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Abstract: Remotely sensed assisted forest inventory has emerged in the past decade as a robust and
cost efficient method for generating accurate information on forest biophysical parameters. The
launching and public access of ALOS PALSAR-2, Sentinel-1 (SAR), and Sentinel-2 together with the
associated open-source software, has further increased the opportunity for application of remotely
sensed data in forest inventories. In this study, we evaluated the ability of ALOS PALSAR-2, Sentinel-1
(SAR) and Sentinel-2 and their combinations to predict growing stock volume in small-scale forest
plantations of Tanzania. The effects of two variable extraction approaches (i.e., centroid and weighted
mean), seasonality (i.e., rainy and dry), and tree species on the prediction accuracy of growing
stock volume when using each of the three remotely sensed data were also investigated. Statistical
models relating growing stock volume and remotely sensed predictor variables at the plot-level were
fitted using multiple linear regression. The models were evaluated using the k-fold cross validation
and judged based on the relative root mean square error values (RMSEr). The results showed that:
Sentinel-2 (RMSEr = 42.03% and pseudo− R2 = 0.63) and the combination of Sentinel-1 and Sentinel-2
(RMSEr = 46.98% and pseudo − R2 = 0.52), had better performance in predicting growing stock
volume, as compared to Sentinel-1 (RMSEr = 59.48% and pseudo − R2 = 0.18) alone. Models fitted
with variables extracted from the weighted mean approach, turned out to have relatively lower
RMSEr % values, as compared to centroid approaches. Sentinel-2 rainy season based models had
slightly smaller RMSEr values, as compared to dry season based models. Dense time series (i.e.,
annual) data resulted to the models with relatively lower RMSEr values, as compared to seasonal
based models when using variables extracted from the weighted mean approach. For the centroid
approach there was no notable difference between the models fitted using dense time series versus
rain season based predictor variables. Stratifications based on tree species resulted into lower RMSEr
values for Pinus patula tree species, as compared to other tree species. Finally, our study concluded that
combination of Sentinel-1&2 as well as the use Sentinel-2 alone can be considered for remote-sensing
assisted forest inventory in the small-scale plantation forests of Tanzania. Further studies on the effect
of field plot size, stratification and statistical methods on the prediction accuracy are recommended.
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1. Introduction

Accurate estimates of forest attributes such as volume and biomass are important for supporting
sustainable forest management strategies and for implementing climate change mitigation policies [1,2].
Traditionally, such attributes have been derived from field sample surveys based on a statistical
sampling of the forest landscape being studied [3]. Recently, remote-sensing techniques like Airborne
Laser Scanning (ALS) and high-resolution optical satellite images have been used in combination with
field-based surveys to provide a synoptic view over large areas at different temporal and spatial scales.
This has increased the efficiency of forest measurements compared with field-based methods [4].
However, limitations related to data availability, high cost and the volume [5,6] of commercial
high-resolution remote-sensing data impede their operational forestry applications in low income
countries. Thus, there is a need to develop cost-efficient and affordable methods, which provide
successful forest volume and biomass estimates in various environments [7].

The amount of open access, medium to high-resolution optical satellite data available from global
repositories has increased over the past decade. The Landsat archives were opened to the public in
2008 [8], the Advance Spaceborne Thermal Emission and reflection Radiometer (ASTER) archives
were opened in 2014 and the Sentinel-2A and Sentinel-2B satellites have been operative since 2015 and
2017, respectively. The Sentinel-2 satellites provide important developments in spatial, temporal, and
radiometric resolution to the globally available open-source optical image catalogue. On top of the
increased availability of optical imagery, the Synthetic Aperture Radar (SAR) imagery has become open
access. The European Space Agency (ESA) launched the Sentinel-1A and Sentinel-1B satellites in 2014
and 2016, both carrying dual-polarized C-band SAR sensor providing global imagery with 12 days
of revisit time at the equator [9]. In addition, the Japanese Aerospace Exploration Agency (JAXA)
distributes global mosaics of Advanced Land Observing Satellite (ALOS) dual-polarised L-Band SAR
backscatter data yearly [10]. Altogether, open-access policy combined with the evolving processing
capacity of cloud-computing environments have created new opportunities for multi-source data
modeling in the field of forestry, which is vital in low income and data-scarce regions.

Optical satellite sensors have been widely used to estimate and model forest attributes, such as
forest area and character [11,12], volume [13–15], and above ground biomass (AGB) See survey by [16]
due to their sensitivity to vegetation response observed in multispectral bands. However, optical
sensors are obstructed by atmospheric conditions and cloud cover, which reduces their potential
operational use especially in cloudy prone areas. In contrast, SAR sensors can produce images
independent of daylight or atmospheric conditions. The backscatter of the SAR sensor is a function
of surface characteristics, depending on the band wavelength and polarization. In particular, L-band
imagery is widely used to predict AGB and growing stock volume (GSV) because it can capture
the branch and trunk structure [17–19]. Thus, combined use of optical and SAR sensor imagery can
integrate the strengths and complement the limitations of different sensors over other methods [20–22].

