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ABSTRACT Recent technical advancements in both fields of unmanned aerial vehicles (UAV) control and
artificial intelligence (AI) have made a certain realm of applications possible. However, one of the main
problems in integration of these two areas is the bottle-neck of computing Al applications on UAV’s resource
limited platform. One of the main solution for this problem is that Al and control software from one side and
computing hardware mounted on UAV from the other side be adopted together based on the main constraints
of the resource limited computing platform on UAV. Basically, the target constraints of such adaptation are
performance, energy efficiency, and accuracy. In this paper, we propose a strategy to integrate and adopt
the commonly used object detection and tracking algorithm and UAV control software to be executed on
a heterogeneous resource limited computing units on a UAV. For object detection, a convolutional neural
network (CNN) algorithm is used. For object tracking, a novel algorithm is proposed that can execute
along with object tracking via sequential stream data. For UAV control, a Gain-Scheduled PID controller
is designed that steers the UAV by continuously manipulation of the actuators based on the stream data from
the tracking unit and dynamics of the UAV. All the algorithms are adopted to be executed on a heterogeneous
platform including NVIDIA Jetson TX2 embedded computer and an ARM Cortex M4. The observation from
real-time operation of the platform shows that using the proposed platform reduces the power consumption
by 53.69% in contrast with other existing methods while having marginal penalty for object detection and

tracking parts.

INDEX TERMS CNN, object detection, object tracking, Gain-Scheduled PID, quadcopter.

I. INTRODUCTION
Object recognition and tracking is one of the most
challenging tasks in autonomous aerial vehicles since the
detection and tracking the objects should be accurate and
agile in run-time and with rational energy consumption.
There has been several methods focusing on object tracking
and based on making use of different sensors [1], thereof
using vision-based object detection is one of the most cheap-
est and convenient one beside which the obtained information
from vision sensors, e.g., RGB camera, can be used in other
tasks simultaneously, e.g., odometry and navigation [2], [3].
The main drawback of vision-based object tracking
methods is the high computation cost of executing their
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algorithms w.r.t. the performance, energy, and accuracy [4].
Using cloud servers for object detection is not possible solu-
tion since the communication cost between the drone and
cloud enormously prolongs response time in real-time stream
data processing of object tracking. Furthermore, detecting
objects in run-time basically faces noisy and low resolution
images accompanied by the background motion that neg-
atively affects the accuracy of the detection outcome [5].
Beside all of these, other real-time or non-real time tasks, e.g.,
navigation and control tasks, should be executed on-board
consuming resources and energy. Therefore, application exe-
cution on this platform demands appropriate system architec-
ture and adopted algorithms to improve the system constraints
as much as possible while meeting the strict requirements.
In this paper, a heterogeneous platform for stream data pro-
cessing in real-time object detection and tracking is proposed.
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The main ideas of the proposed system; 1) achieve high
framerate for real-time detection on an embedded platform,
2) overcome the resources limitation of the embedded plat-
form by consuming less power, which will extend the flight
time of the quadcopter, and finally, 3) achieve higher accuracy
in detecting the target, thus the quadcopter can keep tracking
the object without losing it. For this, two heterogeneous on-
board processing units are used, i.e., big and little for object
detection and following, and the tasks are managed on them
based on the requirements and constraints of the system. The
heavy parts of the object tracking application are mapped on
big processing unit while the light weight part of the applica-
tion are mapped on the little processing units. Since the object
detection is a stream application [6], the big processing unit
activity is adjusted by the requirement of the processing for
each iteration that determined by [7]. The required heart-beat
is adjusted via the ability of the little part and accuracy of
the tracking. The task scheduling part is designed in a way
that the workload is evenly distributed in this heterogeneous
platform. Adaptive multi-layered CNN is used for object
detection that is running on big processing unit. While the lit-
tle processing unit is responsible for tracking process. Using
this heterogeneous platform and appropriate scheduling of
tasks, we adjust the performance and accuracy of the tracking
part according to the requirements of the feed-back based
system.

