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Abstract

The application of best practices of open data science is spreading across research fields, facilitating

data  sharing,  collaborative  methods  development,  research,  and  education.  Microbiome

bioinformatics is a rapidly developing area that can greatly benefit from this progress. The concept of

microbiome  data  science  refers  to  the  application  of  open  development  model  in  microbiome

bioinformatics. The increasing availability of microbiome profiling data, popularity of collaborative

methods  development,  and  the  emergence  of  standard  data  formats  are  greatly  facilitating  the

development  of  best  practices  in  this  field.  A  microbiome  data  science  ecosystem  combines

experimental data sets with open research software, transparent and quality-controlled workflows, and

reproducible tutorials that also serve as an educational resource. Here, we provide an overview of the

current  status  of  microbiome  data  science  from a  community  developer  perspective,  discuss  the

prevailing gaps, and propose directions for future methods development.
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1. Introduction

Analysis of molecular profiling data obtained from high-throughput “-omics” approaches is essential

for  unravelling large-scale  patterns  in  community composition,  function and interactions  between

microbial organisms. The development of bioinformatics tools has been pivotal for understanding the

importance  of  microbiome  in  human  health  (Erickson et  al. 2012;  Heintz-Buschart et  al. 2017;

Schirmer et al. 2018). Numerous tools from command line interfaces such as Mothur (Schloss et al.

2009) and the Python-based QIIME and QIIME2 (Bolyen E et al. 2018; Caporaso et al. 2010) to web-

based tools such as Calypso (Zakrzewski et al. 2016) and MicrobiomeAnalyst (Dhariwal et al. 2017)

have  been  designed  to  serve  microbial  bioinformaticians.  The  methods  are  developing  rapidly,

however,  and  the  latest  techniques  are  often  not  available  even  in  actively  maintained  software

projects and the quality and accessibility of published methods can vary widely (Mangul et al. 2018). 

Community-driven data science ecosystems provide accelerated access to latest research algorithms.

The emergence of open data science  (Lahti 2018) has revolutionized collaborative research and is

greatly facilitating the development  and adoption of methods and best  practices in  data-intensive

research fields. The availability of open data and research software, and open collaboration through

distributed version control systems  (Wilson et al. 2017) have created opportunities to transparently

benchmark and criticize alternative approaches. Much of such development is currently focused on R

and  Python,  where  researchers  share  experimental  software  and  reproducible  notebooks  that

summarize complete data analytical procedures and provide practical guidance for research use. Users

can further benefit from graphical interfaces (Venables and Smith 2006).

We provide a brief overview of the current status of microbiome data science from a community

developer perspective. While the R ecosystem is one of the main platforms for current community-

driven development efforts and our focus in this review, the key concepts apply more widely to other

data science environments.
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2. Microbiome data science

The route from processing of raw data to final analysis and reporting relies on a vast number of

methods and basic concepts in microbial ecology (Figure 1). A single researcher is seldom able to

fully  master  all  relevant  areas,  and multi-disciplinary research can be supported by targeted data

science ecosystems. These refer to well-designed combination of data, methods, and documentation

that facilitate correct application of methods (Pollock et al. 2018; Knight et al. 2018; Schloss 2018b).

Research software is best communicated in the context of experimental benchmarking data, combined

with transparent workflows and reproducible online tutorials that serve as educational resources as

well as open collaboration platform for methods development. The key elements enabling microbiome

data science include open data, open methods, and open collaboration (Lahti 2018).

Figure 1: The current stage of microbiome data science ecosystem in R. The shaded boxes indicate

research areas where the demand for new algorithmic tools is rapidly increasing.

2.1  Data

Convenient  access  to  data  is  valuable  for  verification,  meta-analysis,  methods  development  and

benchmarking. Availability of example data from published case studies in a readily accessible format

can be highly convenient, and various R packages provide taxonomic and functional data from recent
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population and intervention studies of the human microbiome  (Pasolli et  al. 2017; Schiffer et  al.

2018; Lahti and Shetty 2018).

2.2 Analysis

The contemporary  R  ecosystem for  microbiome data  science  covers  dozens  of  packages serving

various  analysis  needs  (Table  1).  Most  of  the  available  methods  focus  on  16S  rRNA amplicon

sequencing or assume that OTU tables are readily available from metagenomic sequencing studies.

