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Abstract
1. Knowledge concerning spatio- temporal distributions of populations is a pre-

requisite for successful conservation and management of migratory animals. 
Achieving cost- effective monitoring of large- scale movements is often difficult 
due to lack of effective and inexpensive methods.

2. Taiga bean goose Anser fabalis fabalis and tundra bean goose A. f. rossicus offer 
an excellent example of a challenging management situation with harvested mi-
gratory populations. The subspecies have different conservation statuses and 
population trends. However, their distribution overlaps during migration to an 
unknown extent, which, together with their similar appearance, has created a 
conservation– management dilemma.

3. Gaussian process (GP) models are widely adopted in the field of statistics 
and machine learning, but have seldom been applied in ecology so far. We 
introduce the R package gplite for GP modelling and use it in our case 
study together with birdwatcher observation data to study spatio- temporal 
differences between bean goose subspecies during migration in Finland in 
2011– 2019.

4. We demonstrate that GP modelling offers a flexible and effective tool for ana-
lysing heterogeneous data collected by citizens. The analysis reveals spatial and 
temporal distribution differences between the two bean goose subspecies in 
Finland. Taiga bean goose migrates through the entire country, whereas tundra 
bean goose occurs only in a small area in south- eastern Finland and migrates 
later than taiga bean goose.

5. Synthesis and applications. Within the studied bean goose populations, harvest 
can be targeted at abundant tundra bean goose by restricting hunting to south- 
eastern Finland and to the end of the migration period. In general, our approach 
combining citizen science data with GP modelling can be applied to study spatio- 
temporal distributions of various populations and thus help in solving challeng-
ing management situations. The introduced R package gplite can be applied 
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1  |  INTRODUC TION

Human population growth and the intensifying use of natural re-
sources pose increasing challenges to the conservation and manage-
ment of wildlife populations (e.g. Halpern et al., 2008). Consequently, 
national and international activities have been proposed and initi-
ated to safeguard the sustainable use and preservation of wildlife 
populations (e.g. Hawkins et al., 1984). Decision- making in conserva-
tion and management requires reliable data on population dynamics 
and ecosystem processes, but relevant information is often scarce, 
emphasizing the importance of using all available data with suitable 
statistical tools (Johnson et al., 2018).

Knowledge of distribution over the annual cycle is a prerequi-
site for the successful conservation and management of migratory 
animals, as it plays a vital role in habitat safeguarding, population 
monitoring and targeting management actions. Understanding 
spatio- temporal dispersion is particularly important in cases where 
multiple populations with different conservation statuses occur in 
the same area and are affected by the same human actions. Birds 
are probably the best- known migratory animals, but despite their 
movements having been intensively studied since bird ringing began 
in the late 1800s, the spatio- temporal occurrences of many species 
and populations are still poorly understood. Traditional methods, 
such as bird ringing, are usually ineffective and slow (Anderson & 
Green, 2009), whereas modern tracking technologies suffer from 
expensiveness, the large size of tracking devices or short life span of 
small devices (Tomkiewicz et al., 2010).

Citizen science may offer valuable tools for nature conservation 
and management (McKinley et al., 2017), but the data often suffer 
from weaknesses caused by spatial and temporal observation biases 
or the insufficient expertise of observers (Callaghan et al., 2019). 
Producing scientific knowledge from these large yet heterogeneous 
datasets often requires applying modern statistical methods in 
the analyses. Unfortunately, commonly used methods often have 
many weaknesses with heterogeneous data collected by citizens 
(Bird et al., 2014). Gaussian processes (GPs) offer a flexible proba-
bilistic approach for modelling such data. The basic theory has been 
known for decades (e.g. O'Hagan, 1978), and the machine learn-
ing community became aware of GPs in the 1990 (e.g. Williams & 
Rasmussen, 1996), and nowadays they are commonplace in the field 
(for an excellent introduction, see Rasmussen & Williams, 2006). 
Previous applications in ecology, however, are relatively sparse. GPs 
have been used to study optimization in fisheries and predator– 
prey interactions (Patil, 2007), species distribution modelling (SDM; 

