MEC and multi-dependence in mobile tasks. The

5

Platform Layer

Network Layer

Application Layer

Hardware Layer

Decision
Intelligence

End-edge-cloud System Intelligent Orchestration
En

d
Ed

ge

C
lo

ud

Service Request

Service Request

Orchestrator

Model parameters
and accuracy

Availability

Network
Condition

Hardware
Capabilities

Model selection
Device selection
Accuracy config.

Virtual System Layers

Fig. 2. Intelligent orchestration of DL inference in end-edge-cloud architectures.

algorithm is evaluated in iFogSim simulator with Google Cluster Trace. [32] proposes a Q-Learning
based algorithm to minimize energy by considering various parameters in task characteristics and
resource availability. Young Geun et al. [15] propose a reinforcement learning based offloading
technique for energy efficient deep learning inference in the edge-cloud architecture. The work
focuses on the learning for heterogeneous systems and lacks a comprehensive solution for multi-
users end-edge-cloud systems. Table 1 positions our work with respect to state-of-the-art solutions.
Our solution uses RL to optimally orchestrate DL inference in multi-user networks considering
offloading and DL model selection techniques combined together.

3.3 Contributions
The ideal DL inference deployment provides maximum inference accuracy and minimum response
time. Figure 2 shows an abstract overview of our target multi-layered architecture for online
computation offloading of DL services. We consider three layers viz., user-end device, edge and
cloud. Further, we classify this architecture into virtual system layers that include application,
platform, network and hardware layers. Each of the virtual system layers provide sensory inputs for
monitoring system and application dynamics such as DL model parameters, accuracy requirements,
availability of devices for execution, network characteristics, and hardware capabilities. TheDecision
Intelligence component in Figure 2 periodically monitors resource availability from all virtual
system layers to determine appropriate execution choice and DL models to achieve the required
QoS (e.g, accuracy, response time). Decision Intelligence analyzes the system parameters to make
orchestration decisions in terms of model selection, accuracy configuration, and offloading choices.
The orchestrator is a software component that is hosted at the cloud layer and enforces the
orchestration decisions upon receiving a service request from the user-end devices.
Finding an optimal computation policy including offloading and model selection to optimize

objectives (e.g., accuracy, response time) is considered an NP-hard problem. The problem gen-
erally can be solved using traditional optimization techniques such as heuristic-based methods,
meta-heuristic methods, or exact solutions. Due to slow convergence time, traditional optimization
techniques for high-dimensional problems are not good candidates for runtime decision-making to

6

Table 2. Notation descriptions

Notation Description

𝑆 end-node device
𝐸 edge device
𝐶 cloud device
𝑃 processor utilization
𝑀 memory utilization
𝐵 network condition
𝑜 offloading decision
𝑜
𝑗
𝑖

offloading decision for end-node 𝑖 to resource 𝑗

𝑁 number of end-node devices
𝑑𝑘 DL model 𝑘
𝑙 number of available DL models

𝑇
𝑗
𝑟𝑒𝑠

response time for offloading DL task to resource 𝑗
𝛼 learning rate
𝛾 discount factor

optimize objectives. Modeling an unexplored high-dimensional system is feasible using reinforce-
ment learning techniques [34]. In this work, we use reinforcement learning to deploy DL inference
at the edge by considering offloading and model selection. Some works have been proposed to
address the computation offloading problem using online techniques [1, 3–5, 13, 15, 23, 29, 38, 40].
However, there is no relevant work to investigate the integration of online learning with DL infer-
ence deployment. Therefore, the literature suffers from some shortcomings that are summarized as
follows:
• Cross-layer Optimization: online solutions have not previously coordinated offloading and
model optimizations together. As Table 1 shows, all related work relies on only computation
offloading (CO). To the best of our knowledge, for the first time, this paper considers both
computation offloading and application-level adjustment (APP) together in order to achieve
required QoS.
• Real SystemEvaluation:most RL-based solutions in the literature are numerically evaluated.
Some have been proposed and evaluated with simulators. As Table 1 shows, the literature
lacks a real hardware implementation for online learning framework. This paper implements
the online system on real hardware devices which leads to realistic evaluation of online
agent’s overhead.
• End-to-End Solution: end-to-end solution considers a service from the moment a request
is issued from the end-node device to delivering results to itself. Table 1 illustrates that the
literature lacks an end-to-end solution.

4 ONLINE LEARNING FRAMEWORK
Our goal is to make offloading decisions and inference model selections in order to minimize
inference latency while achieving acceptable accuracy. To do so, we first define the optimization
problem, then we propose a reinforcement learning agent to solve the problem. Table 2 defines the
notation used for the problem definition.

4.1 System Model and Problem Formulation
All computing devices in the end-edge-cloud system are represented by (S,E,C)where 𝑆 = {𝑆1, 𝑆2, .., 𝑆𝑛}
represents a set of end-node devices whose number is 𝑁 ; 𝐸 represents the edge layer (in our case,

7

a single device); C represents the cloud layer. Each end-node device requires a DL inference pe-
riodically. The inference model is selected from a pool of optimized models where each model
has different characteristics including computational complexity and model accuracy. All device
resources are represented in a tuple {𝑃𝑖 , 𝑀𝑖 , 𝐵𝑖 } where 𝑃𝑖 represents processor utilization of device 𝑖;
𝑀𝑖 represents available memory for device 𝑖; 𝐵𝑖 represents network’s connection condition between
the device 𝑖 and upper layer’s node.

The computation offloading decision determines whether each end-node device should offload an
inference to higher-layer computing resources, or perform computation locally. The offload decision
for each end-node device is represented by a tuple 𝑜𝑖 = {𝑜𝑆𝑖 , 𝑜𝐸𝑖 , 𝑜𝐶𝑖 } where 𝑜

𝑗

𝑖
represents offloading

decision to layer 𝑗 . If end-node device 𝑖 executes at layer 𝑗 ∈ {𝑆, 𝐸,𝐶}, then 𝑜
𝑗

𝑖
= 1; otherwise it

must be zero. For a given end-node device 𝑖 , the sum of all offloading decisions ∑{𝑆,𝐸,𝐶 }
𝑗

𝑜
𝑗

𝑖
must

equal 1. 𝑜 = {𝑜1, 𝑜2, ..., 𝑜𝑛} represents the offloading decision vector for all end-node devices. The
inference model selection determines the implementation of the model deployed for each inference
on each end-node device. Each end-node device 𝑆𝑖 can perform inference with one of 𝑙 DL models
{𝑑1, 𝑑2, 𝑑3, ..., 𝑑𝑙 }.
In general, response time is the total time between making a request to a service and receiving

the result [27]. In our case, response time is the sum of the round trip transmission time from an
end-node device to the node that performs the computation, plus the computation time. Response
time 𝑇𝑟𝑒𝑠 for a request from end-node device 𝑖 with offload decision tuple 𝑜𝑖 = {𝑜𝑆𝑖 , 𝑜𝐸𝑖 , 𝑜𝐶𝑖 } can be
summarized as follows:

𝑇𝑟𝑒𝑠𝑖 = 𝑜𝑆𝑖 .𝑇
𝑆
𝑟𝑒𝑠 + 𝑜

𝐸
𝑖 .𝑇

𝐸
𝑟𝑒𝑠 + 𝑜

𝐶
𝑖 .𝑇

𝐶
𝑟𝑒𝑠 (1)

Our objective is to minimize the average response time while satisfying the average accuracy
constraint. The problem is formulated in the following formula:

P1:min
1
𝑁

𝑁∑
𝑖=1

𝑇𝑟𝑒𝑠𝑖 (𝑜𝑖 , 𝑑𝑘)

s.t. 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

(2)

where 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 is the spatial average accuracy for simultaneous DL inferences.