To date, a number of studies have reported interesting results when combining optical and SAR
imagery in forestry applications. For example, Torbick, et al. [23] found that a fusion of Landsat-8,
PALSAR-2, and Sentinel-1 imagery efficiently captures the characteristics of various plantation species
and the differences in planted and natural forests. Laurin, et al. [24] reported that integrating the
Sentinel-2 imagery with SAR imagery in mapping AGB enables the investigation of seasonality,
especially in deciduous forest via their distinct temporal response in optical time series. However,
the estimations based on integrated datasets were suspect for AGB overestimation. On the other
hand, Vafaei, et al. [25] found that using Sentinel-2 data alone can provide reasonable estimates
on AGB, and the estimates are improved when integrated with SAR imagery. These studies have
shown that integrated and multi-temporal use of optical and SAR imagery can provide improved and
credible estimates on forest attributes. Still further research is needed to evaluate the opportunities
and limitations of applying multi-sensor integration in tropical cloud-prone regions and in small-scale
plantation landscapes. As Sentinel-1 and Sentinel-2 missions are operational, providing synergetic
data on optical and microwave spectrum with global coverage, open an opportunity for facilitating
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their operational applications in forest attribute monitoring [26], especially in the Global South where
access to high-resolution satellite imagery and the availability of an intensive field inventory has been
limited. Furthermore, as most of the recent studies are modelling AGB, more evidence is needed on
how well these methods predict GSV. Spatially explicit information on GSV is vital for strategic forest
management and can be used to estimate AGB and to support the REDD+ (reducing emissions from
deforestation and forest degradation, and fostering conservation, sustainable management of forests,
and enhancement of forest carbon stocks) processes [26,27].

In Tanzania, private industrial-scale forest plantations and non-industrial private forests
(individual woodlots, farm trees, and out-growers schemes) have been growing rapidly in the past
few decades, especially in the Southern Highlands region [28–30]. A large part of the GSV lies in
the fragmented landscape of smallholder woodlots, where estimations on the productive area and
yield have not been yet made. This information gap hinders the efficient decisions of forest managers,
individual owners and investors, and it affects the credibility of regional and countrywide forest
resources statistics, which are important for climate change mitigation policies and global forest
resources initiatives of the Food and Agriculture Organization of the United Nations. Methodologies
enabling scientific estimations of forest attributes in diverse landscape plantations, are needed as
both government and private forests are expected to support the Tanzania’s industrial economy by
providing wood raw materials to forest-based industries and by supplying other goods and services to
communities [28,31].

The overreaching goal of this study is to evaluate the accuracy of GSV predictions based
on Sentinel-1, Sentinel-2 images, and ALOS PALSAR-2 global mosaics, in a small-scale private
plantation forest of Tanzania. Our aim is to develop various models by combining predictors
derived from optical and microwave sensor images, and testing their performance in predicting
GSV at the plot-level. The remote-sensing variables are extracted for each plot measurement
via centroid and area weighted mean approaches to evaluate the sensitivity of the extraction
method. Furthermore, we test the impact of seasonality, and post stratification of plantation species,
in volume model performance. Our approach brings new insights in evaluating the best practice for
estimating GSV using satellite-based remote-sensing techniques in a small-scale and heterogeneous
plantation environment.

2. Materials and Methods

2.1. Study Area

Our study was conducted in the Kilolo district, one of five administrative units of the Iringa
Region, in the Southern Highlands of Tanzania. Kilolo district makes up the eastern part of the
Iringa region, bordering Dodoma region to the north and Morogoro region to the East and South
(Figure 1). Much of the district is mountainous, with steep hills, ridges, valleys and escarpments.
Its altitude ranges from 900 m to 2500 m above the sea level, and it is covered by alluvial soil.
The precipitation pattern is unimodal starting in November and continuing until April with a yearly
average of 1000 mm [32]. Due to the reliable and sufficient rains, the conditions are favourable
for silviculture and the forest plantation area has been growing rapidly [28,29]. Tree planting is
practiced by a multitude of stakeholders, including the central government, district councils, village
governments, military forces, private forest companies, NGOs, schools, and families [33]. Most of
the present and emerging forest plantations are small-scale, they are scattered in the landscape, and
their GSV is largely unknown. For effective management plans of the forest sector’s entire value
chain, GSV estimations are crucial in the area. As the forest plantation landscape is fragmented,
field inventories are time-consuming. Thus, there is a need to test how well Earth observation-based
estimations work within the area.
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We assessed the potential of multiple open access data sources in a remote-sensing assisted 
forest inventory. The approach can be divided into four phases: (1) Acquisition of field plot data and 
remote-sensing imagery, (2) preprocessing of the field measurements and the remote-sensing 
imagery, (3) extracting the values of remote-sensing variables at plot locations, and (4) developing 
predictive models of different variable set ups and assessing their accuracy via cross validation 
(Figure 2). The sections below describe the phases in more detail.  

Figure 1. The location of the study area within Kilolo district and the 3 selected 2 km wide windows
for sample plots.

2.2. An Overview of the Study Design

We assessed the potential of multiple open access data sources in a remote-sensing assisted
forest inventory. The approach can be divided into four phases: (1) Acquisition of field plot data and
remote-sensing imagery, (2) preprocessing of the field measurements and the remote-sensing imagery,
(3) extracting the values of remote-sensing variables at plot locations, and (4) developing predictive
models of different variable set ups and assessing their accuracy via cross validation (Figure 2).
The sections below describe the phases in more detail.
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Three sample plots were randomly placed within each stand. A 15 mthreshold from stand border 
was used to avoid creating a plot close to the stand border. Hand held GPS receivers were used to 
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2.4. Field Data Collection and Processing 
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using a caliper or diameter tape, depending on the tree’s size, only trees with DBH ≥ 5 cm were 
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For trees without height measurements, tree height was predicted according to height-diameter 
(H-D) models constructed from the sample trees. The volume of individual trees within each plot 
was calculated using vegetation and species specific allometric models [34-37]. The volume for all the 

Figure 2. Workflow of the study illustrated in 4 phases.