Vanhatalo et al., 2012; Golding & Purse, 2016; Ingram et al., 2020; 
Vanhatalo et al., 2020; Wright et al., 2021), modelling individual 
fish growth (Sigourney et al., 2012) and decision- making in fisher-
ies (Boettiger et al., 2015). The GP models' flexibility and capability 
to account for uncertainties due to geographically and temporally 
uneven observation pressure enable wider usage in ecology. So far, 
their applicability has undoubtedly been limited by the absence of 
user- friendly tools for the R language, which is the de facto program-
ming language in the field. Many R packages that provide some GP 
regression functionalities are limited in features, and do not support 
functionalities necessary for general- purpose modelling (e.g. pack-
ages gptk, mlegp and GPfit all implement only Gaussian noise 
model).

Migratory waterfowl are excellent examples of difficult 
conservation– management situations, as they are important quarry 
species but many of their populations have declined in recent de-
cades (Madsen et al., 2015). Simultaneously, other populations, even 
sympatric ones, are so abundant that they require population control 
(Fox & Madsen, 2017). Species with different population trends can 
be affected by the same management actions (e.g. hunting, habitat 
management). For example, various waterfowl species are often sim-
ilar in appearance and thus difficult to identify in a hunting situation, 
which complicates their harvest management. Difficult manage-
ment situations with two sympatric, look- a- like birds with oppo-
site conservation statuses have been recognized in North America 
(e.g. Sheaffer et al., 2004), where diverse management challenges 
have been dealt with by applying an adaptive harvest management 
framework since the 1990s (Nichols et al., 2007). In Europe, adaptive 
management approaches for waterfowl have been introduced more 
recently (e.g. Madsen et al., 2017).

The two Western Palearctic subspecies of bean goose, the taiga 
bean goose Anser fabalis fabalis and the tundra bean goose Anser 
fabalis rossicus provide an excellent example of a within- species 
conservation– management dilemma. The tundra bean goose popu-
lation has doubled since the late 1980s and is recently estimated at 
600,000– 650,000 individuals (Heinicke, 2018). In contrast to that, 
taiga bean goose numbers have decreased in recent decades, with 
latest population estimates reaching 70,000– 80,000 individuals 
(Heldbjerg et al., 2019). Both bean goose subspecies are legal quarry 
in many countries within their range, but due to their different pop-
ulation statuses and trends, their conservation and management 
needs are clearly different. Unfortunately, they are very similar in 
appearance and therefore impossible to identify in a hunting situ-
ation. This leads to considerable difficulties when aiming to target 

not only to ecological modelling, but to a wide range of analyses in other fields 
of science.
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the harvest towards the abundant tundra bean goose without ham-
pering taiga bean goose conservation goals. Taiga bean geese breed 
in the boreal zone of Fennoscandia and north- western Russia, and 
winter mainly in southern Sweden, northern Germany and Poland. 
Tundra bean geese breed in the tundra zone and winter in a broad 
area in western and central Europe (see Figure 1). However, the sub-
species can overlap in their migration stop- over areas. The move-
ments of taiga bean geese breeding in Finland are fairly well known 
(e.g. Nilsson, 2011), but tundra bean geese occurring alongside taiga 
bean geese on their migration through Finland is poorly understood. 
Honka et al. (2017) showed, using molecular genetic methods, that 
bean geese harvested in south- eastern Finland were mainly tundra 
bean geese, whereas birds from western and northern Finland were 
mainly taiga bean geese. Nonetheless, this information is coarse due 
to the small sample size (N = 103). Additionally, Honka et al.'s (2017) 
study was lacking the temporal component, meaning that the study 
did not account for yearly variation in subspecies occurrence.

Knowledge concerning spatio- temporal differences of bean 
goose subspecies occurrences may enable geographical and 
seasonal hunting regulations and thus prevent overharvesting 
of taiga bean geese. Despite the look- alike problem that makes 
bean goose subspecies identification impossible in a hunting 
situation, taiga and tundra bean geese have certain character-
istics that differentiate the appearance of their heads and bills 
(Heinicke, 2010). These characteristics allow subspecies identifi-
cation for most individuals in the field with a spotting scope, and 
thus enable birdwatchers to collect bean goose observations on 
a subspecies level.