4.2 Reinforcement Learning Agent
Reinforcement learning (RL) is widely used to automate intelligent decision making based on
experience. Information collected over time is processed to formulate a policy which is based on a
set of rules. Each rule consists three major components viz., (a) state, (b) action, and (c) reward.
Among the various RL algorithms [34], Q-learning has low execution overhead, which makes it a
good candidate for runtime invocation. However, it is ineffective for large space problems. There
are two main problems with Q-learning for large space problems [24]: (a) required memory to save
and update the Q-Values increases as the number of actions and state increases. (b) required time to
populate the table with accurate estimates is impractical for the large Q-table. In our case, increasing
number of users will increase the problem’s space dimension. The reason is more number of users
leads to more number of rows and columns in the Q-table. Therefore, it takes more time to explore
every state and update the Q-values. Due to the curse of dimensionality, function approximation is
more appealing [24]. The Deep Q-Learning (DQL) algorithm combines the Q-Learning algorithm
with deep neural networks. DQL uses Neural Network architecture to estimate the Q-function by
replacing the need for a table to store the Q-values. In this work, we build an RL agent using two
reinforcement learning algorithms: (a) an epsilon-greedy Q-Learning and (b) a Deep Q-Learning
algorithms. We evaluate the RL agent with the mentioned algorithms considering different problem

8

State
(CPU Utilization, Memory

Utilization, Network
Condition)

Action

Q-Value 0

Q-Value 1

Q-Value 2

Q-Value N

A1 A2 … AN

S1 Q0 Q1 … QN

S2 Q0 Q1 … QN

… … … … …

SM QN QN QN QN

Q-Table

Q-Network

Fig. 3. Proposed reinforcement learning agent with Q-Learning and Deep Q-Learning algorithms. Q-Learning
uses a Q-Table to store𝑄(𝑆,𝐴) values, Deep Q-Learning estimates Q-Values with a neural network architecture.

complexities. Figure 3 depicts high-level black diagram for our agent. The RL agent is invoked at
runtime for intelligent orchestration decisions. In general, the agent is composed as follows:

State Space: Our state vector is composed of CPU utilization, available memory, and bandwidth
per each computing resource. Table 3 shows the discrete values for each component of the state.
The state vector at time step 𝜏 is defined as follows:

𝑆𝜏 = {𝑃𝐸, 𝑀𝐸, 𝐵𝐸, 𝑃𝐶 , 𝑀𝐶 , 𝐵𝐶 , 𝑃𝑆1 , 𝑀𝑆1 , 𝐵𝑆1 , ..., 𝑃𝑆𝑛 , 𝑀𝑆𝑛 , 𝐵𝑆𝑛 } (3)

Action Space: The action vector consists of which inference model to deploy, and which layer to
assign the inference. We limit the edge and cloud devices to always use the high accuracy inference
model, and the end-node devices have a choice of 𝑙 different models. Therefore, the action space is
defined as 𝑎𝜏 = {𝑜𝑖 , 𝑑 𝑗 } where 𝑖 ∈ {𝑆, 𝐸,𝐶} and 𝑑 𝑗 ∈ {𝑑1, 𝑑2, ..., 𝑑𝑙 }.

Table 3. State Discrete Values

State Discrete Values Description

𝑃𝑆𝑖 Available, Busy End-node CPU Utilization
𝑀𝑆𝑖 Available, Busy End-node Memory Utilization
𝐵𝑆𝑖 Regular, Weak End-node Available Bandwidth
𝑃𝐸 Nine discrete levels Edge CPU Utilization
𝑀𝐸 Available, Busy Edge Memory Utilization
𝐵𝐸 Regular, Weak Edge Available Bandwidth
𝑃𝐶 Nine discrete levels Cloud CPU Utilization
𝑀𝐶 Available, Busy Cloud Memory Utilization
𝐵𝐶 Regular, Weak Cloud Available Bandwidth

Reward Function: The reward function is defined as the negative average response time of DL
inference requests. In our case, the agent seeks to minimize the average response time. To ensure
the agent minimizes the average response time while satisfying the accuracy constraint, the reward

9

𝑅 is calculated as follows:
if 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 > threshold:

𝑅𝜏 ← −𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒

else:
𝑅𝜏 ← −𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒

(4)

To apply the accuracy constraint, the minimum possible reward is assigned when the accuracy
threshold is violated. On the other hand, when the selected action satisfies the average accuracy
constraint, the reward is negative average response time.

4.2.1 Q-Learning Algorithm. Q-Learning algorithm is a model-free reinforcement learning al-
gorithm to learn the value of an action in a particular state. The algorithm does not require a
model of the environment where it can handle problems with stochastic transitions and rewards
without requiring adaptations. The Q-Learning algorithm stores data in a Q-table. The structure
of a Q-Learning agent is a table with the states as rows and the actions as the columns. Each cell
of the Q-table stores a Q-value, which estimates the cumulative immediate and future reward of
the associated state-action pair. Epsilon-greedy is a common enhancement to Q-Learning that
helps avoid getting stuck at local optima [34]. Algorithm 1 defines our agent’s logic with the
epsilon-greedy Q-Learning:

Line Description
3: First the agent determines the current system state from the resource monitors.
4-8: Next, either the state-action pair (𝑆𝜏 , 𝐴𝜏) with the highest 𝑄-value is identified to choose

the next action to take, or a random action is selected with probability 𝜖 .
9-10: The selected action is applied and normal execution resumes. After all inferences are

completed, the reward 𝑅𝜏 for the execution period is calculated based on measured
response time.

11-12: Based on the resource monitors, the new state 𝐴𝜏+1 is identified, along with the state-
action pair with highest Q-value.

13: The Q-value of the previous state-action pair is updated.
14: The current state is updated, and the loop continues.

4.2.2 Deep Q-Learning Algorithm. Q-Learning has been applied to solve many real-world problems.
However, it is unable to solve high-dimensional problems with many inputs and outputs [24] as it
is impractical to represent the Q-function as a Q-table for large pair of 𝑆 and 𝐴. In addition, it is
unable to transverse𝑄(𝑆,𝐴) pairs. Therefore, a neural network is used to estimate the Q-values. The
network uses the state of the environment as an input and the output is the Q-value for each actions.
The neural network approximation is capable of handling high dimensional space problems [39].
One of the main problems with Deep Q-Learning is stability [24]. In order to reduce the instability
caused by training on correlated sequential data, we improve the DQL algorithm with replay buffer
technique [17]. During the training, we calculate the loss and its gradient using a mini-batch from
the buffer. Every time the agent takes a step (moves to the next state after choosing an action), we
push a record into the buffer. Algorithm 2 defines Deep Q-Learning algorithm which is described
below:

Line Description
4: First the agent determines the current system state from the resource monitors.
4:9 Next, either the state-action pair 𝑆𝜏 , 𝐴𝜏 with the highest Q-value estimated by neural

network (𝜃) is identified to choose the next action to take, or a random action is selected
with probability 𝜖 .