In this work, an SSD architecture is implemented on
an embedded Artificial Intelligence (AI) computing device
NVIDIA Jetson TX2 (big processing unit). The CNN is
trained to detect two classes. The first class contains images
with an object, which can be thought as positive images,
while the other class contains images with no object which
can be thought as negative class. Furthermore, the object
detection algorithm is combined with an object tracking algo-
rithm based on Gain-Scheduled PID controller to follow the
detected object under variable speed. The reason for choos-
ing the Gain-Scheduled PID controller is to overcome the
instability and non-linearity of the quadcopter system, thus
enables it to follow a target under various speeds. The output
of the object tracking algorithm is sent to the flight controller
(little processing unit) to start the tracking process by sending
the required pulse width modulation (PWM) values to the
motors.

The remaining part of this paper is divided as follows:
Section II review the related work about workload balancing,
task scheduling, and mapping. Moreover the state-of-the-art
for object detection and designing controllers for quadcopters
will be discussed in this chapter. System architecture is illus-
trated in Section III. Section IV explains the real-time object
detection and tracking system. Section V demonstrates the
simulation studies and the experimental results, followed by
the conclusion in section VI.

Il. RELATED WORK
Recent studies includes vast investigation on improve-
ment of system performance using heterogeneous distributed
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parallelization in fog-edge layers. In [8] the authors propose a
neural network based approach to the acceleration of approx-
imate programs for on-chip system. In [9] a hierarchical
management framework for on-chip asymmetric multi-core
architectures is demonstrated. The target multi-core system
is ARM big.LITTLE mobile platforms. In this architecture,
cores have different size that can be used to execute different
types of applications. In [10] the authors have done a similar
attempt to exploit energy efficiency in symmetric multi-core
processors, which is demonstrated on the AMD Opteron
6168 processor.

In this paper, an adopted version of CNN is used to be exe-
cuted on big core according to the requirement of the object
tracking and the energy limitation of the mobile platform.
There has been several object detection algorithms based on
CNN e.g., Single-Shot Detector (SSD) [11], YOLO [12],
and Faster R-CNN [13]. A CNN algorithm for detecting and
labelling disease in a radish field using a UAV is proposed
in [14]. In [15], authors proposed an object detection algo-
rithm based on CNN to detect drones. In [16], the authors
present a convolutional neural network algorithm to analyze
images captured from a drone to identify objects captured in
the images. Authors in [17], [18] applied convolutional neural
network based object detection schemes on fault diagnosis
and fault tolerant control. In this work, authors used CNN
to detect the working condition of an induction motor and
classify it as a faulty or healthy.

Many control systems for tracking and following object
have been developed. A controller system for quadcopter
to follow different trajectories is presented in [19]. Authors
in [20] developed a non-linear control algorithm for object
tracking. An approach for target detection and wireless charg-
ing using a Hill-climbing method in presented in [21]. In [1],
the authors propose a method for tracking a moving target
under different paths using an IR camera. A vision based
object detection and safe landing using a fuzzy logic con-
troller is presented in [5], [22].

The previous studies show respectable outputs and per-
formance in detecting objects. However, some of the earlier
studies are based on cloud computing which is not suitable for
real-time applications, because the cloud computing systems
are internet-biased, and service outages are always possible
and can occur for various reason. Furthermore, other stud-
ies are based on wireless communication which is also not
suitable for real-time applications due to its limited coverage
area, and high latency which leads to a significant degrade in
performance.
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FIGURE 1. Block diagram of the overall system.
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around the big core are HD Webcam, Bluetooth, and a camera
gimbal that provides the IO interface of big processing unit
to the environment. The interface between the big and little
processing units is a serial UART port that facilitate sending
the data from big part to the little part.

IV. OBJECT DETECTION AND TRACKING ALGORITHM

In this work, a real-time feed-back-based object detection
and tracking algorithm is proposed that can be adapted to be
executed on the proposed heterogeneous system architecture.
Figure 2 shows the feed-back-based algorithm for object
detection and tracking. The visionary data from the camera
is fed into the object detection algorithm to detect the target
object for tracking. If the object detection part finds the target
object in the scene, the location of the object will be passed
to the object tracking algorithm that’s responsibility is to
extract the final location of the object based on the history
and the probability of possible error. After finalizing the
location of the target object, this location is passed to the
controller that adjusts the location of the quadcopter. This
process happens by comparing the observed location, i.e., the
location from the Object Tracking Unit, with a reference
that shows the expectation. In our case the reference is the
center of the image. The Controller Unit operates based on
the calculated difference of the observed location from the
reference, and thereby, the actuation parameters to each motor
will be adjusted.
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FIGURE 3. Proposed object detection and tracking parts.