2.3. Sampling Design

Two-phase stratified sampling was used to design this study. In the first phase, we identified
locations with large variation of plantation tree species. The forest stands were created based on
the previous plantation mask produced by the Private Forestry Program (PFP) (Mankinen, Käyhkö,
Koskinen and [29]. Then, the Kilolo study window was divided into regular 2 km × 2 km blocks, and
3 sample blocks were selected based on accessibility, variation, and the amount of stands in all classes
(Figure 1).

In the second phase, 10 stands, representing each category (Pinus patula, Eucalyptus spp, and
others) were randomly chosen from the three blocks. Stands smaller than 0.5 hectares, were omitted.
Three sample plots were randomly placed within each stand. A 15 mthreshold from stand border was
used to avoid creating a plot close to the stand border. Hand held GPS receivers were used to find the
central coordinate position of the sample plots.

2.4. Field Data Collection and Processing

Seventy-seven (77) circular plots with 10 m radii, representing approximately ten sample
candidates from each sample block, were established and measured across the entire area of interest in
a field campaign conducted in March of 2018. The plot center location was marked and recorded with
a handheld GPS. All the trees in the plots were measured for diameter at breast height (DBH) using a
caliper or diameter tape, depending on the tree’s size, only trees with DBH ≥ 5 cm were considered
for measurements. Species names were recorded for every tree measured for DBH. Every fifth tree in
the plot was selected as a sample tree and measured for height using a Vertex hypsometer.

For trees without height measurements, tree height was predicted according to height-diameter
(H-D) models constructed from the sample trees. The volume of individual trees within each plot
was calculated using vegetation and species specific allometric models [34–37]. The volume for all
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the trees within the plot were summed to obtain total GSV for the respective plot and then scaled
to per-hectare values according to their respective plot area. Three of the plots had entirely dead
trees and therefore were eliminated from further analysis. The calculated GSVs (m3/ha) for the
seventy-four (74) plots are henceforth denoted as field measured GSV. Since Pinus patula was the most
dominant tree species, we further aggregated our plots into two major groups of Pinus patula and
others. The summarized statistics of the plot-level values for the two groups are presented in Table 1
as part of the data descriptions. These data were then used to model GSV using Sentinel-1, Sentinel-2,
and ALOS PALSAR-2 remote-sensing data.

Table 1. Summary statistics for the growing stock volume.

Descriptive Statistics Pinus spp. Others All

Minimum (m3/ha) 40.1 6.4 6.4
Mean (m3/ha) 163.2 186.7 172.7

Maximum (m3/ha) 308.4 660.2 660.2
Standard deviation (m3/ha) 51.2 167.2 113.1

Number of field plots 44 30 74

2.5. Satellite Images

2.5.1. Sentinel-2

Sentinel-2 satellites carry a Multi-Spectral Instrument (MSI) to scan the earth with 13 spectral
bands, a 290 km wide swath, and a five day revisit frequency at the equator [38]. We acquired Level-1C
products via Google Earth Engine platform with a restricted study area. Our aim was to retrieve images
representing the previous dry season and the present rainy season related to the field campaign’s
timing (Table 2). The images were corrected to the bottom-of-atmosphere (BOA) with a simple Dark
Object Subtraction 1 (DOS1) algorithm using a semiautomatic classification plugin in QGIS [39].

Table 2. List of images acquired for the study, divided into dry season, rainy season, and all
year acquisitions.

Time Product Observation Date Cell Size (m) Polarisa-tion/
Ex-Tracted Bands Relative Orbit

Dry Season
Sentinel-1A

Level-1 GRD

5 June 2017, 17 June 2017, 29 June 2017,
11 July 2017, 23 July 2017, 4 August 2017,

16 August 2017, 28 August 2017,
9 September 2017,

21 September 2017, 3 October 2017,
15 October 2017,

27 October 2017, 8 November 2017,
20 November 2017

10 VV,VH 28

Sentinel-2A
Level-1C MSI 16 September 2017 10,20 B2-B8A, B11,B12 92

Rainy Season

Sentinel-1A
Level-1 GRD

12 May 2017, 24 May 2017,
2 December 2017,

14 December 2017, 26 December 2017,
7 January 2018,

19 January 2018, 31 January 2018,
12 February 2018,

24 February 2018, 8 March 2018

10 VV,VH 28

Sentinel-2B
Level-1C MSI 18 February 2018 10,20 B2-B8A, B11,B12 92

All year ALOS PALSAR
mosaic 2017 25 HH,HV

All the visible bands (B02, B03, and B04), the Near-Infrared (NIR), and red edge bands (B08,
B08a, B05, B06, and B07), and the Shortwave Infrared (SWIR) bands (B11 and B12) of the images were
extracted for further analysis. For the spectral band values, we also calculated the principal components
(PC) and the vegetation indices (Table 3). The calculated vegetation indices were chosen to evaluate
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the potential of the bands operating in the NIR and red edge spectrum because bands operating at
these wavelengths have been found to effectively predict forest characteristics in a number of recent
studies [13,40–42]. The first three first PCs were extracted for further analysis as they explained 99%
of the total variance. The spectral bands, the first three PCs and vegetation indices were derived and
calculated for Sentinel-2 images, representing dry and rainy seasons (Table 2).

