

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/iann20

IL-6 and other biomarkers as predictors of severity in COVID-19

N Broman , K Rantasärkkä , T Feuth , M Valtonen , M Waris , U Hohenthal , E Rintala , A Karlsson , H Marttila , V Peltola , T Vuorinen & J Oksi

To cite this article: N Broman , K Rantasärkkä , T Feuth , M Valtonen , M Waris , U Hohenthal , E Rintala, A Karlsson, H Marttila, V Peltola, T Vuorinen & J Oksi (2020): IL-6 and other biomarkers as predictors of severity in COVID-19, Annals of Medicine, DOI: 10.1080/07853890.2020.1840621

To link to this article: <u>https://doi.org/10.1080/07853890.2020.1840621</u>

© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

Q

Accepted author version posted online: 11 Dec 2020.

-	_
r	
	21
~	_

Submit your article to this journal

Article views: 488

💽 View related articles 🗹

View	Crossm

hark data 🗹

Check for updates

2 IL-6 and other biomarkers as predictors of severity in COVID-19

Broman N*¹, Rantasärkkä K*², Feuth T³, Valtonen M⁴, Waris M², Hohenthal U⁵, Rintala E⁶, Karlsson A⁷, Marttila H⁶, Peltola V⁸, Vuorinen T**², Oksi J**⁵

5

1

- 6 *shared 1st author; **equal contribution
- 7 1 Department of Infectious Diseases, Turku University Hospital, 2 Department of Clinical Microbiology,
- 8 Turku University Hospital and Institute of Biomedicine, University of Turku, 3 Department of Pulmonary
- 9 Diseases, Turku University Hospital and Department of Pulmonary Diseases and Clinical Allergology,
- 10 University of Turku, 4 Department of Anaesthesia and Intensive Care, Turku University Hospital, 5
- 11 Department of Infectious Diseases, Turku University Hospital and University of Turku, 6 Department of
- 12 Hospital Hygiene and Infection Control, Turku University Hospital, 7 Auria Biobank, Turku University
- 13 Hospital and University of Turku, 8 Department of Paediatrics and Adolescent Medicine, Turku University
- 14 Hospital and University of Turku, Turku, Finland

15

16 Keywords

- 17 COVID-19, interleukin, interferon, inflammatory phase, tocilizumab, cytokine storm, cytokine release18 syndrome
- 19

20 Key message

- 21 In our study, interleukin-6 and C-reactive protein were the strongest predictors of severity in hospitalized
- 22 patients with COVID-19 as measured by admission to ICU.
- 23

24 Running head

- 25 IL-6 in severe COVID-19
- 26

27 Corresponding author

- 28 Prof Jarmo Oksi
- 29 ORCID ID 0000-0002-3331-997X
- 30 Turku University Hospital, Turku, Finland
- 31 jarmo.oksi@utu.fi
- **32** +358 40 5414813
- 33
- 34

35 Abstract

- 36 Cytokine release syndrome is the most important mechanism triggering acute respiratory distress syndrome
- and end organ damage. In our study, interleukin-6 and C-reactive protein were the strongest predictors of
- severity in hospitalized patients with COVID-19 as measured by admission to ICU.
- 39

40 Introduction

- 41 A large number of trials have been registered to investigate the various candidates of immunomodulatory
- 42 therapeutics for COVID-19 including tocilizumab, an IL-6 receptor antagonist, and anakinra, an IL-1
- 43 inhibitor. Both IL-1 and IL-6 are known to have a central role in development of cytokine release syndrome
- 44 (CRS) in the later phase of the disease.
- 45 A recent publication suggested that blockage of interleukin-1 with anakinra in COVID-19 patients with
- 46 hyperinflammation improves survival. For that study, C-reactive protein (CRP) and ferritin were used as
- 47 markers of hyperinflammation to select patients that may benefit from anakinra.(1)
- 48 Severity and mortality of COVID-19 are associated with coagulopathy (2) and imbalanced immune response
- with marked increase of interleukins IL-1 and IL-6 as well as other cytokines and eventually organfailure.(3,4)
- 51