The aim of this paper is to introduce and promote GP modelling 
as a tool for utilizing citizen science data for studying the spatio- 
temporal occurrence of migratory populations. In a case study, we 
apply GP modelling with birdwatcher observation data to predict 
differences in taiga and tundra bean goose spatio- temporal dis-
tributions in Finland during migration. As a result, we provide a 
general- purpose R package gplite (Piironen, 2021b) for future GP 
analyses along with management recommendations for the bean 
goose management– conservation issue.

2  |  MATERIAL S AND METHODS

2.1  |  Bird observation data

We received birdwatcher observation data collected during 2011– 
2019 from BirdLife Finland. Observations were collected via the 
online bird observation portal Tiira (https://www.tiira.fi/). Species, 
location, date and number of observed birds are mandatory informa-
tion to the observation. Additionally, observers can save a variety of 
information such as age, status etc. to the observation. A bean goose 
observation can be entered into the system as a taiga or a tundra 
bean goose, or as a bean goose if the subspecies was not identified. 
In our analysis, we only used observations where the subspecies was 
identified and where the bird's status was recorded as local (i.e. not 
flying), as subspecies identification from a flying bean goose is unre-
liable. We sorted observations from 1.3. to 31.5. for spring migration 
and from 1.8. to 30.11. for autumn migration annually. In the end, we 
had c. 19,500 observations that met the above- mentioned criteria 
(See Table S3 in the Supplementary Information). In each observa-
tion, 1– 12,500 individuals were observed, with a mean of 148. Any 
ethical approvals for collection of birdwatcher observations were 
not required.

Our data contain two main sources of uncertainty, both typical 
to citizen science data. First, the observation effort is not evenly 
distributed spatially or temporally. This is not a problem, as it will 
only increase the uncertainty of the model predictions in regions 
and times with few observations (note that we are interested 
only in the subspecies ratio, see below). Second, observations are 
made by numerous birdwatchers with unknown and variable ex-
pertise, possibly generating incorrectly identified birds into the 
data. Nonetheless, the low percentage (c. 40%) of bean goose 
observations identified to subspecies level among all bean goose 
observations indicate that birdwatchers are somewhat prudent in 
difficult identification situations, and the majority report their ob-
servations only when they are confident with the identification. 
Additionally, temporal differences in subspecies composition in 
the same area indicate that no obvious or severe spatial biases 

F I G U R E  1  Breeding and wintering 
ranges and approximate migration routes 
of taiga and tundra bean goose in the 
Western Palaearctic and western parts 
of the Eastern Palaearctic according to 
Marjakangas et al. (2015)

https://www.tiira.fi/
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exist in subspecies identification. Therefore, we consider errone-
ous observations to be randomly distributed in the data (see also 
Bradter et al. (2018) for a comparison between birdwatcher and 
systematically collected data).

Instead of modelling the occurrence of either one of the subspe-
cies alone, we modelled the ratio of the two subspecies, as it is advan-
tageous for statistical reasons and for producing better management 
recommendations. From a statistical viewpoint, modelling the ratio 
(presence– absence data) is considerably less vulnerable to possible 
biases originating from the spatially and temporally varying observa-
tion effort than modelling the distribution of each subspecies alone 
(presence- only data). A lack of observations does not introduce bias 
into estimating the ratio, as it only affects the model's uncertainty 
concerning the estimate. On the other hand, when modelling the dis-
tribution of one subspecies alone, you cannot ignore the bias com-
ing from uneven observation effort, which would complicate the 
analysis considerably. Regarding management recommendations, 
our goal is to find a management solution that provides an optimal 
compromise between taiga bean goose conservation and avoiding 
unnecessary harvest regulations for tundra bean geese. Thereby, it 
is vital to recognize times and areas where the proportion of tundra 
bean geese out of all bean geese is large, as these are the times and 
areas where harvest is targeted at tundra bean geese while taiga 
bean geese are spared. Nevertheless, when modelling the ratio, we 
need to assume that reporting rates between the two subspecies do 
not differ when they are detected and identified. We are not aware 
of any reasons why this assumption could not be made.

2.2  |  Model

Gaussian processes offer a powerful and flexible way of incorpo-
rating prior knowledge into the model while allowing a principled 
way to handle uncertainties. For a thorough introduction to GPs, we 
highly recommend the book by Rasmussen and Williams (2006). For 
a reader new to GPs, we provide some more details in the Supporting 
Information. Here we shall only give a brief description of the model. 
For motivation, discussion and comparison to other potential model-
ling choices, see the Supporting Information.