In Figure 2, the camera keeps on capturing continues
images and send it to the Jetson TX2. The image is given as
an input to the pre-trained CNN, features are extracted from
the input image and weights are calculated. Based on the esti-
mated weights, the CNN gives an output image by drawing a
boundary box around the object with the expected probability
in percentage. Then the X and Y position of the detected
object is given out. The position (pos) of the detected object
is represented in pixel coordinates (X, Y). These coordinates
is ghan%ed so that the center co-ordinates are converted from
(idh “fh') to (0, 0) by using Equation 1 and Equation 2.
These values are used to calculate the required Roll and Pitch
angle responsible for following the object.

idth
X=x-2 (1)
height
Y=y-— 2 (2)

where X and Y are the new position in pixels, width and
height are the resolution of the input image.

A. OBJECT DETECTION ALGORITHM

As it is shown in Figure 3, after receiving an image of an
object, a CNN algorithm is applied. In this paper, a pre-
trained single-shot multibox detector (SSD) model is used
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FIGURE 4. General architecture of the CNN method for object detection.

to detect the objects. Figure 4 illustrates the architecture of
the SSD. The SSD approach is based on a feed-forward
convolutional network that produces a fixed size collection
of bounding boxes and scores for the presence of object
class instances in those boxes, followed by a non-maximum
suppression step to produce the final detection [11]. It can be
seen in Figure 4, SSD’s architecture builds on the venerable
VGG-16 architecture, but discards the fully connected layers.
The reason VGG-16 was used as the base network is because
of its strong performance in high quality image classification
tasks and its popularity for problems where transfer learning
helps in improving results. Instead of the original VGG fully
connected layers, a set of auxiliary convolutional layers (from
conv6 onwards) were added, thus enabling to extract features
at multiple scales and progressively decrease the size of the
input to each subsequent layer.

After applying the SSD model, a boundary box will be
drawn around the detected object. The location data of the
detected target is extracted and used as an input to the object
tracking algorithm to start the tracking process.

B. OBJECT TRACKING ALGORITHM

The location of the detected object is passed to the object
tracking unit. The tracking unit works based on the history
of the target’s objects location and current location of the
detected object. After pre-processing the data and filtering,
the location of the object in the image will be subtracted
from the expected reference and based on the results, i.e., the
error, the object tracking unit tries to specify and stabilize the
appropriate location of the quadcopter. To do that, two possi-
ble situations might happen upon which we define different
working modes. One situation is that the error is high enough
to activate the thrust of the quadcopter to change the velocity
and follow the object that is called mode-out in this paper. The
other situation is that the error is not that much high and the
quadcopter should keep its current velocity to stabilize over
the object. In mode-in the stabilization of the quadcopter is
essential, while in mode-out acceleration is. Therefore, two
different types of PID controller with different gains are used
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in each mode. The details of the implementation in each mode
are explained in the following.

Mode-Out: In this mode, the current position of the quad-
copter and its change of position are continuously checked
to determine the required roll/pitch angles responsible for
following the detected object. In this mode a Gain-Scheduled
PID controller is utilized. Gain scheduling is one of the most
popular approaches to nonlinear control design, as it has a
better performance and stability than robust ones [23]. The
Gain-Scheduled PID controller has three inputs, pos, Apos,
and Max Apos, and one output, roll/pitch angle. The extracted
position (pos) is assumed to be the error e(t) between the
position of the detected object and the centroid of the image
since the centroid is always zero. Then, by calculating the
difference between the current position and the previous
position, change of position Apos is obtained. The maximum
change of position Max Apos is a fixed value that is obtained
by storing the maximum change of position of the moving
object. Equation 3 indicates how to calculate the required roll
and pitch angle for following, while Equation 4 shows how
to obtain the Apos.

t

)= (1 +]—=P%_ g (t)+1<f () dr + Ky 20
= e e ; et T _—
Y MaxApos”~ " ' T
0
3)
Apos = poScur — POSprey 4)

where the error e(f) = pos, y(t) is the output of the controller
where in this work it represents roll/pitch angles, K,,,K; and
K, are the proportional, Integral, and derivative gains, Apos
is the change of position, pos.,, is the current position of the
quadcopter, and pos., is the previous position.