52 Brief Report

- 53 We studied a number of markers of inflammation and coagulation as recorded on admission in all COVID-
- 54 19 patients (n=29) admitted to Turku University Hospital, Finland, up to May 24th, 2020, in order to identify
- 55 markers of severe COVID-19 and need for ICU. Patients were divided in three groups: Group 1 included
- 56 patients without ICU restrictions but who could be treated outside ICU (13/29, 45%); Group 2 included all
- 57 patients who were eventually admitted to ICU (8/29, 28%); and Group 3 included all patients with ICU-
- restrictions based on high age and severe comorbidity, and poor prognosis of survival (8/29, 28%).
- 59 Biomarkers were taken upon admission or within the first few days. For each biomarker, only the first
- 60 measurement was used for this study. The peripheral blood lymphocyte count, ferritin, CRP, procalcitonin
- 61 (PCT), and D-dimer were all analyzed according to standard methods. Human myxovirus resistance protein
- 62 A (MxA), a cytoplasmic GTPase with direct antiviral effect and exclusively induced by type I and III
- 63 interferons (IFNs), was used as a key biomarker for identifying virus infection.(5,6) Under virus invasion,
- 64 MxA forms oligomer rings around virus nucleocapsid structures blocking their translation through
- aggregation, disruption, or prevention of translocation. MxA is detectable in peripheral blood mononuclear
- cells within a few hours of IFN stimulation and has a half-life of about 2.3 days, providing a specific
- 67 indication of acute or very recent virus infection. On the other hand, viruses have evasion mechanisms which68 delay the induction or action of IFNs.
- 69 Sars-CoV-2 qRT-PCR was performed in nasopharyngeal swabs using WHO recommended primers and
- probe for E gene (7), whole blood samples were tested for MxA as previously described (6), and serum IL-6
- 71 levels were assayed using the BioVendor Human IL-6 Elisa kit (BioVendor, Czech Republic). IL-6 was
- sampled median 12.5 days after onset of symptoms and 2 days after admission to the hospital, with no
- 73 significant difference among the groups.
- The median age of the patients was 55 years (range 15-82 years) and 14/29 were female (48%). Body-mass
- 75 index (BMI) was available in 28 patients, of them, 11 (39%) were obese. Native oxygen saturation was
- registered in all cases before starting supplemental oxygen. Median native oxygen saturation on presentation
- was 95% in the non-ICU group and 88% in the group of patients who were eventually admitted to ICU. We

- found an inversed correlation between native oxygen saturation on admission and IL-6 (Spearman R -0.41,
 p=0.0242).
- 80 In patients eventually admitted to ICU, obesity (BMI: >30 kg/m²) was present in 50% of cases and BMI >35

81 kg/m² in 25%. In these patients the mean simplified acute physiology score II was 35, and these patients