Table 3. Vegetation indices calculated from the Sentinel-2 images.

Index Name Formula References

NDVI Normalized Difference
Vegetation Index (B08-B04)/(B08+B04) [43]

EVI Enhanced Vegetation index 2.5*(B08 − B04)/(B08 + 6 ×
B04 − 7.5*B02 + 1) [44]

RE-NDVI740
Red-Edge Normalized

Difference Vegetation index 1 (B08 − B06)/(B08 + B06) [45]

RE-NDVI783
Red-Edge Normalized

Difference Vegetation index 2 (B08 − B07)/(B08 + B07)
[40]

RE-NDVI705
Red-Edge Normalized

Difference Vegetation index 3 (B08 − B05)/(B08 + B05) [41]

ND-RE1
Normalized Difference

Red-Edge 1 (B06 − B05)/(B06 + B05)
[40]

ND-RE2
Normalized Difference

Red-Edge 2 (B07 − B05)/(B07 + B05)
[40]

CHL-RE Chlorophyll Red-Edge (B07/B05) − 1
[40]

PC Principal component PCA
[46]

Note: B02, B04, B05, B06, B07 and B08 refer to Sentinel-2 MSI spectral bands with central wavelengths of 490 nm,
665 nm, 705 nm, 740 nm, 783 nm, and 842 nm, respectively.

2.5.2. Sentinel-1

Sentinel-1 satellites carry a C-band SAR instrument that collect data in four modes. The standard
Interferometric Wide Swath (IW) mode operates on land observing in single and dual polarization [9].
We used the available Level-1 IW Ground Range Detected (GRD) dual-polarised VH (vertical
transmit-horizontal receive) and, VV (vertical transmit-vertical receive) imagery with spatial resolution
of 10 m, acquired from the Copernicus Open Access Hub of ESA (https://scihub.copernicus.eu/dhus/).
The retrieved images were representing the closest date compared to the sensing date of the optical
images and the field campaign. To evaluate the predictive value of C-band SAR imagery in the
temporal dimension, we acquired images to create datasets representing the dry season (15 images
between June 2017 and November 2017), the rainy season (11 images from May 2017 and between
December 2017 and March 2018) (Table 2) and all year (dry season and rainy season images combined).
The temporal statistics of mean, maximum (max), minimum (min), standard deviation (std), and
coefficient of variation (cv) of these Sentinel-1 composites were calculated and named as dry season
timescan, rainy season timescan, and Annual timescan [47]. Sentinel-1 SAR images were pre-processed
using Sentinel Application Platform tool (SNAP). The pre-processing steps included (1) thermal noise
removal, (2) image calibration, (3) radiometric and geometric correction to acquire orthorectified
backscatter images with reduced effect of topography to radiometric variability, and (4) Lee sigma
speckle filtering, in order to derive gamma-naught backscatter values (dB).

https://scihub.copernicus.eu/dhus/
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2.5.3. Global ALOS PALSAR-2/PALSAR Mosaic

The Japanese Aerospace Exploration Agency (JAXA) provides yearly global mosaics of Advanced
Land Observing Satellite (ALOS) dual-polarised HH (horizontal transmit-horizontal receive),
HV (horizontal transmit-vertical receive) L-Band SAR backscatter data on a yearly basis [10]. The data
tiles from 2017, covering the study area, were merged, filtered, and converted to decibel scale [10,48]
using SNAP tool. In addition, we calculated the subtract-channel (HH-HV) to enhance the visualisation
and information extraction.

2.6. Extraction of the Satellite Image Values

To ensure spatial overlap between the measured GSV at the 10 m plot and the information
acquired from the remotely sensed data, we co-registered and resampled the remote-sensing dataset to
the spatial resolution of a 20 m using a bilinear interpolation algorithm that uses the values of the four
closest cells to calculate a weighted average for the new cell. We then tested two methods of variable
extraction from the remotely sensed data: (1) Extracting the value of the predictor variable from the
pixel containing the plot centroid, (i.e., centroid approach), and (2) extracting the value of the predictor
variable as the weighted mean value of the pixels intersecting with the plot area (i.e., weighted mean
approach). All the variables extracted from remotely sensed data using the two methods are presented
and defined in the Supplementary Material.

2.7. Statistical Modelling

2.7.1. Model Development

An Ordinary Least Square regression (OLS), was used to develop the predictive models which
relates the field measured GSV and the remote-sensing predictor variables. Model development was
done using a set of predictor variables for Sentinel-1, Sentinel-2 and ALOS PALSAR mosaic which were
computed using centroid (denoted MC) and area weighted mean (denoted MW) approaches. To test
the effect of seasonality, the predictor variables were categorized into: (1) All year (A), (2) dry season
(DS), and (3) rain season (RS). Table 4 further summarizes the data used and the predictors categories.