As discussed in Section 2.1, our data consist of approximately 
N = 19,500 observations collected during 2011– 2019. The relevant 
information for our spatio- temporal model from each observation is 
as follows: coordinates x =

(

x1, x2
)

, time stamp t (date) and the num-
ber of taiga and tundra bean geese observed. We use the symbol z to 
denote all the predictor features, z = (x, t) =

(

x1, x2, t
)

. For notational 
convenience, we denote the number of subspecies taiga bean goose 
in each observation with y, and the total number of birds in the cor-
responding observation with n. So, for example, y = 90 and n = 100 
mean that 90 taiga and 10 tundra bean geese were observed in that 
particular event. We note that the data are considered presence– 
absence in the sense that we assume that both subspecies to be re-
corded, if either one of them is observed (i.e. an observation of 50 
tundra bean geese means that 50 tundra bean geese were observed, 

but no taiga bean geese). Total absence observations are not as-
sumed to be made.

The data have very obvious overdispersion due to the flocking 
behaviour of the geese. In fact, only one of the two subspecies was 
present in c. 90% of the observations. To account for this, we assume 
each observation yi follows a beta- binomial distribution, which can 
be written as

Here parameter �i ∈ (0, 1) is of the central interest, as it deter-
mines the expected value of  yi: E

(

yi

)

= niE
(

pi

)

= �ini. What makes 
this model different from the binomial distribution is the overdisper-
sion parameter �, which increases the variance of yi compared to the 
binomial model whenever 𝜙 > 0. As � → 0, the model approaches 
yi ∼ Binomial

(

�i , ni
)

.
We model � = � (z) ∈ (0, 1) by introducing a latent function 

f = f (z) ∈ ( − ∞ , ∞) for which we give a zero mean GP prior, and 
then transform that through a logistic sigmoid to get �:

The heart of a GP model is the covariance function (or kernel) 
k
(

z, z′
)

, which specifies the properties of the model. We use the fol-
lowing structure

In other words, the covariance factors into spatial and tempo-
ral components, which makes it easy to specify both components 
separately. The multiplicative covariance introduces an interac-
tion between the spatial and temporal variation, meaning that the 
model allows the latent function to have spatial variation depen-
dent on time. Recall that covariance of the form ks

(

x, x′
)

kt
(

t, t′
)

 
corresponds to the functional form f (x, t) = fs (x) ft (t) for the latent 
function (see Rasmussen & Williams, 2006, Section 4.2.4). An addi-
tive covariance structure ks

(

x, x�
)

+ kt
(

t, t�
)

 (which corresponds to 
the form f (x, t) = fs (x) + ft (t)) could also be considered so that the 
latent function would look spatially the same at every time t, but 
this turned out be a clearly inferior choice in terms of data fit (see 
Supporting Information for model assessment).

For the spatial component, we use the so- called neural network 
covariance function (Williams, 1998)

The actual functional form is given in the Supporting Information. 
The neural network covariance function produces smooth non- 
stationary functions and has a reasonably good extrapolation ability. 

(1)

yi ∣ pi ∼Binomial(pi ,ni),

pi ∣�i ∼Beta(ai , bi),

ai =
�i

�
, bi =

1−�i

�
.

(2)� (z) =
1

1+exp (− f (z))
, f (z) ∼GP

(

0, k
(

z, z�
))

.

(3)k
(

z, z�
)

∝ ks
(

x, x�
)

kt
(

t, t�
)

.

(4)ks
(

x, x�
)

= knn
(

x, x�
)

.
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Recall that covariance function k
(

x, x′
)

 is said to be stationary if 
it depends on x − x� only, meaning that the latent function f  is as-
sumed to vary at the same speed everywhere (see Rasmussen & 
Williams, 2006, Section 4.2.1). In contrast, the non- stationary neu-
ral network kernel allows the latent function to vary more rapidly in 
the middle and more slowly on the boundaries of the input space x , 
which matches nicely with our prior beliefs concerning the spatial 
behaviour of f . The covariance function has two hyperparameters, 
namely �0 and �, which determine how rapidly f  varies, and the wide-
ness of the region where f  varies substantially.