As it is seen in the previous Equations, a higher Apos
value indicates that the quadcopter moved in a higher speed
since it covers a bigger distance in a fixed time (36 msec),
and vice versa. This will results in increasing/decreasing
the proportional gain of the PID controller which is
changed according to the ratio between Apos and Max Apos.
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Following are examples of the operation of the quadcopter in
Mode Out:

o If Apos is a small value, K, will be increased by a
small value too resulting in a slight increase in the
quadcopter angle and speed, causing the quadcopter to
move towards the center of the detected object where it
will trigger Mode In.

 If Apos is a big value, K, will quickly increase up to
double, this will increase the angle and speed of the
quadcopter so it can quickly react and keep up with the
moving object.

Mode-In: In this mode, a typical PID controller is used
for stabilizing the quadcopter over the detected object. Also,
this mode works as a brake for the quadcopter when it comes
from the Mode Out region by using a big proportional gain.
Following are examples of the operation of the quadcopter in
Mode Out:

o If Apos of the quadcopter approaching the Mode In
region is big, the quadcopter angle and speed will
increase. This will cause the quadcopter to quickly
decrease its angle and speed to be able to stabilize above
the center of the detected object.

« If the quadcopter is in the Mode In, the PID controller
will be able to stabilize the quadcopter above the center
of the detected object which is either fixed or moving at
low speed.

C. DATA PACKET PROCESSING PART

After calculating the suitable angle required for following
the object, a packet consists of pitch, roll, and a flag is sent
to the flight controller every 36 msec. Once the flight con-
troller receives the data, it will look up for the value of flag.
If the value is equal to ‘1°, it will start the tracking process.
Additionally, a safety switch is provided to support the safe
operation of the quadcopter. Figure 5 shows the flowchart of
the object following algorithm inside the Jetson TX2, and the
data packet processing inside the flight controller.

V. SIMULATION AND EXPERIMENTAL STUDIES

To run the CNN on the big part, an SSD object detector is
used in this work. The SSD is able to achieve real-time and
high accuracy detection by using low resolution images as an
input. The SSD algorithm is implemented on an embedded
Artificial Intelligence (AI) computing device of NVIDIA
Jetson TX2. The CNN is trained to detect two classes, the first
class contains images with an object, which can be thought as
positive images, while the other class contains images with
no object which can be thought as negative class. The SSD
architecture is selected because it combines the performance
of YOLO with the accuracy of region-based detectors so it
can detect objects in real-time. The problem with SSD is that
the computational time is higher than other object detection
algorithms such as YOLO. Therefore, SSD is implemented
with an optimization method where the computational load is
divided onto CPU and GPU, resulting in a low computational
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FIGURE 6. Quadcopter experimental setup.

time on the Jetson TX2, 36 ms, compared to the normal
time, 111 ms. Furthermore, the object detection algorithm is
combined with an object tracking algorithm based on Gain-
Scheduled PID controller to follow the detected object under
variable speed. The reason for choosing the Gain-Scheduled
PID controller is to overcome the instability and non-linearity
of the quadcopter system and thus enables it to follow a target
under various speeds.

A. QUADCOPTER SETUP

The experimental system is shown in Figure 6. It consists
of a quadcopter frame with flight controller, which is based
on an ARM Cortex M4 processor. It’s equipped with eight
PWM outputs which can support up to eight BLDC motors.
The flight controller is build on ArduPilot, which is an open
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source code program written in C+-+-. The big processing unit
(Jetxon TX2) is installed on a 3rd party carrier board and
is connected to the little processing unit (Flight controller)
through UART. A Logitech BRIO camera attached to a
2D-gimbal is connected to the TX?2 through USB. This cam-
era is able to automatically adjust the image quality to com-
pensate for too much or too little light with High Dynamic
Range (HDR) capabilities. Finally, A Bluetooth linked to the
Jetson TX2 is used to send the current position of the detected
object to a ground station in meters.

B. SIMULATION STUDIES

MATLAB/SIMULINK based quadcopter simulation system
is used to perform a comparative study between the typical
PID controller and the Gain-scheduled PID controller. This
simulation system is available on MATLAB file exchange
and it’s free to use. The basic purpose of this system is to
study the behavior of a quadcopter system and how different
parameters affect the quadcopter flight.