10

Algorithm 1 Q-Learning Algorithm
1: Initialization in design time:

𝜏 represents time step
𝑆𝜏 represents state at 𝜏
𝐴𝜏 represents action at 𝜏

2: while system is on do
3: From Resource Monitoring:

𝑆𝜏 ← State at step 𝜏
4: if 𝑅𝐴𝑁𝐷 < 𝜖 then
5: Choose random action 𝐴𝜏

6: else
7: Choose action 𝐴𝜏 with largest 𝑄(𝑆𝜏 , 𝐴𝜏)
8: end if
9: Monitor the response time for each devices
10: Calculate reward 𝑅𝜏
11: From Resource Monitoring:

𝑆𝜏+1← State at step 𝜏 + 1
12: Choose action 𝐴𝜏+1 with the largest 𝑄(𝑆𝜏+1, 𝐴𝜏+1)
13: To Updating Qtable:

𝑄(𝑆𝜏 , 𝐴𝜏)← 𝑄(𝑆𝜏 , 𝐴𝜏) + 𝛼[𝑅𝜏 + 𝛾 .𝑄(𝑆𝜏+1, 𝐴𝜏+1) −𝑄(𝑆𝜏 , 𝐴𝜏)]
14: 𝑆𝜏← 𝑆𝜏+1
15: end while

10:11 The selected action is applied and normal execution resumes. After all inferences are
completed, the reward 𝑅𝜏 for the execution period is calculated based on measured
response time.

12: At each time step, each record (𝑆𝜏 ,𝐴𝜏 ,𝑅𝜏 ,𝑆𝜏+1) is added to a circular buffer 𝐷 called the
replay buffer.

13: We randomly sample Batch Size records from the buffer and then feed it to the network
as mini-batch.

14: We calculate the temporal difference loss on the mini-batch and perform a gradient
descent calculation to update the network. The temporal difference loss function calculates
the mean-square error of the predicted and target Q-values as the loss of the mini-batch.

15: The current state is updated, and the loop continues.

5 FRAMEWORK SETUP
In this section we describe our proposed framework for dynamic computation offloading based on
online learning, targeted at multi-layered end-edge-cloud architecture.

5.1 Framework Architecture
Figure 4 shows our proposed framework for end-edge-cloud architecture, integrating service
requests, resource monitoring, and intelligent orchestration. The Intelligent Orchestrator (IO) acts as
an RL-agent for making computation offloading and model selection decisions. The end-device layer
consists of multiple user-end devices. Each end-device has two software components: (i) Intelligent
Service - an image classification kernel with DL models of varying compute intensity and prediction
accuracy; (ii) Resource Monitoring - a periodic service that collects devices’ system parameters
including CPU and memory utilization, and network condition, and broadcasts the information
to the edge and cloud layers. Both the edge and cloud layers also have the Intelligent Service and

11

Intelligent Service

Resource Monitoring

Intelligent Service

Resource Monitoring

Intelligent Service

Resource Monitoring

Intelligent Service

Resource Monitoring

Intelligent Service

Resource Monitoring

Resource Monitoring

Intelligent Service

Resource Monitoring

Quality of Service Goal

User Inputs

Intelligent Orchestrator

State Q-Table
Orchestration

/Actions

Intelligent Service

RL Model Training

RL Model Testing

Resource Info Reward

S A

Request (1)

Request (2)

Request Orchestration (3)

Decision (4)

Decision (4)

Update (5)

Update (5)

CloudEdge
End

End

End

End

End

Time

Network
Condition

Fig. 4. Orchestration framework with online learning for orchestrating DL inference.

Resource Monitoring components. The Intelligent Orchestrator acts a centralized RL-agent that is
hosted at the cloud layer for inference orchestration. The agent collects resource information
(e.g., processor utilization, available memory, available bandwidth) from Resource Monitoring
components throughout the network. The agent also gathers the reward information (i.e., response
time) from the environment in order to learn an optimal policy. The agent builds the Q-function
based on the RL algorithm. It builds a Q-Table for Q-Learning algorithm and a Q-Network for
Deep Q-Learning algorithm based on cumulative reward obtained from the environment over time.
Quality of Service Goal provides the required QoS for the system (i.e., the accuracy constraint).
Figure 4 illustrates the procedure step-wise of the inference service in our framework. The

end-device layer consists of resource-constrained devices that periodically make requests to a DL

Algorithm 2 Deep Q-Learning Algorithm with Experience Replay
1: Initialization in design time:

𝜏 represents time step
𝑆𝜏 represents state at 𝜏
𝐴𝜏 represents action at 𝜏
Initialize replay buffer 𝐷 to capacity 𝑁

Initialize action-value function 𝑄 with random weight 𝜃
2: for epoch = 1, Epochs do
3: for episode = 1, Episodes do
4: From Resource Monitoring:

𝑆𝜏 ← State at step 𝜏
5: if 𝑅𝐴𝑁𝐷 < 𝜖 then
6: Choose random action 𝐴𝜏

7: else
8: Choose action 𝐴𝜏 with largest 𝑄𝜃 (𝑆𝜏 , 𝐴𝜏)
9: end if
10: Monitor the response time for each devices
11: Calculate reward 𝑅𝜏
12: Store the record (𝑆𝜏 ,𝐴𝜏 ,𝑅𝜏 ,𝑆𝜏+1) into buffer D
13: Sample random mini-batch of records from buffer D
14: To Updating Q-Network:

Compute temporal difference loss with respect to the network parameter 𝜃
15: 𝑆𝜏← 𝑆𝜏+1
16: end for
17: end for

12

inference service (step 1). The requests are passed through the edge layer (step 2) to the cloud device
to be processed by Intelligent Orchestrator (step 3). The agent determines where the computation
should be executed, and delivers the Decision to the network (step 4). Each device updates the agent
after it performs an inference with the response time information of the requested service (step
5). In addition, all devices in the framework send the available resource information including the
processor utilization, available memory, and network condition to the cloud device (step 5).

5.2 Benchmarks and Scenarios
MobileNets are small, low-latency deep learning models trained for efficient execution of image
classification on resource-constrained devices [10]. For DL workloads, we consider MobileNetV1
image classification application as the benchmark [10]. We deploy the MobileNetV1 service for
end-node classification. We consider eight different MobileNet models (𝑑0 through 𝑑7) with varying
levels of accuracy and performance. Each model among 𝑑0 through 𝑑7 has varying number of
Multiply-Accumulate units (MACs), MAC width and data format (e.g., FP32 and Int8), exposing
models with different accuracy-performance trade-offs. Table 4 summarizes the MobileNet models
we consider, detailing the number of Multiply-Accumulates (MACs), MAC width and data formats
(e.g., FP32 and Int8). The multiplier width is used to reduce a network’s size uniformly at each
layer. For a given layer and multiplier width, the number of input channels and the number of
output channels is decreased and increased, respectively, by a factor of the width multiplier. During
the orchestration phase, we select an appropriate model from 𝑑0-𝑑7 to achieve the target level of
classification accuracy while maximizing the performance.
Our framework supports multiple end-devices, networked with edge and cloud layers. For

evaluation purposes, we set the maximum number of simultaneously active user devices to five.
Each user-end device is connected to a single edge device, and can request a DL inference service to
the cloud layer. The cloud layer hosts the IO that contains the RL agent, which handles the inference
service requests. Upon on each service request, the RL agent is invoked to determine: (i) where
the request should be processed and (ii) what DL model should be executed for the corresponding
request. The RL agent’s goal is to minimize average response time for all end-node devices while
satisfying the accuracy constraint. This enforces quality control by imposing a strict threshold
on the average DL model accuracy. In this work, we conduct experiments under four unique
scenarios with varying network conditions. Each scenario represents a combination of regular (R)
and weak (W) network signal strength over five user-end devices (S1-S5) and 1 edge device (E).
The experimental scenarios are summarized in Table 5. The regular network has no transmission
delay, while we add 20ms delay to all outgoing packets to emulate the weak connection behavior.