- 82 were seriously hypoxemic with 84 % mean blood oxygen saturation and 6.7 kPa arterial oxygen partial
- pressure. Invasive ventilation was needed in 63% of patients with a mean duration of 20 days. The mean
- 84 length of the ICU stay was 17 days. Three patients (38%) needed repeatedly prone position. As of for May
- 31^{st} , 3/29 patients died (10%). Of them, 2 died during admission in our hospital and one after referral for
- 86 palliative care to a local health centre. All patients treated in ICU survived with one of them still
- 87 hospitalized with a home ventilator.
- 88 In total, 6 patients received corticosteroids during admission. In 4 cases, corticosteroids were already started
- 89 before diagnosis of COVID-19. Of those, corticosteroid treatment was started for asthma exacerbation in 3
- 90 cases and 1 case received low dose (5 mg) of prednisolone as maintenance therapy for polymyalgia
- 91 rheumatica. In the other 2 cases, systemic corticosteroids were started in ICU. 4 patients receiving
- 92 corticosteroids were treated in ICU, in the other 2 patients ICU-restrictions were set. None of the non-ICU-
- 93 patients received systemic corticosteroids.
- 94 Patients who were eventually admitted to ICU displayed higher serum levels of IL-6, CRP, and PCT. The
- 95 MxA levels were clearly elevated (>200 μ g/L) across all groups without statistically significant difference.
- 96 No statistical differences were found between the groups in median levels of lymphocytes, D-dimer or
- 97 ferritin. These data are displayed in Figure 1.
- 98 In our small material, ICU admission is correlated with significantly higher IL-6 levels as compared to no
- need of ICU. Our findings are well in line with similar studies (8,9). In addition, serum level of IL-6 was
- measured in two of three patients that eventually died and was on the upper limit of quantification (>240
 pg/mL) in both of them. Another predictive biomarker for severity of the disease and need of ICU admission
- in our patients was CRP confirming the results of several earlier findings.(10) Blood MxA levels were
- variably elevated at 1-9 days after admission (median 2 days) to hospital, indicating that the patients had
- 104 strong type I/III IFN response and may not, at their advanced stage of disease, have benefited from IFN as a
- potential therapeutic. D-dimer has its place as a coagulation marker but at least in our material it did not
- 106 predict the severity of the disease. Neither was ferritin associated to the severity of the disease. Therefore,
- 107 unlike Cavalli et al., we do not support the use of ferritin in order to identify patient illegible for treatment
- 108 with interleukin blockade. We consider IL-6 measurement to be a useful biomarker in clinical care of
- 109 COVID-19 patients.
- 110

111 Authors' contributions

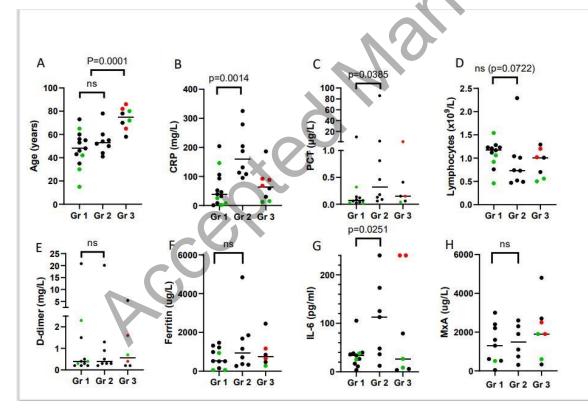
All authors have contributed significantly to the work and approved the manuscript.

113 Conflicts of interests statements

114 None of the authors does not have any conflicts of interests.

115 Funding

116 There is no external funding for the study.


117 Ethical approval

- 118 Ethics committee has approved the study protocol.
- 119
- 120 **References**