As we expect different years to be at least roughly similar, we 
include a periodic kernel kperiodic with period T = 365 days in the 
temporal component. This is achieved using a transformation 
t̃ =

(

sin
2�t

T
, cos

2�t

T

)

 and then feeding this into some base kernel. 
As a base kernel, we again use the neural network covariance func-
tion, so the periodic component can be written as

 To allow for some inter- annual variability (i.e. deviation from exact 
periodicity), we modulate the above kernel by a squared exponential 
kernel, kse

(

t, t′
)

 (see Supporting Information for the functional form), 
whose length– scale hyperparameter � will determine how quasi- 
periodic the temporal variation is (� → ∞ indicating exact periodicity). 
The magnitude hyperparameter �2

f
 on the other hand will determine 

the overall magnitude of variation in the latent function. Thus, the tem-
poral covariance function becomes

 Combining all the pieces together, we can write the full covariance 
function as

The superscripts in the two neural network kernels indicate 
that there are two separate kernels with similar functional form 
but separate hyperparameters (and inputs). In total, there are six 
kernel hyperparameters 

(

�
(1)

0
, �(1), �

(2)

0
, � (2),�, �f

)

 and one likelihood 
hyperparameter � in the model. For �(1)

0
, �

(2)

0
, �(1) and �(2), we use half- 

Cauchy priors with unit scale. Other hyperparameters are given log- 
uniform priors.

For fitting the models, we use the R package gplite. The in-
stallation instructions and a quick- start tutorial for the package 
are available at https://github.com/jpiir onen/gplite. An example 
code used for the case study of the present paper is available at 
https://github.com/jpiir onen/anser_fabalis. We fit models sepa-
rately for spring and autumn, which have approximately 15,700 
and 3,800 observations respectively. Both models are identi-
cal in design but are fitted separately to the two datasets. The 
number of observations prohibits the use of a full GP, and we 

use the fully independent training and test conditional (FITC) 
approximation with 200 inducing points (Quiñonero- Candela 
& Rasmussen, 2005; Snelson & Ghahramani, 2006). Due to the 
non- Gaussian likelihood, approximate inference for the latent 
values must also be used, and we employ Laplace approximation. 
Hyperparameters are estimated by optimizing them to their mar-
ginal maximum a posteriori values.

3  |  RESULTS

Figures 2 and 3 show the model fit and data for the autumn and 
spring migrations, respectively, on average and across several years. 
The contours show how the probability for an observed bean goose 
to be a taiga bean goose (i.e. posterior mean of �) varies over time at 
different spatial locations (see caption for more details). As shown in 
Figure 2, the probability of a bean goose being a taiga bean goose 
is high throughout Finland at the beginning of migration. Later in 
autumn, the probability for tundra bean goose increases, especially 
in south- eastern Finland. However, between- year variation exists in 
the proportion of tundra bean geese.

Analogous to autumn, our model predicts a high probability for 
a bean goose to be a taiga bean goose at the beginning of spring 
migration (Figure 3), whereas the probability of tundra bean goose 
increases during spring in southern Finland. It is noteworthy that 
in spring, the main division between subspecies occurrences is in 
the south– north direction, while being mainly in a south- easterly to 
north- westerly direction in autumn.

The number of bean geese decreases at the end of both migra-
tion periods, which decreases the number of observations. This 
can be seen as increasing uncertainty in the model predictions (i.e. 
smaller coverage of shaded grey area in Figures 2 and 3).

4  |  DISCUSSION

The aim of our study was to introduce and promote GP model-
ling as a tool for predicting the spatio- temporal distribution of 
migratory populations using heterogeneous citizen science data. 
For these purposes, we introduced the R package gplite and 
demonstrated its use with a case study that analysed spatial and 
temporal differences in the occurrence of taiga and tundra bean 
goose in Finland. In the case study, the model predicts significant 
tundra bean goose occurrence only in south- eastern Finland for 
both spring and autumn. The width of the area where tundra bean 
goose occurs varies between years, possibly caused by wind con-
ditions and available food supplies on the fields during migration. 
Tundra bean goose occurrence is also restricted to a smaller zone 
during autumn than during spring. These results are compatible 
with results of molecular genetic study by Honka et al. (2017), who 
showed that the bean goose hunting bag in eastern Finland con-
tains more tundra than taiga bean geese and vice versa in western 
Finland. The temporal component was absent in previous work by 

(5)kperiodic

(

t, t�
)

= knn

(

t̃, t̃
�
)

.