Table 4. MobileNet Models [10]

Model Million MACs Type Top-1
Accuracy (%)

Top-5
Accuracy (%)

𝑑0 1.0 MobileNetV1-224 569 FP32 70.9 89.9
𝑑1 0.75 MobileNetV1-224 317 FP32 68.4 88.2
𝑑2 0.5 MobileNetV1-224 150 FP32 63.3 84.9
𝑑3 0.25 MobileNetV1-224 41 FP32 49.8 74.2
𝑑4 1.0 MobileNetV1-224 569 Int8 70.1 88.9
𝑑5 0.75 MobileNetV1-224 317 Int8 66.8 87.0
𝑑6 0.5 MobileNetV1-224 150 Int8 60.7 83.2
𝑑7 0.25 MobileNetV1-224 41 Int8 48.0 72.8

13

Table 5. Experiment Environment Setup.𝑅 and𝑊 represent Regular andWeak network condition, respectively.

Experiment S1 S2 S3 S4 S5 E

EXP-A R R R R R R
EXP-B R W R W R W
EXP-C W W W R R R
EXP-D W W W W W W

Each experimental scenario in Table 5 shows the network condition of the specific device. Putting
together the five different user devices and one edge device forms a unique combination of varying
network conditions per each experimental scenario.

5.3 Experimental Setup
The platform consists of five AWS a1.medium instances with single ARM-core as end-devices
connected to an AWS a1.large instance as edge device and an AWS a1.xlarge instance as cloud
node. Table 6 summarizes device specifications in details. DL model inferences are executed on
processor cores on all nodes using ARM-NN SDK [19]. The inference engine is a set of open-source
Linux software tools that enables machine learning workloads on ARM-core-based devices. The
framework’s message passing protocol is implemented using web services deployed at each node.
Section 7.2 provides our analysis on framework’s setup overhead.

5.4 Hyper-parameters and RL Training
An RL agent has a number of hyper-parameters that impact its effectiveness (e.g., learning rate,
epsilon, discount factor, and decay rate). The ideal values of parameters depend on the problem
complexity, which in our case scales with the number of users (i.e., active end-node devices). Table
7 shows the different problem configurations we used to determine the hyper-parameters. We train
the agent with two different learning algorithms (See Section 4.2). Our Q-Learning agent initializes
a Q-table with Q-values of zero, and chooses actions using an 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy where 𝜖 is the
exploration rate. We initially set 𝜖 = 1, meaning the agent selects a random action with probability
1, otherwise it selects an action that gives the maximum future reward (i.e., Q-value) in the given
state. Although we perform probabilistic exploration continuously, we decay the exploration by
epsilon decay parameter (See Table 7) per agent invocation. The Deep Q-Learning agent uses
different neural network structure for different number of users as the problem complexity changes.
We train DNN models with two fully connected layers where the hidden layers have 48, 64, 128
neurons for three, four, and five devices, respectively. We implement the experience replay as a
FIFO buffer with size equal to 1000. In order to update the network, at each step, we randomly
sample 64 records from the buffer and then use them as a mini-batch. We use 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy to
train the Deep Q-network, where we initially set the 𝜖 equal to 1.

Table 6. Device Specification

Node
Type vCPUs

Memory
(GiB)

Frequency
(GHz)

Bandwidth
(Gbps) Architecture

End 1 2 2.3 Up to 10 aarch64
Edge 2 4 2.3 Up to 10 aarch64
Cloud 4 8 2.3 Up to 10 aarch64

14

Table 7. Hyper-parameter values

Q-Learning Deep Q-Learning

Number
of Users

Learning
Rate (𝛼)

Epsilon
Decay

Learning
Rate (𝛼)

Epsilon
Decay

1 0.9 1e-1 − −
2 0.9 1e-2 − −
3 0.9 1e-2 1e-3 0.4
4 0.9 1e-3 1e-3 0.7
5 0.9 1e-4 1e-3 0.9

6 EVALUATION RESULTS AND ANALYSIS
In this section, we demonstrate the effectiveness of our online learning based inference orchestration.
We evaluate our approach on the multi-layered end-edge-cloud framework, described in Section 4.
Our approach features online reinforcement learning for intelligent orchestration, DL inference
services and end-edge-cloud architectures, targeting DL inference performance. [32] presents
state-of-the-art machine learning based orchestration for end-edge-cloud architecture baseline. For
a fair comparison, we evaluate our approach against the strategy proposed in [32], which integrates
the aforementioned features of our approach.

6.1 Performance Analysis
We evaluate our agent’s ability to identify the optimal orchestration decision at each invocation.
Through reinforcement learning, the agent predicts orchestration decisions including offloading
policy and DL model configuration to maximize performance and meet the accuracy threshold. At
design time, we determine the true optimal configuration in any given conditions of workloads,
network, and number of active users using a brute force search. First, we compare our reinforce-
ment learning based Intelligent Orchestrator’s (IO) prediction accuracy against this true optimal
configuration. Our proposed approach with bothQ-Learning andDeep Q-Learning algorithm has
yielded a 100% prediction accuracy in comparison with the true optimal configuration. Thus, our
reinforcement learning based orchestration decisions always converge with the optimal solution.
Next, we evaluate our agent’s efficacy by comparing it with a representative state-of-art [32] base-
line in terms of performance and accuracy. To implement the baseline policy into our framework,
we limit the agent to actions that specify offloading decisions 𝑎𝜏 = {𝑜𝑖 }, using the most accurate DL
model. We additionally compare fixed orchestrations for points of reference. The fixed solution is
limited to configurations where all end-devices either (a) perform the most accurate DL inference
execution locally, (b) offload to the edge, or (c) offload to the cloud. In the following subsections,
we demonstrate the efficacy of our proposed agent to find the optimal configuration in presence of
different number of users (up to five). Then, we investigate its ability to adapt to network variations
and evaluate its overhead. We explain the impact of varying DL models on the performance under
different system dynamics and elaborate how the proposed agent follows the defined constraints.

6.1.1 User Variability. To evaluate the user variability, we consider up to five simultaneously active
user-end devices, keeping the network constraints constant. We consider five different levels of
accuracy thresholds viz., Min, 80%, 85%, 89%, and Max. Min refers to the accuracy threshold for
computing where no constraint is applied to the learning algorithms (See Equation 4) and Max
represents the accuracy threshold for computing where the average accuracy constraint is set to
89.9%. We present the average response time and average accuracy for each of these thresholds using

15

0

250

500

750

1000

A
v
g

R
es

p
o
n
se

T
im

e
(m

s)

1 2 3 4 5

Number of Users

0

20

40

60

80

100

A
v
g

A
cc

u
ra

cy
(%

)

Device

Edge

Cloud

Baseline

Ours- Min

Ours- 80%

Ours- 85%

Ours- 89%

Ours- Max

Fig. 5. Results of the framework within Exp-A for different number of active users.

our proposed approach. For evaluation, we also present the average response time and accuracy
metrics achieved with the state-of-the-art baseline approach [32], and three fixed orchestration
decisions viz., device only, edge only and cloud only.