Data summarization is facilitated by dedicated preprocessing algorithms such as  DADA2 (Callahan,

McMurdie, et al. 2016), and class structures such as phyloseq, which is used to integrate OTU counts,

taxonomic trees, and sample metadata into a single object that serves as a standardized starting point

for various downstream methods (McMurdie and Holmes 2013). The MultiAssayExperiment provides

utilities for parallel multi-omics experiments  (Ramos et  al. 2017), and further class structures are

available  for  generic  time series  but  these opportunities  have not  yet  been fully  exploited in  the

microbiome data  science.  Whereas  Python has  a  more versatile  set  of  algorithms for  sequencing

studies, R is well-suited for many interactive statistical analysis tasks. Estimation of alpha diversity

and  related  ecological  indices  including  richness,  evenness,  dominance,  and  rarity  indices  is  a

common task that has been implemented in various packages (Oksanen et al. 2011; Lahti and Shetty

2018) and  can  be  complemented  by  phylogenetic  trees  (Kembel et  al. 2010) or  co-occurrence

networks  (Willis and Martin 2018). Community dissimilarity,  or  beta diversities,  can be analysed

using both phylogenetic (Chen 2012) and non-phylogenetic metrics (Beals 1984). Many methods are

available  for  differential  abundance  analysis  in  individual  taxa  (Love,  Huber,  and  Anders  2014;

Robinson, McCarthy, and Smyth 2010; Paulson, Pop, and Bravo 2013; Fernandes  et al. 2014), with

varying  performance  (Weiss et  al. 2017).  Advanced  approaches  consider  nested  hierarchies  in

multiple  testing  scenarios  (Sankaran  and  Holmes  2014).  Community-level  differences  between

sample groups with PERMANOVA and other methods  (Oksanen et al. 2011; Anderson and Walsh

2013) can be complemented by unsupervised analyses  (Sankaran and Holmes 2018b; Singh et  al.

2018) such as Dirichlet Multinomial Mixtures (DMMs) (Harris et al. 2014; Ding and Schloss 2014).
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Further  tools  are  available  for  phylogenetic  tree  analysis  (Paradis,  Claude,  and  Strimmer  2004;

Stevens et al. 2017; Washburne et al. 2017; Wright 2016), co-occurrence networks (Kurtz et al. 2015;

Schwager et al. 2014), metabolic interactions (Cao et al. 2016), and microbiome function (Aßhauer et

al. 2015). Visualization tools span from amplicon sequencing data  (Andersen KSS et al. 2018) to

unsupervised  ordination  by  incorporating  phylogenetic  structure  (Fukuyama  2017) to  network

analysis  (Csardi  and  Nepusz  2006),  phylogenetic  trees  (Paradis,  Claude,  and  Strimmer  2004),

taxonomic diversity (Foster, Sharpton, and Grünwald 2017), and geospatial analysis (Charlop-Powers

and  Brady  2015). Many  generic  utilities  for  microbiome  profiling  data  are  also  available

(Lagkouvardos et  al. 2017;  Chen,  Simpson,  and Levesque 2016; Lahti  and Shetty 2018;  Korpela

2016). R packages have also been created to access taxonomic information (Chamberlain et al. 2014)

and to support interoperability with other systems such as the Python-based QIIME (Bittinger 2014).

CRAN has strict technical checks for package consistency, and rOpenSci (Boettiger et al. 2015)  and

Bioconductor (Gentleman et al. 2004) have comprehensive software review procedures that signal

good software quality.

2.3 Workflows

Sharing of technical knowledge and best practices can be greatly facilitated by transparent workflows,

tutorials and online resources (Table1) that cover diverse aspects of microbiome data science (Schloss

2018a; Callahan, Sankaran,  et  al. 2016). Community-driven development can help to democratize

microbiome data science and limit the monopoly of a few by facilitating free and open knowledge

sharing. Good practices include routine application of automated unit tests and crowd-sourced quality

control in the form of issue reports and case studies on reproducible notebooks (Wilson et al. 2017). 