(6)kt
(

t, t�
)

= kse
(

t, t�
)

kperiodic
(

t, t�
)

.

(7)k (z, z) = ks

(

x, x�
)

kt

(

t, t�
)

(8)= k
(1)
nn

(

x, x�
)

kse

(

t, t�
)

k
(2)
nn

(

t̃, t̃
�
)

,
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F I G U R E  2  Model predictions during the autumn migration at different dates across different years. Due to long time series, only average 
and every other year is shown in the picture (for full time series, please see Supporting Information). The contours denote the posterior 
mean for � (i.e. probability of taiga bean goose) ranging from 0.1 (red) to 0.9 (green) with approximate contour interval 0.114. Dashed black 
highlights contour � = 0.5. The same colour denotes the same value for � throughout the picture. Shaded grey denotes areas where � is 
different from 0.5, with posterior probability at least 95%. Dots denote observations within ± 8 days from the given day; red and green 
colours mark whether the majority of the observed bean geese were tundra or taiga bean geese respectively
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Honka et al. (2017). Our approach is the first detailed description 
of the pattern including both spatial and temporal differences in 
subspecies occurrence. Our study is also the first one that can 

be directly applied to the harvest management of these spatially 
overlapping populations with different population statuses and 
trends.

F I G U R E  3  Same as in Figure 2, but for the spring migration
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4.1  |  Differences in bean goose 
subspecies occurrence

Tundra bean geese migrate later than taiga bean geese, both in spring 
and autumn. They are almost absent during the beginning of autumn 
migration in late August and early September, but their proportion 
of all bean geese in south- eastern Finland increases in the last half 
of September and remains high in October. Bean goose numbers and 
consequently the number of bean goose observations decrease in 
late October, also reducing our model's capability to predict subspe-
cies occurrence (see Figure 2). During spring migration, the taiga 
bean goose migration begins in the first half of March, when tundra 
bean geese are nearly absent in Finland. Tundra bean goose numbers 
begin increasing in the middle of April, and the migration peak occurs 
approximately at the shift from April into May. Bean goose numbers 
decrease in the middle of May in Finland (see Figure 3). As discussed 
earlier in Section 3, the geographical distributions of both subspe-
cies in Finland differ between spring and autumn migration. This is 
surprising, as it shows that tundra bean goose migration routes and 
staging areas differ between spring and autumn migration.

4.2  |  Advantages of Gaussian process modelling

Previously, a variety of methods have been used to analyse spe-
cies' spatial and/or temporal distributions with citizen science data. 
These methods include GLMs (Cheng et al., 2019), occupancy mod-
els (Altwegg & Nichols, 2019), maximum entropy models (Phillips 
et al., 2006) and generalized additive models (GAMs) typically using 
splines as basis functions (Bird et al., 2014). Tree- based models have 
also been used, in particular random forests (Prasad et al., 2006) and 
gradient boosted trees (Elith et al., 2008). Compared to these more 
conventional approaches, GPs have performed better in terms of 
predictive accuracy in comparative studies (Golding & Purse, 2016; 
Ingram et al., 2020; Wright et al., 2021). Additionally, GPs offer a 
richer (compared to GAMs and GLMs) and more flexible (com-
pared to maximum entropy models) class of models. This includes 
enhanced ways of incorporating prior knowledge into the model 
structure and a well- calibrated uncertainty estimation (compared to 
tree- based models, Hastie et al., 2009, Ch. 9– 10).