To ensure that we develop robust models for different datasets and predictor variables,
we first performed a variable selection as a critical step in modelling the combination of field and
remote-sensing data [see 16]). Candidate predictor variables for each category presented in Table 4,
were selected using regsubset function implemented in the “leaps” package [49] of the R statistical
software [50]. The regsubset is an automated approach where all possible variable combinations are
considered and ranked based on different scoring criteria (adjusted R2, Mallow’s Cp statistics, BIC,
etc.) [51]. In this study, we used Mallow’s Cp statistics [52]. A Combination of predictors that minimized
the Mallow Cp over all possible subsets, was considered as the best subset for model development.
The best subsets were then used to fit the models and the variables were further assessed based on
their significance (i.e., p < 0.05) and variance inflation factor (VIF). Predictor variables with a VIF value
greater than ten were considered to be a source of multicollinearity [53] and hence were trimmed out
from the model. The procedure was done repeatedly for all the categories of the predictor variables
presented in Table 4. However, we had exceptional cases with categories combining Sentinel 1 and
Sentinel-2 derived variables, where all the variables from Sentinel-1 were not selected in the best subset.
As our interest was to look at the potential of combining Sentinel-1 and Sentinel-2, we combined the
best subset from Sentinel 1 with those from Sentinel-2. The combined best subsets were then further
assessed based on the significance of the predictor variables, as well as VIF values. As part of the
model fitting procedure we also calculated a pseudo-R2 from the residual sum of squares (RSS) and
the total sum of squares (TSS). That is,

pseudo− R2 = 1−
(

RSS
TSS

)
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Residual diagnostic plots were examined for each of the fitted model and the Akaike Information
Criteria (AIC) was computed for each of the fitted model. The importance of each variable in the model
was determined using the “relaimpo” package in R [54]. This was essentially aimed to understand how
individual predictor variables contribute to the model fit. Finally, the models were subjected into cross
validation, as described in the section below.

Table 4. Data and predictor variable categories used for modelling.

Predictor Category Description Data Number of Variables

A1 Annual Sentinel-1 Sentinel-1 20170921 (bands) & Sentinel-1 20180212
(bands) & Sentinel-1 Annual timescan (bands) 9

A2 Annual Sentinel-2 Sentinel-2 20170916 (bands, PCs, indices) & Sentinel-2
20180218 (bands, PCs, indices) 42

A3 Annual ALOS ALOS PALSAR mosaic 2017 (bands) 2

A4 Annual Sentinel-1 & 2

Sentinel-2 20170916 (bands, PCs, indices) & Sentinel-2
20180218 (bands, PCs, indices) & Sentinel-1 20170921
(bands) & Sentinel-1 20180212 (bands) & Sentinel-1

Annual timescan (bands)

51

A5 Annual Sentinel-2 &
ALOS

Sentinel-2 20170916 (bands, PCs, indices) & Sentinel-2
20180218 (bands, PCs, indices) & ALOS PALSAR

mosaic 2017 (bands)
44

A6 Annual Sentinel-1 &
ALOS

Sentinel-1 20170921 (bands) & Sentinel-1 20180212
(bands) & Sentinel-1 Annual timescan (bands) & ALOS

PALSAR mosaic 2017 (bands)
11

A7 Annual Sentinel-1 & 2
& ALOS

Sentinel-1 20170921 (bands) & Sentinel-1 20180212
(bands) & Sentinel-1 Annual timescan (bands) &

Sentinel-2 20170916 (bands, PCs, indices) & Sentinel-2
20180218 (bands, PCs, indices) & ALOS PALSAR

mosaic 2017 (bands)

53

DS1 Dry season Sentinel-1 Sentinel-1 20170921 (bands) & Sentinel-1 Dry season
timescan (bands) 7

DS2 Dry season Sentinel-2 Sentinel-2 20170916 (bands, PCs, indices) 21

DS3 Dry season Sentinel-1
& 2

Sentinel-1 20170921 (bands) & Sentinel-1 Dry season
timescan (bands) & Sentinel-2 20170916 (bands, PCs,

indices)
28

RS1 Rainy season Sentinel-1 Sentinel-1 20180212 (bands) & Sentinel-1 Rainy season
timescan (bands) 7

RS2 Rainy season Sentinel-2 Sentinel-2 20180218 (bands, PCs, indices) 21

RS3 Rainy season Sentinel-1
& 2

Sentinel-1 20180212 (bands) & Sentinel-1 Rainy season
timescan (bands) & Sentinel-2 20180218 (bands, PCs,

indices)
28

2.7.2. Model Validation

To enable comparison among the models developed from different groups of predictor variables
(Table 4), and to understand the models performance on other datasets, the models were cross-validated.
Ideally, in order to perform model validation, the independent datasets for model validation should be
drawn from the population in which the model will be applied. However, due to the limitations in
field data availability in our study area, we implemented a k-fold cross validation. We used a k-value
of 10 because it had been widely used and empirically shown to yield test error rate estimates that
do to suffer from excessively high bias from very high variance [55,56]. The 10-fold cross-validation
involves splitting the dataset into 10-subsets. In each fold, one subset is held out to check the model
performance (i.e., the validation set), while the model is trained on all other subsets (i.e., 9 subsets).
The process is repeatedly done until all the subsets have been used once as the validation dataset.

The predicted values from all the folds were finally compiled into a table and used to estimate
measures of reliability. We used the absolute and the relative root mean square error as the most
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common statistic to characterize the error of remote-sensing based forest AGB and GSV models [57].
The root mean square error (RMSE) and the relative root mean square error (RMSEr) were calculated as,

RMSE =

√
∑n

I=1
(yi − ŷi)

2

n

and
RMSEr =

RMSE
y
× 100%

where yi and ŷ denote the field measured GSV and the predicted volume for plot i, respectively, and y
denotes the mean field measured GSV for all plots. The RMSE and the RMSEr from the cross validation
were compared among the different model categories. The RMSEr values were also displayed for
different values of k-folds ranging from 1 to 10, to show the stability of the models.