- Cavalli G, De Luca G, Campochiaro C, et al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: A retrospective cohort study. *The Lancet Rheumatology*. 2020;2(6):e325-e331.
- 124 <u>http://dx.doi.org/10.1016/S2665-9913(20)30127-2</u>. doi: 10.1016/S2665-9913(20)30127-2.
- Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with
 COVID-19. *The Lancet Haematology*. 2020;7(6):e438-e440. <u>http://dx.doi.org/10.1016/S2352-</u>
 3026(20)30145-9. doi: 10.1016/S2352-3026(20)30145-9.
- Blanco-Melo D, Nilsson-Payant BE, Liu W, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. *Cell*. 2020;181(5):1036-1045.e9.
- 130 <u>http://dx.doi.org/10.1016/j.cell.2020.04.026</u>. doi: 10.1016/j.cell.2020.04.026.
- Berlin DA, Gulick RM, Martinez FJ. Severe covid-19. *The New England journal of medicine*. 2020.
 https://www.ncbi.nlm.nih.gov/pubmed/32412710. doi: 10.1056/NEJMcp2009575.
- 5. Halminen M, Ilonen J, Julkunen I, Ruuskanen O, Simell O, Makela MJ. Expression of MxA protein
 in blood lymphocytes discriminates between viral and bacterial infections in febrile children. *Pediatr Res.* 1997;41(5):647-650. doi: 10.1203/00006450-199705000-00008 [doi].
- 136 6. Toivonen L, Schuez-Havupalo L, Rulli M, et al. Blood MxA protein as a marker for respiratory virus
 137 infections in young children. *J Clin Virol*. 2015;62:8-13. doi: 10.1016/j.jcv.2014.11.018 [doi].
- Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by realtime RT-PCR. *Eurosurveillance* 2020:25(3):pii=2000045. doi: 10.2807/1560 7917.ES.2020.25.3.2000045.
- Vultaggio A, Vivarelli E, Virgili G, et al. Prompt Predicting of Early Clinical Deterioration of Moderate-to-Severe COVID-19 Patients: Usefulness of a Combined Score Using IL-6 in a Preliminary Study [published online ahead of print, 2020 Jun 19]. *J Allergy Clin Immunol Pract*.
 2020;S2213-2198(20)30611-5. doi:10.1016/j.jaip.2020.06.013).
- Han H, Ma Q, Li C, et al. Profiling serum cytokines in COIVD-19 patients reveals IL-6 and IL-10 are disease severity predictors. *Emerg Microbes Infect* 2020; 9:1, 1123-1130, doi: 10.1080/22221751.2020.1770129
- 10. Tan C, Huang Y, Shi F, et al. C-reactive protein correlates with computed tomographic findings and
 predicts severe COVID-19 early. *J Med Virol.* 2020; Apr 25. doi: 10.1002/jmv.25871

150

- 151 **Figure 1**: Biomarkers associated with severe COVID-19 requiring ICU-admission.
- 152 Legend
- All 29 patients admitted to Turku University Hospital before May 24th 2020 were included and divided in 3
- 154 groups. Group 1 includes all hospitalized patients without intensive care restrictions who did not require
- intensive care unit (ICU)-admission, Group 2 included all patients who were eventually admitted to the ICU
- and Group 3 includes all patients with ICU-restrictions based on age and comorbidity. Horizontal linesdepict median values. Patients who eventually died are marked red, and those who did not need
- supplementary oxygen or other respiratory support are marked green. Differences between groups were
- tested for statistical significance with Mann Whitney-test. A: there was no significant difference in age
- between Group 1 and Group 2 (medians 48 years versus 53 years, p=0.4886). As can be expected, age of
- 161 patients with ICU-restrictions (Group 3) was significantly higher than those without restrictions (medians 75
- years versus 52 years, p=0.0001). B, C and G: Admission to ICU was associated with higher levels of CRP
- 163 (medians 39 mg/L in Group 1 and 159 mg/L in Group 2, p=0.0014), PCT (0.07 μ g/L in Group 1 versus 0.32
- 164 μ g/L in Group 2, p=0.0385) and IL-6 (33.8 pg/mL in Group 1 versus 112.8 pg/mL in Group 2, p=0.0251). D,
- 165 E, F: No statistical differences were observed in level of peripheral blood lymphocytes, and serum levels of
- 166 D-dimer, Ferritin. H: MxA was variably elevated in all Covid-19 patients.
- 167 Footnote
- 168 CRP: C-reactive protein (normal <10 mg/L), PCT: procalcitonin (normal <0.05 µg/L), Lymphocytes
- 169 (normal 1.3-3.6 x10E9 /L), D-dimer (normal <0.5 mg/L), P-Ferritin (normal men 30–400 μg/L, women 13–
- 170 150 μg/L), S-IL-6: Interleukin-6 (normal <5.9 pg/mL), MxA: Myxovirus resistance protein A (normal <100
- 171 μg/L).

172