When comparing GPs to GLMs and GAMs technically, it is 
well known that GAMs include GLMs as a special case (Hastie 
& Tibrishanhi, 1990). Analogously, many GAMs, including some 
based on splines, can be seen as a special case of GPs with a spe-
cific covariance function (Rasmussen & Williams, 2006, ch. 6.3 and 
references therein). Therefore, GPs are inherently a richer class of 
models, which allow for more flexible model construction through 
covariance function specification. For low- dimensional data with 
simple covariance functions such as the squared exponential, the 
differences between a spline GAM and a GP can be small in inter-
polation (see, e.g. Riutort- Mayol et al., 2020). However, the ability to 
add much richer structure to the covariance function (such as quasi- 
periodicity, non- stationarity, etc.) that affects the model predictions 

(both in interpolation and extrapolation) is one of the key benefits 
of GP modelling over spline models. In practical applications, this 
allows for more complex interactions between features through a 
more diverse covariance function specification, which can be advan-
tageous in terms of predictive accuracy in various modelling tasks. 
For practical examples in ecology (in these cases, SDM), see Golding 
and Purse (2016), Ingram et al. (2020) and Wright et al. (2021).

In a technical comparison to maximum entropy models and tree- 
based models, GPs differ more fundamentally. Maximum entropy 
models are designed for SDM under the assumption of presence- 
only data (Elith et al., 2010), and are therefore inapplicable in 
studies such as ours. Tree- based models, although as powerful as 
off- the- shelf models for prediction, suffer from difficulties in incor-
porating certain types of prior assumptions into the model struc-
ture. For example, the model presented in Section 2.2 factors as 
f
(

x1, x2, t
)

= fs

(

x1, x2
)

ft (t) with the further assumption that ft (t) is 
quasi- periodic. To the best of our knowledge, encoding such struc-
ture into a tree- based model is not possible (Hastie et al., 2009, Ch. 
9– 10). In practical applications, various kinds of prior knowledge 
often exist, and the ability to utilize it in the analysis would improve 
the results. Therefore, GPs' ability to flexibly incorporate prior as-
sumptions into the model structure makes them preferable to tree- 
based models in many cases. Additionally, as tree- based models are 
piecewise constant functions by definition, there is no way to control 
their smoothness (i.e. they are non- differentiable). Consequently, 
their fit is also typically jagged (see e.g. Elith et al., 2008) which is 
often undesirable, as species distributions are usually smooth in na-
ture. GPs' ability to control the smoothness of the model fit thus 
makes them appealing in comparison to tree- based models when 
modelling species spatial or temporal (or spatio- temporal) distribu-
tions. Representing prediction uncertainty is also more challenging 
with tree- based models, although some estimates can be obtained 
with techniques such as bootstrapping (Hastie et al., 2009, Ch. 8). 
In science- based decision- making, a decision- maker often desires to 
know how confident one can be with the background information. 
Hence, GPs' well- calibrated uncertainty estimates make them an 
appealing choice in comparison to tree- based models in case stud-
ies such as ours, where the results will be used in political decision- 
making or management (see Section 4.4 for practical examples for 
suitable case studies).

4.3  |  Future usage of Gaussian processes and the R 
package gplite in ecology

Our aim was to introduce and promote GP modelling as a pow-
erful tool for analysing heterogeneous data and for revealing 
differences in the migration patterns of bean goose subspecies. 
Thereby, we only used time and location to predict the occurrence 
probability of taiga and tundra bean geese. For future reference, 
we emphasize that it is possible to include various environmen-
tal variables as covariates together with the model presented in 
this paper, and in that way study the biological factors behind the 
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phenomenon of interest. We also note that it is possible to apply 
GPs to model presence- only data with the point process modelling 
approach, for example using the log- Gaussian Cox process model 
(e.g. Diggle et al., 2013).

We also emphasize that GPs are not specifically designed for 
modelling data collected by citizens, but can also be implemented for 
other types of data (satellite tracking, geologging etc.). However, data 
collected by citizens from various taxa offer long and cost- efficient 
time series for ecological research from many parts of the world. 
These data provide under- utilized possibilities to study the spatio- 
temporal occurrence of animals. This study shows the feasibility of 
GP models for modelling citizen science data, and their capability to 
produce scientific knowledge for decision- making in management. 
In addition to this study, the management of the greylag goose Anser 
anser population in Europe is an example case where GP models 
could be used to improve management. An essential problem in the 
greylag goose case is to recognize when and where the migratory 
and sedentary parts of the population overlap (Bacon et al., 2019). 
The currently used method for distribution modelling (kernel den-
sity estimation, Bacon et al., 2019) does not provide any uncertainty 
estimation to the distributions, which would be achieved using GPs. 
Additionally, GPs would enable the construction of a quasi- periodic 
time component for modelling the distributions, which is an obvious 
assumption for distribution changes between years for most migra-
tory birds. Together, these advances would make the results more 
transparent and, presumably, more accurate (see Section 4.4 for ad-
ditional examples).