Fixed Strategies Figure 5 shows the average response time and accuracy for different numbers
of active users for regular network conditions (represented by scenario Exp-A in Table 5), using
different orchestration strategies. The x-axis represents the number of active users. Each bar
represents a different orchestration decisionmade by using the corresponding orchestration strategy.
With the device only strategy, each user-end device executes the inference service on the local
device. Thus, varying number of users has no effect on the average response time in this case. With
the edge and cloud only strategies, simultaneous requests contend for edge and cloud resources.
This increases the average response time significantly, as the number of users increase. For instance,
the fixed edge only strategy with five active users leads to an average response time of 1140ms,
while it is 665𝑚𝑠 with cloud only strategy. Higher volume of available resources at the cloud layer
results in relatively better average response time in comparison with the edge only strategy. On
the other hand, the average response time with the device only strategy is 459𝑚𝑠 , representing the
optimal case.

Baseline With the baseline [32] approach, the average response time remains constant until
the number of users is two. This is due to the orchestration decision of distributing the services
across edge and cloud layers. As the number of users increase to three, the service requests contend
for resources, leading to an increase in the average response time. With the number of users

16

increasing from three through five, the average response time increases, but at a relatively lower
rate, exhibiting efficient utilization of the edge and cloud resources. As the number of users increase,
the efficiency of the baseline approach over the fixed strategies is more prominent. Both the baseline
and fixed strategies are agnostic to model selection and configuration, retaining the maximum
prediction accuracy of the inference service. Thus the average accuracy remains constant with the
aforementioned strategies, as shown in Figure 5.

Our proposed solution Our proposed solution achieves the same average response time in
comparison with the baseline for the Max accuracy scenario. When the accuracy threshold is
relaxed, our reinforcement learning based intelligent orchestrator selects appropriate models
(among 𝑑0-𝑑7) to improve the average response time. As the number of users increase, our solution
leverages the model selection combined with offloading technique to address the potential increase
in response time. With appropriate model selection, our approach reduces the compute intensity,
and consequently maintains a lower average response time even with the increasing number of
users. Trivially, the average response time with our approach is lower as the accuracy threshold is
reduced. However, it should be noted that we enforce the boundaries on tolerable loss of accuracy
with our model selection decisions. Figure 5 shows the average response time and average accuracy
with our solution over different scenarios of accuracy thresholds and varying number of users. Our
solution provides up to 35% improvement in the average response time in comparison with the
baseline, within a tolerable loss of 0.9% accuracy. Table 8 shows the orchestration decisions of our
agent for different numbers of active users, and also over four different experimental scenarios
(Table 5). We present the orchestration decision and the average response time achieved with each
decision, for the maximum accuracy threshold scenario.

6.1.2 Network variation. We consider two possible levels of network connection: (i) a regular
network that has low latency, and (ii) a weak network that has high latency. We add 20ms delay to
all outgoing packets to emulate the weak connection behavior. With varying network conditions,
there is an increased delay with offloading decisions across the network. Both the baseline and fixed
approaches are affected by the weak network conditions, resulting in a higher average response
time. The fixed strategies employ the trivial device, edge and cloud only offloading decisions,
suffering higher latency. The baseline approach is confined to only an intelligent offloading strategy,
which also results in higher average response time inevitably. On the other hand, our proposed
solution adapts to varying network conditions by opportunistically exploiting the accuracy trade-
offs through model selection. This way, we address for the latency penalty levied by weak network
conditions by reducing the compute intensity of the workloads, within the tolerable accuracy
bounds.

Table 9 shows the orchestration decisions made by our intelligent orchestrator, average response
time, and average accuracy achieved over varying networking conditions. Each experiment scenario
(Exp-A through Exp-D) combines different network conditions for each node in the network (See
Table 5). For example, in Exp-A, all the nodes are connected with regular network, whereas in
Exp-B, nodes 𝑆1, 𝑆3, and 𝑆5 have regular connections and the rest have weak connections. We set
the number of active users to five.
Model Selection Within each experiment scenario, the average response is lower as the accuracy
threshold is relaxed. 𝑑0 through 𝑑7 represent models with different response time and accuracy
levels. For instance, models 𝑑0, 𝑑4, 𝑑2, 𝑑7 and 𝑑7 are selected respectively for accuracy thresholds
ranging from Max through Min in Exp-A. Our proposed orchestrator explores the Pareto-optimal
space of model selection and offloading choice, combining the opportunities at application and
platform layers simultaneously. For instance in Exp-A, maintaining an accuracy level of 89% results
in an average response time of 269.8ms, by i) setting the models to 𝑑4, 𝑑4, 𝑑4, 𝑑0, and 𝑑4 on devices

17

Table 8. Detailed offloading decisions of our agent for different number of active users in all four experiments
(Maximum Accuracy Threshold). For example, in Exp-A, the orchestrator offloads the most accurate DL
inference execution (𝑑0) to the cloud device (𝑑0,𝐶 for end-node 𝑆1). In the presence of five active users,
the decisions are {𝑑0, 𝐸}, {𝑑0, 𝐿}, {𝑑0, 𝐿}, {𝑑0,𝐶}, and {𝑑0, 𝐿} for end-nodes 𝑆1 to 𝑆5, respectively. In this
case, 𝑆1, 𝑆2, and 𝑆4 perform DL inference execution of the 𝑑0 model locally (𝐿). 𝑆0 and 𝑆3 offload inference
execution of the 𝑑0 model to the edge (𝐸) and cloud (𝐶), respectively.

End-node Devices

Experiments Number of Users S1 S2 S3 S4 S5 Avg Res (ms)

D
ec
is
io
n

Exp-A

1 𝑑0,𝐶 − − − − 363.47
2 𝑑0,𝐶 𝑑0, 𝐸 − − − 363.17
3 𝑑0,𝐶 𝑑0, 𝐿 𝑑0, 𝐸 − − 397.53
4 𝑑0, 𝐿 𝑑0, 𝐿 𝑑0, 𝐸 𝑑0,𝐶 − 410.35
5 𝑑0, 𝐸 𝑑0, 𝐿 𝑑0, 𝐿 𝑑0,𝐶 𝑑0, 𝐿 418.91

Exp-B

1 𝑑0, 𝐸 − − − − 403.30
2 𝑑0, 𝐸 𝑑0,𝐶 − − − 416.78
3 𝑑0, 𝐸 𝑑0,𝐶 𝑑0, 𝐿 − − 431.90
4 𝑑0, 𝐿 𝑑0,𝐶 𝑑0, 𝐸 𝑑0, 𝐿 − 457.96
5 𝑑0,𝐶 𝑑0, 𝐸 𝑑0, 𝐿 𝑑0, 𝐿 𝑑0, 𝐿 472.88

Exp-C

1 𝑑0,𝐶 − − − − 471.65
2 𝑑0,𝐶 𝑑0, 𝐸 − − − 467.80
3 𝑑0,𝐶 𝑑0, 𝐸 𝑑0, 𝐿 − − 488.21
4 𝑑0,𝐶 𝑑0, 𝐸 𝑑0, 𝐿 𝑑0, 𝐿 − 480.70
5 𝑑0, 𝐿 𝑑0, 𝐿 𝑑0, 𝐿 𝑑0,𝐶 𝑑0, 𝐸 464.59

Exp-D

1 𝑑0, 𝐿 − − − − 585.68
2 𝑑0, 𝐸 𝑑0,𝐶 − − − 527.39
3 𝑑0, 𝐿 𝑑0,𝐶 𝑑0, 𝐸 − − 491.77
4 𝑑0, 𝐿 𝑑0,𝐶 𝑑0, 𝐸 𝑑0, 𝐿 − 501.07
5 𝑑0, 𝐿 𝑑0,𝐶 𝑑0, 𝐸 𝑑0, 𝐿 𝑑0, 𝐿 506.62

S1-S5, and ii) device configurations to L (local device), L, L, E (edge) and L for S1-S5. However,
the average response time can be improved by sacrificing the accuracy within a pre-determined
tolerable level. For instance, by lowering the accuracy threshold by 4% (from 89% to 85%), the
average response time can be reduced by 88% (from 269ms to 143ms) by i) setting the models to
𝑑2, 𝑑6, 𝑑5, 𝑑6, and 𝑑5 on devices S1-S5, and ii) device configurations to L (local device), L, L, L
and L for S1-S5. With varying network conditions, our solution explores the offloading and model
selection Pareto-optimal space at run-time to predict the optimal orchestration decisions.