Figure 7(a) shows the full quadcopter simulation system.
In this system, the Position Controller block takes three
inputs from the user (x,y,t), where "x’ and 'y’ represent the
coordinate’s points in a Cartesian coordinate system and ’t’
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is the time. The three inputs are stored as an array in the
Path Command block. In this work a rectangular path is
defined and stored in the Path Command block. The Position
Controller block outputs the required angle for controlling
the quadcopter over the defined path. Figure 7(b) shows the
position control block, where X/Y error block is responsible
for calculating the position error between the current position
in the desired path and the current position of the quadcopter,
and gives out X error and Y error. The Control blocks in
the Position Controller block takes the X error and Y error
and use it to calculate the desired Roll/Pitch angles required
for tracking based on the outputs of the two controllers. The
Control block has been modified so that the Gain-Scheduled
PID controller is added beside the typical PID controller
to compare between them as it is shown in Figure 7(c).
In the Control blocks, the manual switch block is used to
switch between the two controllers, and the saturation block
is used to limit the output angle between —15° and 15°.
Figure 7(d) shows the implementation of the Gain-Scheduled
PID controller based on Equation 3. Figure 8(a) shows the
simulation results of the two controllers in a rectangular
path. In Figure 8(a) and Figure 8(b), Gain-Scheduled PID
controller shows better response and faster settling time in x
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TABLE 1. Initialization parameters of the object detectors.

Object detector Size of input images Optimizer Batch | Momentum | Initial learning rate | Decay | Training steps
YOLO V3 416 x 416 Stochastic gradient descent 16 0.9 0.001 0.0005 80,000
Tiny-YOLO V3 416 x 416 Adam 8 0.9 0.0001 0.1 70,000
SSD MobileNet V1 300 x 300 RMSprop 24 0.9 0.004 0.95 100,000
Faster R-CNN 1024 x 600 Momentum 1 0.89 0.00003 - 90,000

and y-direction while PID controller has overshot. Figure 8(c)
shows the output of the two controllers in the XY plane.
The Gain-Scheduled PID controller has better performance
compared to the PID controller which has overshot and longer
settling time.

C. EXPERIMENTAL STUDIES
In this section, the performance of the real-time object detec-

tion based on CNN and object following based on Gain-
Scheduled PID controller is described.

1) OBJECT DETECTION RESULTS

The implementation of SSD is done via TensorRT and
Python, due to the availability of the most common machine
learning libraries. The SSD model used in this work is an
SSD MobileNet V1 which is optimized to run on embedded
platforms in real-time [24]. The proposed algorithm is imple-
mented on a Jetson TX2 and programmed using python 3.5.
To test the performance of the the object detector, a custom
image dataset that contains 2000 images of RC car, rectan-
gle and a circle (positive images) on different backgrounds
and 3000 backgrounds (negative images) without objects has
been used for training. All images have been captured by the
camera installed on the quadcopter on 1280 x 720 pixels
and has been manually labeled. The images is divided into
two parts, training and testing dataset. 20% of the images is
used to test the network, while the 80% is used to train the
dataset. A dropout ratio of 0.8, kernel size 3x3 and a box-
code size set to 4 is used in this network. The root mean square
propagation (RMSprop) optimization algorithm is used for
optimizing the loss functions trained for 100,000 steps using
the following parameters; a learning rate of 0.004, decay
factor 0.95, and decays at an interval of 80,0720 steps. The
training was carried out on a desktop with an AMD Ryzen 7
2700X 3.70 GHz, 16 GB RAM, and NVIDIA GTX 1080Ti.
Figure 9 shows the detection results of the object detection
algorithm, the position of each object and the calculated
fps. Once the object is detected, a boundary box will be
drawn around the object, and the center of the detected
objects will be extracted to be used for the object following
algorithm.

To evaluate the performance of the proposed object detec-
tor on the Jetson TX2, another three models have been trained
using the same dataset and same desktop. Table 1 shows the
default initialization parameters of the four models used for
training the dataset, while Table 2 shows their comparison
results.
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TABLE 2. Object detection models comparison.