Furthermore, our study provides practical tools for implement-
ing a variety of GP models (R package gplite). We point out that 
our software provides several additional features compared to the 
implementation in Golding and Purse (2016), which only allows for a 
Bernoulli observation model and a squared exponential kernel. The 
extra features in our R package gplite include several different 
covariance functions (e.g. neural network, Matérn, periodic) and a 
possibility to combine them, multiple observation models (Gaussian, 
binomial, beta- binomial, Poisson), sparse approximations for fa-
cilitating larger datasets and methods for model assessment and 
comparison.

4.4  |  Management implications

Our results can be implemented not only to bean goose manage-
ment at national and flyway levels, but also to the conservation and 
management of animals on a global scale. In the bean goose, the con-
servation of subspecies taiga bean goose is carried out at a flyway 
level, and harvest is managed internationally by applying an adap-
tive harvest management framework (Marjakangas et al., 2015). The 
hunting bag probably consists of both subspecies in many countries, 
but subspecies composition in the hunting bag is largely unknown 
(Heldbjerg et al., 2019). The legal hunting season for bean geese 
in Finland begins on 20 August and ends on 31 December, but the 
season can be shortened and the hunting area can be restricted 

geographically by the Ministry of Agriculture and Forestry of 
Finland. This kind of regulation is a common practice in harvest 
management in Finland, and our results provide a scientific base for 
adjusting the bean goose hunting season and area to meet the dif-
ferent management goals for both subspecies. The results from our 
case study show that bean goose harvest can be targeted at tundra 
bean goose in Finland by geographically restricting hunting to south- 
eastern Finland and by delaying the beginning of the hunting season 
from August to approximately the beginning of October. Naturally, 
our approach can also be used to predict the spatio- temporal distri-
bution of bean goose subspecies also elsewhere in their range.

On a global scale, our approach combining citizen science data 
with GP modelling offers useful and cost- efficient predictions on 
spatio- temporal distributions of populations, which can be used 
to solve various management problems with animals from diverse 
taxa. For example, the ability of ticks to spread multiple zoonotic 
tick- borne diseases is known to vary between species, and sample 
collections by citizens have already been organized (Laaksonen 
et al., 2018). A combination of such data and GP modelling could en-
able finding spatio- temporal differences in the occurrences of vari-
ous tick species, which could help to address vaccination campaigns 
more accurately. Similarly, our approach has obvious applications in 
fisheries: fishing is often targeted to multiple species or populations 
simultaneously, which makes the spatio- temporal regulation of fish-
ing an important tool in sustainable fish stock management (Cooke 
et al., 2016). A great example of such a situation is the management 
of various river populations of Atlantic Salmon Salmo salar at the 
Baltic Sea. These populations return to their natal rivers annually 
for spawning, but spend the winters at sea. Targeting fishing at sea 
to the desired population is one of the key actions in the successful 
management of these salmon populations (Torniainen et al., 2014), 
and thus management would benefit from the knowledge of spatio- 
temporal differences in the occurrence of different river populations 
during winter. These differences could be studied using GP model-
ling together with citizen science data (such as stable isotopes of 
scales) or with professionally collected data (radiotracking, tag re-
covery). Finally, our approach could be used in the management of 
invasive species, where the management goal is to control or eradi-
cate harmful populations while conserving other species. An excel-
lent example of such a case is the introduced population of northern 
pike Esox lucius in south- central Alaska that is spreading and threat-
ening the native salmonid populations (Dunker et al., 2020). As the 
pikes are controlled using extreme methods, such as poisoning the 
water systems, knowledge of the spatio- temporal occurrence of the 
pike population and other species exposed to the same management 
actions (salmonids, piscivorous birds, macroinvertebrates) is needed 
to minimize the negative effects of pike management. These pat-
terns can be studied by combining GP modelling with suitable data 
from various populations.
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