For example, in Exp-D, our framework obtains 356.75ms on average response time with signifi-
cantly weak network connectivity, while it can adapt to regular connectivity in Exp-A to obtain
269.80ms on average response time. In this case, the average accuracy is 89.1% which shows 0.8%
error with the maximum average accuracy. The baseline [32] orchestrates the most accurate DL
inference execution to obtain 506.62ms and 418.9ms average response time in Exp-D and Exp-A,
respectively. Orchestration decisions of the baseline approach over different experimental scenarios
is summarized in Table 10. Although our proposed framework and the baseline can adapt to net-
work variability, our agent provides additional trade-off opportunities to deploy different models
combined with offloading technique. This leads to up to 35% speedup while sacrificing less than 1%
average accuracy.

18

Table 9. Results of the proposed framework for different accuracy constraints for different experiments (five
users). For example, in Exp-D with 89% average accuracy constraint, our framework orchestrates 𝑆1, 𝑆2, 𝑆3,
and 𝑆4 to execute DL inference using model 𝑑4 locally and offload inference execution using model 𝑑0 at the
cloud. However, the baseline obtains the maximum accuracy by executing the most accurate DL inference
locally for 𝑆1, 𝑆4, and 𝑆5 while offloading 𝑑0 to the edge and cloud for 𝑆3 and 𝑆2, respectively.

End-node Devices

Experiments Constraint S1 S2 S3 S4 S5 Avg Res (ms) Avg Acc (%)

D
ec
is
io
n

Exp-A

Min 𝑑7, 𝐿 𝑑7, 𝐿 𝑑7, 𝐿 𝑑7, 𝐿 𝑑7, 𝐿 72.08 72.80
80% 𝑑7, 𝐿 𝑑6, 𝐿 𝑑6, 𝐿 𝑑6, 𝐿 𝑑6, 𝐿 103.88 81.11
85% 𝑑2, 𝐿 𝑑6, 𝐿 𝑑5, 𝐿 𝑑6, 𝐿 𝑑5, 𝐿 143.81 85.06
89% 𝑑4, 𝐿 𝑑4, 𝐿 𝑑4, 𝐿 𝑑0, 𝐸 𝑑4, 𝐿 269.80 89.10
Max 𝑑0, 𝐸 𝑑0, 𝐿 𝑑0, 𝐿 𝑑0,𝐶 𝑑0, 𝐿 418.91 89.90

Exp-B

Min 𝑑7, 𝐿 𝑑7, 𝐿 𝑑7, 𝐿 𝑑7, 𝐿 𝑑7, 𝐿 106.76 72.80
80% 𝑑6, 𝐿 𝑑3, 𝐿 𝑑6, 𝐿 𝑑6, 𝐿 𝑑6, 𝐿 139.92 83.23
85% 𝑑5, 𝐿 𝑑5, 𝐿 𝑑6, 𝐿 𝑑6, 𝐿 𝑑2, 𝐿 176.21 85.05
89% 𝑑4, 𝐿 𝑑4, 𝐿 𝑑0, 𝐸 𝑑4, 𝐿 𝑑4, 𝐿 303.50 89.10
Max 𝑑0,𝐶 𝑑0, 𝐸 𝑑0, 𝐿 𝑑0, 𝐿 𝑑0, 𝐿 472.88 89.90

Exp-C

Min 𝑑7, 𝐿 𝑑7, 𝐿 𝑑7, 𝐿 𝑑7, 𝐿 𝑑7, 𝐿 119.28 72.80
80% 𝑑6, 𝐿 𝑑6, 𝐿 𝑑7, 𝐿 𝑑6, 𝐿 𝑑6, 𝐿 149.52 81.11
85% 𝑑5, 𝐿 𝑑6, 𝐿 𝑑5, 𝐿 𝑑6, 𝐿 𝑑5, 𝐿 190.76 85.47
89% 𝑑4, 𝐿 𝑑4, 𝐿 𝑑4, 𝐿 𝑑4, 𝐿 𝑑0,𝐶 318.45 89.10
Max 𝑑0, 𝐿 𝑑0, 𝐿 𝑑0, 𝐿 𝑑0,𝐶 𝑑0, 𝐸 464.59 89.90

Exp-D

Min 𝑑7, 𝐿 𝑑6, 𝐿 𝑑7, 𝐿 𝑑7, 𝐿 𝑑7, 𝐿 158.53 72.80
80% 𝑑6, 𝐿 𝑑6, 𝐿 𝑑6, 𝐿 𝑑7, 𝐿 𝑑6, 𝐿 182.53 81.12
85% 𝑑2, 𝐿 𝑑6, 𝐿 𝑑6, 𝐿 𝑑5, 𝐿 𝑑5, 𝐿 225.32 85.06
89% 𝑑4, 𝐿 𝑑4, 𝐿 𝑑4, 𝐿 𝑑4, 𝐿 𝑑0,𝐶 356.75 89.10
Max 𝑑0, 𝐿 𝑑0,𝐶 𝑑0, 𝐸 𝑑0, 𝐿 𝑑0, 𝐿 506.62 89.90

Table 10. Results of the state-of-the-art [32] in all four experiments.

End-node Devices

Experiments S1 S2 S3 S4 S5 Avg Res (ms) Avg Acc (%)

D
ec
is
io
n Exp-A 𝑑0, 𝐸 𝑑0, 𝐿 𝑑0, 𝐿 𝑑0,𝐶 𝑑0, 𝐿 418.91 89.9

Exp-B 𝑑0,𝐶 𝑑0, 𝐸 𝑑0, 𝐿 𝑑0, 𝐿 𝑑0, 𝐿 472.88 89.9
Exp-C 𝑑0, 𝐿 𝑑0, 𝐿 𝑑0, 𝐿 𝑑0,𝐶 𝑑0, 𝐸 464.59 89.9
Exp-D 𝑑0, 𝐿 𝑑0,𝐶 𝑑0, 𝐸 𝑑0, 𝐿 𝑑0, 𝐿 506.62 89.9

6.2 Overhead Analysis
Developing a global RL agent for optimal runtime orchestration decisions in an end-edge-cloud
system incurs overhead to multiple sources. We evaluate the sources of overhead in both exploration
and exploitation phases to demonstrate the feasibility of our proposed solution.

6.2.1 Exploration Overhead. We evaluate the time required by the proposed agent for the training
phase to identify an optimal policy. Figure 6 shows the training phase for different numbers of
end-devices under different accuracy constraints. We train the agent withQ-Learning and Deep Q-
Learning algorithms under different accuracy constraints (See Figure 6.(a) and 6.(b), respectively).
The convergence time for five devices with different policies are summarized in Table 11. Q-Learning

19

0 1 2

Step ×104

0

500

1000

1500

‖R
ew
a
rd
‖

Three End-devices

0.0 0.5 1.0

Step ×105

0

500

1000

1500

‖R
ew
a
rd
‖

Four End-devices

0 1

Step ×106

0

500

1000

1500

‖R
ew
a
rd
‖

Five End-devices

0 1 2

Step ×104

0

500

1000

1500

‖R
ew
a
rd
‖

Three End-devices

0.0 0.5 1.0

Step ×105

0

500

1000

1500

‖R
ew
a
rd
‖

Four End-devices

0 1

Step ×106

0

500

1000

1500

‖R
ew
a
rd
‖

Five End-devices

Accuracy-Min Accuracy-80% Accuracy-85% Accuracy-Max

(a) Q-Learning Algorithm

(b) Deep Q-Learning Algorithm

Fig. 6. Training overhead for multi-user networks with Q-Learning and Deep Q-Learning algorithms
under different accuracy constraints (See Algorithm 1 and 2, respectively).