Object Detection Models | Accuracy | Power consumption | FPS
YOLO V3 90% 18.11 Watt 4.1
Tiny-YOLO V3 68% 16.01 Watt 17

SSD MobileNet V1 81% 11.1 Watt 252
Faster R-CNN 75% 18.64 Watt 1.9

FIGURE 9. Object detection algorithm output.

As shown in Table 2, the YOLO V3 has the highest accu-
racy, it consumes a lot of power and the processing speed
(4.1 fps) was not up for practical use. Therefore, a Tiny-
YOLO V3 has been used instead of the YOLO V3 as it
can achieve higher fps (17 fps). However, the Tiny-YOLO
V3 is not good for practical use because of its high power
consumption and low accuracy. Moreover, Faster R-CNN was
able to get higher accuracy compared to the Tiny-YOLO v3.
However, It has a higher power consumption compared to the
previous two object detectors, and a much lower fps (1.9),
which make it unsuitable for real-time detection applications.
Therefore, an SSD MobileNet V1 is used instead of the other
two models, as it consumes less power and achieves higher
fps.

The time it takes for the object detector to process a frame
and give output on the detected object is 36 msec which is
7 times faster than the YOLO V3, 14 times higher than Faster
R-CNN, and 1.7 time faster than the Tiny-YOLO V3. The
reduction in the computational time besides the low power
consumption of this model, which is 63.15% less than YOLO
V3, 67.92% lower than Faster R-CNN, and 44.23% less than
Tiny-YOLO V3, made it feasible to implement it on a system
like a quadcopter where response time is very critical parame-
ter to consider. Furthermore, the SSD MobileNet V1 accuracy
which is slightly less than the YOLO V3 made it the best
option besides the computational time to to be used for real-
time object detection. In this 36 msec, the frames received
though camera are processed and the CNN gives the output
in form of an image with the position of the detected object
in pixels as shown in Figure 9.
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2) OBJECT TRACKING RESULTS

To verify the feasibility of the proposed algorithm, several
experiments were performed under variable speed of the
detected target to obtain the optimal values for the param-
eters gains that is used for object-tracking algorithm. The
experimental setup shown in Figure 6 is composed of quad-
copter frame with a flight controller connected to a Jetson
TX2 through UART communication. The proposed object
detection and tracking algorithm is implemented on the Jet-
son TX2 and executed every 36 msec. Initially the quadcopter
is flying at an altitude of 2 meters, once the RC car is detected,
the real-time object detection is triggered and a boundary
box is drawn around the moving RC car based on our pro-
posed object detector. Afterwards, the location of the RC car
and its change of position are extracted and are passed to
the object-tracking algorithm based on our developed Gain-
scheduled PID control. The object-tracking algorithm works
differently based on the location of the detected object as been
discussed in section IV.B. Finally, the object-tracking algo-
rithm outputs the required values of roll and pitch angles that
are responsible for tracking and stabilizing the quadcopter
over the moving RC car. These values is sent to the flight
controller every 36 msec, where the flight controller uses
these values for the tracking process.

This section covers the following; 1) a vision-based algo-
rithm is used to calculate the absolute position of the quad-
copter in real-time, 2) the proposed algorithm is compared
to a developed PID controller that is used for Human-follow
[25], and how much each algorithm takes to be executed,
3) the proposed algorithm is compared to the previous men-
tioned one to track the RC car in a rectangular path under
variable speed (2 m/s and 4 m/s), and the results of their
performance are carried out.

For calculating the absolute position of the quadcopter in
meters, a vision-based algorithm is used to obtain the absolute
position between the detected target and the quadcopter. The
algorithm uses the pinhole camera model and the captured
images to build a metric map. The coordinate of a point in 3D
(X, Y, Z) can be computed from its projection pixel in the
2D (x,y) image and the projection matrix. Firstly, a reference
object is used to measure the pixels per metric ratio. In the
algorithm, an RC car with a 39cm width and 22cm height
is used as a reference object. An image of the reference
object is captured from a defined height of 2 meters using the
camera attached to the quadcopter. Then, the reference object
is detected in the image, based on a color detection algorithm,
where a contour technique and a threshold is used to define
the boundaries of the detected object. Thus, the width and
height of the reference object in pixels are obtained. The
pixels per metric can be calculated as follow:

p=- ®)
w

where p denotes the pixels per metric ratio, & and w are the
reference object width in pixels and metric, respectively. The
distance between the quadcopter and the detected target is

VOLUME 8, 2020

computed as shown in Equation 6 and Equation 7:

R Al X x+ By

X = (6)
(C(x — 100)2 4+ D(y — 160)2 — 1)

N Ay Xxy+ B

5 2 XYy 2 (7)

~ (C(x — 1002 + D(y — 160)2 — 1)

where X and y are the distance in meter, x and y are the
distance in pixels. As shown in the previous Equations, each
Equation has four unknowns, therefore four known points
are used to generate four Equations for each axis to identify
these unknowns. The identified parameters are obtained by
using regular simultaneous equation solving methods, such
as substitution and elimination.