Finally, to reflect the performance of models fitted with Sentinel data under different tree species,
we partitioned the prediction values obtained from the cross validation into two groups (i.e., Pinus
patula and others). The predicted values were then used to compute the RMSE and the RMSEr as
illustrated above, and model performances were compared.

3. Results

3.1. Prediction Accuracy of GSV for Different Sets of Predictor Categories and Models

Variables between two and five were selected from different categories of predictor variables
(Tables 5 and 6). All predictors were derived from categories with Sentinel-1 and Sentinel-2 bands,
derived indices, and their combination. Predictor variables for the ALOS PALSAR mosaic were not
statistically significant in any model and are not presented in the result section.

The fits of the selected models, judged by Pseudo-R2 and AIC values, and the selected variables
vary depending on the predictor category and the variable extraction method (Tables 5 and 6).
The Pseudo-R2 ranges from 0.18 to 0.59 for the models fitted with the MC approach and from 0.17
to 0.63 for the MW approach. Combining Sentinel-1 and Sentinel-2 when using MC based predictor
variables improved the model fits compared with Sentinel-1 alone. When developing the model by
combining Sentinel-1 and Sentinel-2 using the MW approach, all the possible predictor variables of
Sentinel-1 were not significant in the model. It was, therefore, nearly impossible to develop a model
combining Sentinel-1 and 2 when using the MW approach. The selected variables, Pseudo-R2, AIC,
RMSE, and RMSEr of the fitted models are presented in Tables 5 and 6. The variable importance of
the different predictors in each model are also presented in Figures 3 and 4, where the variables from
bands (B11 and B12) largely contributed to R2 and were frequently selected.

The results from the cross validation indicated that, the RMSEr values for models fitted with
combined variables extracted from the MC approach for Sentinel-1 and Sentinel-2, were relatively
lower than the model fitted with separate variables of Sentinel-1. This indicates a potential gain in
accuracy when combining Sentinel-1 and Sentinel-2 when using the variable extracted from the MC
approach. However, the models with Sentinel-2 variables extracted using MC and MW variables,
turned out to be the best with the lowest RMSEr values. The sensitivity of the RMSEr values of
different models to the k-fold values are presented in Figures 5 and 6. The k-values of 3, 5, and
10 turned out to have the lowest RMSEr values. However, for fair comparison among models the
results presented in Tables 5 and 6 are based on 10-folds only. The performance of the models for
each variable extraction method are further explained with the scatterplots showing the relationships
between the field measured GSV and the predicted GSV (Figures 7 and 8).
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Table 5. Fitted models, selected variables from the centroid approach (MC), Pseudo-R2, AIC, RMSE,
and RMSEr.

Model a Selected Variables b Pseudo-R2 AIC RMSE RMSEr

MC_A1 M6_DS, S1_18_M2 0.18 902 103 59.48
MC_A2 M4__18f18, M12__18f18, ndvi2_18 0.59 853 75 43.17
MC_A4 M4__18f18, M11__18f18, M6_Annua, M1_DS 0.52 866 81 46.98

MC_DS2 M5_17s16, M11_17s16, NDRE1_17 0.57 857 79 45.80
MC_DS3 M5_17s16, M11_17s16, NDRE1_17, M9_DS 0.59 855 81 47.07
MC_RS2 M4__18f18, M12__18f18, ndvi2_18 0.59 853 75 43.17

Notes: a MC_A1 = Model fitted with S1_20170921 & S1_20180212 & Annual times can data, MC_A2 = Model fitted
with S2_20170916 & S2_20180218 data, MC_A4 = Model fitted with S2_20170916 & S2_20180218 & S1_20170921 &
S1_20180212 & Annual time scan data, MC_DS2 = Model fitted with S2_20170916 (i.e., Dry Season) data, MC_DS3
= Model fitted with S1_20170921 & Dry season time scan & S2_20170916 data, MC_RS2 = S2_20180212 (i.e., Rain
season) data. b M6_DS = Dry season Sentinel-1: VH_min, S1_18_M2 = Sentinel 1_20180212_VV, M4__18f18 =
Sentinel2_20180218_B08a, M12__18f18 = Sentinel2_20180218_B12, ndvi2_18 = Sentinel-2_20180218:RE-NDVI783,
M6_Annua = Annual Sentinel-1: VH_min, M4__18f18 = Sentinel-2_20180218:B04, M5__18f18 = Sentinel-2_20180218:
B05, M11__18f18 = Sentinel2_20180218_B11, M6_Annua = Annual_time scan Sentinel 1 band6: VH_min, M1_DS
= Dry season time scan Sentinel 1 band1: VV_mean, M5_17s16 = Sentinel2_20170916_ B05, M11_17s16 =
Sentinel2_20170916_ B11, NDRE1_17 = Sentinel-2_20170916:ND_RE1, M9_DS = Dry season Sentinel-1: VV_cv.

Table 6. Fitted models, selected variables from weighted mean approach (MW), Pseudo-R2, AIC,
RMSE, and RMSEr.