0.0 0.5 1.0 1.5 2.0

Step ×106

200

400

600

800

‖R
ew
a
rd
‖

(a) Q-Learning Algorithm

0.0 0.5 1.0 1.5

Step ×105

200

400

600

800

1000

‖R
ew
a
rd
‖

(b) Deep Q-Learning Algorithm

TransferLearning-80% TransferLearning-85% Scratch-80% Scratch-85%

Fig. 7. Transfer learning strategy can be used to alleviate the convergence time. In our experiments, the
strategy improves the convergence time up to 12.5× and 3.3× for Q-Learning and Deep Q-Learning for five
End-devices, respectively. For example, the training phase for Q-Learning algorithm under 80% accuracy
constraint converges at 10.5 × 105 steps. While, using the transfer learning it converges at 8.2 × 104 steps.

20

Table 11. Training convergence time for three, four , and five End-devices with Q-Learning and Deep Q-
Learning algorithms (See Algorithm 1 and 2, respectively).

Number of Users Constraint Q-Learning (step #) Deep Q-Learning (step #)

3

Min 6.6×103 15.5×103
80% 1.8×103 14.5×103
85% 0.8×103 16.1×103
Max 6.7×103 18.1×103

4

Min 9.4×104 2.9×104
80% 3.1×104 2.8×104
85% 0.9×104 4.0×104
Max 9.5×104 4.4×104

5

Min 10.5×105 1.0×105
80% 10.5×105 1.0×105
85% 5.6×105 1.0×105
Max 10.5×105 1.0×105

agent converges faster than Deep Q-Learning agent for the three End-devices scenario. However,
increasing the number of End-devices leads to the more complex problem. Deep Q-Learning agent
converges up to 10.4× faster than Q-Learning agent for the five End-devices scenario. In other
words, Deep Q-Learning algorithm converges faster for high-dimensional space problems.

In addition, we observe that the training phase can be accelerated by exploiting previous experi-
ences in similar scenarios known as transfer learning strategy. Figure 7 shows that the strategy can
alleviate the convergence up to 12.5× and 3.3× for Q-Learning and Deep Q-Learning algorithms,
respectively. In the transfer learning strategy, we train a model with minimum accuracy threshold
from scratch. Then, we initialize model with the trained model to reduce the convergence time. In
conclusion, the Deep Q-Learning algorithm with the transfer learning strategy can speedup the
convergence time up to 34× in comparison with Q-Learning algorithm for the five End-devices
scenario.

6.2.2 Run-time Overhead. The agent is invoked periodically at runtime, imposing overhead on DL
inference execution. We evaluate the following components individually:
(a) Resource Monitoring: A continuous resource monitoring service imposes runtime overhead in
terms of DL inference response time. Figure 8 shows that the latency overhead for all layers is
negligible (less than 0.8% of minimum response time overall).

Device Edge Cloud
0

200

400

600

La
te
nc
y
(u
s)

Fig. 8. Resource Monitoring Overhead

21

(b) Message Broadcasting: Sharing resource usage and orchestration decision information over the
network potentially increases DL inference response time. Table 3 shows the additional network
latency for different network conditions. The request is the latency required to send an input image
to a higher layer, and dominates the sources of network overhead. We observe that the broadcasting,
in total, does not impose more than 2% of overall response time.

(c) Intelligent Orchestrator: The Q-Learning agent’s logic itself takes on average 0.6ms to execute in
the cloud. While, the Deep Q-Learning agent’s step takes 11𝑚𝑠 on average to execute using NVIDIA
RTX 5000 in cloud. During exploitation, our trained agent identifies the optimal orchestration
decision within five invocations. We conclude that after an agent is trained, the improvements of
35% in average response time compared to prior art justifies the total overhead of our agent.

Table 12. Message Broadcasting Overhead

Regular Weak

Request 20 ms 137 ms
Update 0.4 ms 2 ms
Decision 1 ms 2 ms

Total 21.4 ms 141 ms

7 CONCLUSION
Cross-layer optimization that considers both model optimization and computation offloading
together provides an opportunity to enhance performance while satisfying accuracy requirements.
In this paper, for the first time, we proposed an online learning framework for DL inference
in end-edge-cloud systems by coordinating tradeoffs synergistically at both the application and
system layers. The proposed reinforcement learning-based online learning framework adopts model
optimization techniques with computation offloading to find the minimum average response time
for DL inference services while meeting an accuracy constraint. Using this method, we observed
up to 35% speedup for average response time while sacrificing less than %0.9 accuracy on a real
end-edge-cloud system when compared to prior art. Our approach shows that online learning can
be deployed effectively for orchestrating DL inference in end-edge-cloud systems, and opens the
door for further research in online learning for this important and growing area.

REFERENCES
[1] Md Golam Rabiul Alam, Mohammad Mehedi Hassan, Md ZIa Uddin, Ahmad Almogren, and Giancarlo Fortino. 2019.

Autonomic computation offloading in mobile edge for IoT applications. Future Generation Computer Systems 90 (2019),
149–157.

[2] Marco V Barbera, Sokol Kosta, Alessandro Mei, and Julinda Stefa. 2013. To offload or not to offload? the bandwidth
and energy costs of mobile cloud computing. In 2013 Proceedings Ieee Infocom. IEEE, 1285–1293.

[3] Xianfu Chen, Honggang Zhang, Celimuge Wu, Shiwen Mao, Yusheng Ji, and Medhi Bennis. 2018. Optimized compu-
tation offloading performance in virtual edge computing systems via deep reinforcement learning. IEEE Internet of
Things Journal 6, 3 (2018), 4005–4018.

[4] Zhao Chen and Xiaodong Wang. 2018. Decentralized computation offloading for multi-user mobile edge computing: A
deep reinforcement learning approach. arXiv preprint arXiv:1812.07394 (2018).

[5] BaiChuan Cheng, ZhiLong Zhang, and DanPu Liu. 2019. Dynamic Computation Offloading Based on Deep Reinforce-
ment Learning. In 12th EAI International Conference on Mobile Multimedia Communications, Mobimedia 2019. European
Alliance for Innovation (EAI).

[6] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. 2017. A survey of model compression and acceleration for deep
neural networks. arXiv preprint arXiv:1710.09282 (2017).

22

[7] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2015. Binaryconnect: Training deep neural networks
with binary weights during propagations. In Advances in neural information processing systems. 3123–3131.

[8] Amir Erfan Eshratifar, Mohammad Saeed Abrishami, and Massoud Pedram. 2019. JointDNN: an efficient training and
inference engine for intelligent mobile cloud computing services. IEEE Transactions on Mobile Computing (2019).

[9] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights and connections for efficient neural
network. In Advances in neural information processing systems. 1135–1143.

[10] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto,
and Hartwig Adam. 2017. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[11] Hyuk-Jin Jeong, Hyeon-Jae Lee, Chang Hyun Shin, and Soo-Mook Moon. 2018. IONN: Incremental offloading of neural
network computations from mobile devices to edge servers. In Proceedings of the ACM Symposium on Cloud Computing.
401–411.