3. Discussion

Microbiome data science facilitates collaborative development and access to various concepts and

methods in microbial ecology. Whereas we have provided a brief overview of the current microbiome



Preprint 10/2018

data science ecosystem in R including data, methods, and educational resources, further methods are

available in Python and other environments.  The current  R ecosystem is heavily focused on 16S

analysis, and many packages contain overlapping functionality whose performance has not yet been

comprehensively  compared  and  benchmarked.  Despite  the  progress  in  the  field,  the  current

microbiome data science ecosystem is specifically lacking dedicated methods for the analysis and

integration of deep metagenomic and multi-omics profiling data and multivariate time series from

targeted case studies and large population cohorts.

Pre-processing of raw reads to ASVs/OTUs BioC: dada2 (Callahan, McMurdie, et al. 2016)

Taxonomic classification and analysis BioC: rRDP (Hahsler and Nagar 2014), DECIPHER (IDTAXA 
algorithm) (Murali, Bhargava, and Wright 2018); CRAN: taxize (Chamberlain et al. 2014), microclass (Liland, 
Vinje, and Snipen 2017)

General data manipulation and visualisation BioC: Phyloseq (McMurdie and Holmes 2013), 
microbiome(Lahti and Shetty 2018); CRAN: vegan (Oksanen et al. 2011); theseus (Price et al. 2018), metacoder
(Foster, Sharpton, Grünwald 2017); Github: mare (Korpela 2016), ampvis2 (Andersen KSS et al. 2018), 
microbiomeutilities (https://goo.gl/L4S5D6), microbiomeSeq (https://goo.gl/rfg5sA), yingtools2 
(https://goo.gl/rfg5sA)

Diversity analysis CRAN: picante (Kembel et al. 2010), GUniFrac (Chen 2012), labdsv (Roberts 2007), 
breakaway (Willis and Bunge 2016), ape (Paradis, Claude, and Strimmer 2004), RAM (Chen, Simpson, and 
Levesque 2016); Github: DivNet (Willis and Martin 2018) 

Community types BioC: DirichletMultinomial (Morgan 2017)

Network analysis BioC: CCREPE (Schwager et al. 2014); CRAN: igraph (Csardi and Nepusz 2006); Github: 
SPIEC-EASI (Kurtz et al. 2015)

Group-wise comparisons and association analysis BioC: structSSI, edgeR, DESeq2, metagenomeSeq; 
CRAN: mixOmics (Rohart et al. 2017), mixDIABLO (Singh et al. 2018), mixMC (Le Cao et al. 2016), 
Sigtree (Stevens et al. 2017), ALDEx2 (Fernandes et al. 2014)

Time series analysis Github: Seqtime (Faust et al. 2018), bootLong (https://goo.gl/jkXzQZ), treelapse
(Sankaran and Holmes 2018a) 

Pipelines/GUIs BioC: Pathostat (Manimaran et al. 2018), shiny-phyloseq (McMurdie and Holmes 2015), 
metavizr (Bravo HC et al. 2017); Github: Rhea (Lagkouvardos et al. 2017), DAME (Piccolo et al. 2018)

Interoperability CRAN: qiimer (Bittinger 2014)

Workflows and Tutorials

Bioconductor Workflow for Microbiome Data Analysis: from raw reads to community analyses (Callahan, 
Sankaran, et al. 2016) 
The Riffomonas Reproducible Research Tutorial Series (Schloss 2018a),
Happy belly bioinformatics (https://astrobiomike.github.io/)
Microbiome package tutorial series (http://microbiome.github.io/microbiome/)
Open & Reproducible Microbiome Data Analysis (https://goo.gl/CPChhd)
Random Forest Modelling of the Lake Erie microbial community (https://tinyurl.com/ycz4rgfv) (Rpubs)

https://goo.gl/CPChhd
https://goo.gl/jkXzQZ
https://goo.gl/rfg5sA
https://goo.gl/L4S5D6
http://microbiome.github.io/microbiome/
https://astrobiomike.github.io/
https://goo.gl/rfg5sA
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Table 1: Overview of the currently available  online resources for microbiome data science in R.

Bioconductor has the strictest software review procedure covering technical aspects as well as the

package  contents;  CRAN requires  comprehensive  technical  quality  checks  with  minimal  content

review; and Github can host emerging or more established projects with no formal quality control.

The indicated groupings are approximations as many packages span over multiple categories. 
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