Model a Selected Variables b Pseudo-R2 AIC RMSE RMSEr

MW_A1 M6_DS, S1_18_M2 0.17 903 103.8 60.10
MW_A2 M5_17s16, M11_17s16, M4__18f18 M11__18f18, ndvi7_18 0.63 849 72.6 42.03
MW_RS2 M2__18f18, M4__18f18, M12__18f18, ndvi1_18 0.61 850 73.4 42.52
MW_DS2 M5_17s16, M11_17s16, evi17, NDRE1_17 0.58 855 75.4 43.65

Notes: a MW_A1 = Model fitted S1_20170921 & S1_20180212 & Annual times can data, MW_A2 = Model
fitted with S2_20170916 & S2_20180218 data, MW_RS2 = Model fitted with S2_20180212 (i.e., Rain season) data,
MW_DS2 = Model fitted with S1_20170921 and Dry season time scan and S2_20170916 data. M6_DS = Dry season
Sentinel-1: VH_min, S1_18_M2 = Sentinel 1_20180212_VV, M5_17s16 = Sentinel-2_20170916:B05, M11_17s16
= Sentinel-2_20170916:B11, M4__18f18 = Sentinel-2_20180218:B04, M11__18f18 = Sentinel-2_20180218:B11,
ndvi7_18 = Sentinel-2_20180218:RE-NDVI705, M2__18f18 = Sentinel-2_20180218:B02, M4__18f18 =
Sentinel-2_20180218:B04, M11__18f18 = Sentinel-2_20180218:B11, M12__18f18 = Sentinel-2_20180218:B12, ndvi1_18
= Sentinel-2_20180218:RE-NDVI740, evi17 = Sentinel-2_20170916:EVI, NDRE1_17 = Sentinel-2_20170916:ND_RE1.
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3.2. The Effect of Season and Specific Predictor Variables on GSV Prediction Accuracy

Pseudo-R2, RMSE, and RMSEr for the seasonal based models fitted with variables extracted
using the MC and the MW approaches are presented in Tables 5 and 6. The results showed that using
Sentinel-1 with season-based predictor variables did not turn up to have good linear relationships,
especially when using the predictors extracted with the MC approach. All the selected variables were
not statistically significant (i.e., p > 0.005) in the models. A combination of Sentinel-1 and Sentinel-2 DS
predictors had reasonable accuracy compared with Sentinel-1 DS only. Poor results for Sentinel-1 DS
were also observed when using variables extracted with the MW approach. Sentinel-2 models, fitted
with RS predictor variables, had a lower RMSEr compared with the models fitted using the DS for both
of the approaches of the variable extraction. Furthermore, there was no difference in terms of model fits
and accuracy, for the models MC_A2 and MC_RS2 (Table 5). However, a notable marginal difference
was observed when using the MW approach where the model MW_A2 had relatively smaller RMSEr
than the model MW_RS2 (Table 6). Thus the overall best model (MW_A2) was based on all year
predictor variables.

3.3. Effects of Post Stratification on Prediction Accuracy of GSV

Our results on the effect of post-stratification on prediction accuracy indicated that there were
variations in the prediction accuracy between the two groups of tree species irrespective of the method
of variable extraction. The RMSE_r values for all models in the Pinus spp group were relatively lower,
as compared with the other tree species group (Figure 9).
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4. Discussion

The main objective of the study was to determine the potential of the Sentinel imagery in
predicting GSV, the most common forest stand variable needed for sustainable forest management
and reporting on national and international scales. Predictive models built on open-source data
and tools are especially vital in Global South countries like Tanzania, where the forestry sector is
growing rapidly, and the availability of intensive field inventory is limited. Thus, investigating the
potential of open-source remotely sensed data in this area, including their combination, provides new
information towards developing standard methods for generating reliable information to support
forest management planning at a reasonable and affordable cost. Such methods are also important
for the establishment of forest carbon Monitoring, Reporting, and Verification system needed for
the implementation of the REDD+ programme of the United Nations Framework Convention on
Climate Change.

Overall, our study has shown that, Sentinel-derived predictors have better performance in
predicting growing stock volume in the heterogeneous small-scale plantation environment of the
Southern Highlands compared with global ALOS PALSAR mosaic derived predictors. We used a
yearly global mosaic of ALOS PALSAR-2/PALSAR, which is freely distributed and has coarser spatial
and temporal resolutions compared with the regular ALOS imagery [17]. Although the global ALOS
PALSAR mosaic data has previously shown to correspond with AGB at a wide geographical scale [58],
the reason for the poor performance of SAR-L in our study area when modelling GSV may be related
to the coarse spatial and temporal resolution that results in weak applicability on detailed plot-level.

For Sentinel imagery, the models based on optical imagery outperformed the models based on
SAR-C imagery. Although, integration was found to increase the performance in one model (MC_A4),
we may conclude that variables derived from Sentinel-1 performed weakly in GSV modeling at
our study site. Sentinel-1′s prediction performance on forests has been shown to vary due to the
SAR-C band sensitivity to the forest dielectric constant and the environment’s moisture conditions.
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Thus time-series applications are recommended [24,59]. Notably, most of the significant variables in
models based on Sentinel-1 in our study were derived from a dry season multi-temporal composite.
However, a more detailed time series analysis would have been required to reveal the optimal timing
of Sentinel-1′s response to GSV. Nevertheless, the predictor’s contributions to R2′ values were so small
that even optimal timing would unlikely result in applicable predicting capacity (Figures 3 and 4).
Another reason for poor performance may be the saturation of SAR-C backscatter at relatively low
biomass density levels. However, since SAR-L band predictor were not selected to the models due
to their low prediction power and SAR-L backscatter saturates at much higher AGB density levels
compared to SAR-C [24], it is likely that the poor prediction power of SAR-C backscatter on GSV is
also affected by complex backscatter signal from the studied forests due to speckle noise.