[12] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason Mars, and Lingjia Tang. 2017.
Neurosurgeon: Collaborative intelligence between the cloud and mobile edge. ACM SIGARCH Computer Architecture
News 45, 1 (2017), 615–629.

[13] Hongchang Ke, Jian Wang, Hui Wang, and Yuming Ge. 2019. Joint Optimization of Data Offloading and Resource
Allocation With Renewable Energy Aware for IoT Devices: A Deep Reinforcement Learning Approach. IEEE Access 7
(2019), 179349–179363.

[14] Hakima Khelifi, Senlin Luo, Boubakr Nour, Akrem Sellami, Hassine Moungla, Syed Hassan Ahmed, and Mohsen
Guizani. 2018. Bringing deep learning at the edge of information-centric internet of things. IEEE Communications
Letters 23, 1 (2018), 52–55.

[15] Young Geun Kim and Carole-Jean Wu. 2020. Autoscale: Energy efficiency optimization for stochastic edge inference
using reinforcement learning. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 1082–1096.

[16] Ji Li, Hui Gao, Tiejun Lv, and Yueming Lu. 2018. Deep reinforcement learning based computation offloading and
resource allocation for MEC. In 2018 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 1–6.

[17] Long-Ji Lin. 1992. Self-improving reactive agents based on reinforcement learning, planning and teaching. Machine
learning 8, 3-4 (1992), 293–321.

[18] Sicong Liu, Junzhao Du, Kaiming Nan, Atlas Wang, Yingyan Lin, et al. 2020. AdaDeep: A Usage-Driven, Automated
Deep Model Compression Framework for Enabling Ubiquitous Intelligent Mobiles. arXiv preprint arXiv:2006.04432
(2020).

[19] Arm Ltd. [n.d.]. IP Products: Arm NN. https://developer.arm.com/ip-products/processors/machine-learning/arm-nn
[20] Haifeng Lu, Chunhua Gu, Fei Luo, Weichao Ding, and Xinping Liu. 2020. Optimization of lightweight task offloading

strategy for mobile edge computing based on deep reinforcement learning. Future Generation Computer Systems 102
(2020), 847–861.

[21] Pavel Mach and Zdenek Becvar. 2017. Mobile edge computing: A survey on architecture and computation offloading.
IEEE Communications Surveys & Tutorials 19, 3 (2017), 1628–1656.

[22] Bradley McDanel, Surat Teerapittayanon, and HT Kung. 2017. Embedded binarized neural networks. arXiv preprint
arXiv:1709.02260 (2017).

[23] Minghui Min, Liang Xiao, Ye Chen, Peng Cheng, Di Wu, and Weihua Zhuang. 2019. Learning-based computation
offloading for IoT devices with energy harvesting. IEEE Transactions on Vehicular Technology 68, 2 (2019), 1930–1941.

[24] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves,
Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. 2015. Human-level control through deep reinforcement
learning. nature 518, 7540 (2015), 529–533.

[25] Seyed Sajad Mousavi, Michael Schukat, and Enda Howley. 2016. Deep reinforcement learning: an overview. In
Proceedings of SAI Intelligent Systems Conference. Springer, 426–440.

[26] Burhan A Mudassar, Jong Hwan Ko, and Saibal Mukhopadhyay. 2018. Edge-cloud collaborative processing for
intelligent internet of things: A case study on smart surveillance. In 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC). IEEE, 1–6.

[27] M.R. Nakhkash et al. 2019. Analysis of Performance and Energy Consumption of Wearable Devices and Mobile
Gateways in IoT Applications. In COINS.

[28] Jihong Park, Sumudu Samarakoon, Mehdi Bennis, and Mérouane Debbah. 2019. Wireless network intelligence at the
edge. Proc. IEEE 107, 11 (2019), 2204–2239.

[29] Guanhua Qiao, Supeng Leng, and Yan Zhang. 2019. Online learning and optimization for computation offloading in
D2D edge computing and networks. Mobile Networks and Applications (2019), 1–12.

[30] Xukan Ran, Haolianz Chen, Xiaodan Zhu, Zhenming Liu, and Jiasi Chen. 2018. Deepdecision: A mobile deep learning
framework for edge video analytics. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications. IEEE,

23

https://developer.arm.com/ip-products/processors/machine-learning/arm-nn

1421–1429.
[31] Jürgen Schmidhuber. 2015. Deep learning in neural networks: An overview. Neural networks 61 (2015), 85–117.
[32] Tanmoy Sen and Haiying Shen. 2019. Machine Learning based Timeliness-Guaranteed and Energy-Efficient Task

Assignment in Edge Computing Systems. In 2019 IEEE Conference on Fog and Edge Computing. IEEE, 1–10.
[33] Sina Shahhosseini, Iman Azimi, Arman Anzanpour, Axel Jantsch, Pasi Liljeberg, Nikil Dutt, and Amir M Rahmani.

2019. Dynamic Computation Migration at the Edge: Is There an Optimal Choice?. In Proceedings of the 2019 on Great
Lakes Symposium on VLSI. ACM, 519–524.

[34] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An introduction. MIT press.
[35] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. 2017. Efficient processing of deep neural networks: A

tutorial and survey. Proc. IEEE 105, 12 (2017), 2295–2329.
[36] Ben Taylor, Vicent Sanz Marco, Willy Wolff, Yehia Elkhatib, and Zheng Wang. 2018. Adaptive deep learning model

selection on embedded systems. ACM SIGPLAN Notices 53, 6 (2018), 31–43.
[37] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. 2017. Distributed deep neural networks over the

cloud, the edge and end devices. In 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS).
IEEE, 328–339.

[38] Ziling Wei, Baokang Zhao, Jinshu Su, and Xicheng Lu. 2018. Dynamic edge computation offloading for Internet of
Things with energy harvesting: A learning method. IEEE Internet of Things Journal 6, 3 (2018), 4436–4447.

[39] Phil Winder. 2020. Reinforcement Learning. O’Reilly Media.
[40] Jie Xu and Shaolei Ren. 2016. Online learning for offloading and autoscaling in renewable-powered mobile edge

computing. In 2016 IEEE Global Communications Conference (GLOBECOM). IEEE, 1–6.
[41] Mengwei Xu, Feng Qian, Mengze Zhu, Feifan Huang, Saumay Pushp, and Xuanzhe Liu. 2019. Deepwear: Adaptive

local offloading for on-wearable deep learning. IEEE Transactions on Mobile Computing 19, 2 (2019), 314–330.
[42] Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna Kadiyala, Fatemeh Jalali, Amirreza Niakanlahiji, Jian Kong,

and Jason P Jue. 2018. All one needs to know about fog computing and related edge computing paradigms. (2018).

24

	Abstract
	1 Introduction
	2 Background
	2.1 Offloading DL Workloads in End-Edge-Cloud Architecture
	2.2 Intelligence for Orchestration

	3 Motivation
	3.1 Impact of System Dynamics on Inference Performance
	3.2 Related Work
	3.3 Contributions

	4 Online Learning Framework
	4.1 System Model and Problem Formulation
	4.2 Reinforcement Learning Agent

	5 Framework Setup
	5.1 Framework Architecture
	5.2 Benchmarks and Scenarios
	5.3 Experimental Setup
	5.4 Hyper-parameters and RL Training

	6 Evaluation Results and Analysis
	6.1 Performance Analysis
	6.2 Overhead Analysis

	7 Conclusion
	References