The experimental target is moving in a rectangular path
under two different speed, 2 m/s and 4 m/s. Figure 10 and
Figure 11 show the results of the performed trials using our
object following algorithm and the PID controller that was
developed in [25] to follow a human based on CNN detection.
Table 3 shows the average time for capturing the image,
perform object detection, process the info using our object
following algorithm and the PID controller developed in [25].
As can been seen in Table 3, the PID controller is slightly less
than Gain-Scheduled PID controller (1.5 ms difference).

TABLE 3. Timing comparison (Average time).

PID | PID Gain-Scheduled
Capturing image (ms) | 2e-5 1.8e-5
Object detection (ms) | 31.3 31.8
Object tracking (ms) 29 39
Total time (ms) 34.2 35.7

Figure 10 compares between the Gain-Scheduled PID con-
troller and the PID controller under 2m/s of the target speed.
Figure 10(a) shows that Gain-Scheduled PID controller has
a slightly better response in X-position than PID controller,
while in Figure 10(b), PID controller shows feeble response
and stability in the Y-position. Figure 10(c) depicts the per-
formance of the quadcopter in the XY plane under 2m/s of
the target speed. As seen in the Figure, the PID controller has
poor performance, poor stability and it fails to reach the center
of the detected target.

Figure 11 evaluates the performance of the Gain-
Scheduled PID controller and the PID controller under 4m/s
of the target speed in a rectangular trajectory. Figure 11(a)
shows that PID controller has very bad response and stability
in X-position compared to the Gain-Scheduled PID con-
troller, while in Figure 11(b), PID controller has bad response
and overshoot. Figure 11(c) demonstrates that under 4m/s of
the target speed, Gain-Scheduled PID controller shows good
performance and stability compared to the PID controller.

According to the previous evaluation of the experimental
results, the Gain-Scheduled PID controller has proven that it
has better response, and shorter settling time compared to the
typical PID controller. Although PID controller can track the
detected target under 2m/s, it shows very poor performance
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FIGURE 11. Controller result in a rectangular trajectory under 4m/s.

under 4m/s because of its fixed gains. In order to get the
best performance from a PID controller, gains need to be
changed continuously according to the speed of the target.
Therefore, a Gain-Scheduled PID controller is used to over-
come the problems of the typical PID controller. Moreover,
for further improving the performance of the Gain-Scheduled
PID controller, a typical PID controller has been used to brake
the quadcopter while it’s approaching the middle region as
discussed in section IV.B, this will lead to increase in the
response and performance of the quadcopter especially in
the sharp turns or sudden change of target speed as shown
in Figure 10 and Figure 11.

VI. CONCLUSION

In this work, an approach for implementation of a real-
time object detection and tracking system for a quadcopter
based on CNN have been proposed. The proposed system is
implemented on an embedded computer. The object detection
algorithm is based on CNN. An SSD model is used to detect
the moving object, draw a boundary box around it then extract
the center positions of the detected object. Object tracking
algorithm based on Gain-Scheduled PID controller is estab-
lished to follow the detected object under variable speed.
The presented algorithm can be used in many applications
such as search-and-rescue, tracking a specific object, and
providing aerial footage of sports events. Several trials are
performed. The experimental results shows that the object
detection algorithm is able to detect and classify objects with
high accuracy, less power consumption, and high fps, and
the object tracking algorithm is able to follow and track
the detected object under variable speed. In addition, using
this technique to track multiple/specific object might prove
an important area for future research. Moreover, develop-
ing the proposed work to estimate the distance between the
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quadcopter and the detected target based on vision-based
techniques, and landing safely on a moving/fixed object with-
out the use of an optical ranging sensor is also an important
application for future work.
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