Models based on Sentinel-2 had the best predicting performance considering all the categories:
dry season, rainy season, and all year. This is further explained by the variable importance where the
Sentinel-2 variables had most significant contributions to R2 (Figures 3 and 4). While there was only
a small difference in the overall performance of these models, there were notable differences on the
selected variables within the models of different categories. For all year and rainy season category
models, the most important bands were 11 and 12 operating on the SWIR wavelength and bands
5 and 4 operating on red edge and red wavelengths, respectively. The potential of these bands in
quantifying forest biophysical parameters has been reported by other studies concentrating on forest
attribute modeling based on Sentinel-2 data [13,15,60]. SWIR band values are sensitive to moisture
and shade conditions, which are more inherent to forest stand structures during the rainy season, as
compared to the dry season. However, the high prediction potential of SWIR bands were missing in
our best model of dry season category, where band 8A, operating on narrow infrared wavelength was
the most important variable. In our case, the bands and indices of the red-edge wavelength (band 5
and NDRE-1) were important predictors in dry season models. The bands and indices of the red and
NIR wavelength (band 4 and NDVI) were important predictors in rainy season models This result
indicates that environmental conditions have a significant influence on the reflectance characteristics
of plantation forests. The robustness of Sentinel-2 bands for forest attribute modeling need to be
considered for the particular case.

The effect of the value extraction method on the selected variable and on the model performance
proved to be significant. The performance of all the models based on Sentinel-2 improved when fitted
with the variables extracted from the MW approach compared with the MC approach (Tables 5 and 6).
Geo-location errors up to 10 m are common when using GPS receivers to measure a plot centroid
location under forest canopy [61]. In our study, the circular plot with a 10 m radius may result into
mismatch between field and remote-sensing data, and hence increasing the errors in the models [62,63].
This is mainly because the plot centroid may locate in a pixel that shares only partly or none of the
plot area. Thus, the MW extraction method is a more credible representation of the plot’s reflectance.
Considering that the variables selected in the models MC_RS2 and MW_RS2 differ remarkably and
are defined only based on the extraction method, so the value extraction approach is a key step in
developing remote-sensing based predictions.

Comparing the results with other studies builds an understanding of the technical efficiency, but
it should be done with caution due to the wide range of variations in the forest landscapes, forest
structures, sample sizes and plot sizes used in different studies. The best combined model of Sentinel-1
and Sentinel-2 explained 52% of the variability in the data with RMSEr 46.98%. The best model from
Sentinel-2 alone explained 63% of the variability in the data with RMSEr of 42.03 %. These values are
comparable to other recent studies that predict GSV using Sentinel imagery [13,15,64] and RapidEye
imagery in similar forested landscapes [65]. Post-stratification of the data into species showed that the
best models have lower RMSEr values for Pinus patula compared with other tree species. This might
be explained by the high variability of GSV in the “other” group because it contained plots from
regenerating black wattle (Acacia mearnsii) to the presence of large eucalyptus tree species.
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In our study, the Sentinel-2 derived GSV predictors outperformed the predictors derived from
the SAR imagery. Similar results have been recently reported considering AGB estimation in tropical
natural forest [66]. Sentinel-2 imagery thus has high potential to support large-scale, country wide
forest assessments, especially in the Global South where expensive inventories and a lack of access
to commercial satellite imagery has prohibited the development of sustainable forest management
and spatially explicit estimations of forest GSV and AGB. Such potential is increasingly important,
especially in tropics where forest plantations are rapidly growing in order to supply the increasing
global demand for wood products and to support REDD+ processes as key strategies to mitigate climate
change [67]. As the Sentinel-2 mission is operational, and providing high quality open-access data
with a maximum of five days revisit time globally, it will definitely be the key source of information to
support and assess such initiatives. However, the problems caused by frequent cloud cover, especially
in the tropics, is a challenge in optical imagery based assessments. Future research is still needed to
fully cover the potential of Sentinel-1 and Sentinel-2 missions and should examine the key parameters
affecting the prediction accuracy, e.g., the effect of the field plot size and value extraction methodology.
Furthermore, examining the performance of traditional statistical methods like linear regression, gives
control and understanding on the predictive variables, important in evaluating the potential of the
satellite imagery in GSV modelling. However, to fully cover the potential of the Sentinel imagery in
forest attribute predictions, future studies should focus on studying the effect of statistical modelling
methods on the prediction accuracy (i.e., parametric vs. non-parametric).

5. Conclusions

This study has generated empirical evidence on the use of Sentinel data in remotely sensing
assisted forest inventory in the small-scale planation forests of Southern Highlands of Tanzania.
The results show that: Sentinel-2 and combination of Sentinel-1 and 2, had better performance in
predicting GSV, as compared to Sentinel-1 alone and ALOS PALSAR2. Models fitted with variables
extracted from the WC approach, had relatively lower RMSEr % values compared with MC approaches.
Season seemed to have effect on prediction accuracy of GSV when using Sentinel-2 where Sentinel-2
RS based models had slightly smaller RMSEr % values, as compared with DS based models. However,
generally dense time series (i.e., annual) data resulted in the models with relatively lower RMSEr %
values compared with seasonal based models. Stratifications based on tree species resulted into lower
RMSEr % values for Pinus patula tree species as compared to other tree species. Thus in the future it
might worthier to stratify the area based on the tree species using existing data, in order to account
for the variability attributed by the differences in tree species. Further studies on the effect of field
plot size and statistical methods on prediction accuracy are also recommended to further explore the
potential of these data in supporting the estimation of forest attributes.
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