Cyclically Repetition-free Words on Small Alphabets

Tero Harju ${ }^{1}$ and Dirk Nowotka ${ }^{2}$
${ }^{1}$ Turku Centre for Computer Science (TUCS), Department of Mathematics, University of Turku, Finland
harju@utu.fi
${ }^{2}$ Institute for Formal Methods in Computer Science (FMI), Universität Stuttgart, Germany
nowotka@fmi.uni-stuttgart.de

Abstract

All sufficiently long binary words contain a square but there are infinite binary words having only the short squares 00,11 and 0101. Recently it was shown by J. Currie that there exist cyclically square-free words in ternary alphabet except for lengths $5,7,9,10,14$, and 17 . We consider binary words all conjugates of which contain only short squares. We show that the number $c(n)$ of these binary words of length n grows unboundedly. In order for this, we show that there are morphisms that preserve cyclically square-free words in the ternary alphabet.

1 Introduction

We shall consider binary $\left(w \in\{0,1\}^{*}\right)$ and ternary $\left(w \in\{0,1,2\}^{*}\right)$ words. A word u is a factor of a word w if there are words w_{1} and w_{2} such that $w=w_{1} u w_{2}$. In this case, u occurs in w. Two words u and v are conjugates if $u=x y$ and $v=y x$ for some words x and y. The conjugate class of a word w consists of the words that are conjugates of w. For a given lexicographic order on the alphabet, each conjugate class has a minimal element that is called a Lyndon word. A nonempty factor $u^{2}(=u u)$ of a word w is a square in w. The word w is square-free if it has no squares in it. Moreover, w is cyclically square-free if its conjugates are square-free.

While each binary word $w \in\{0,1\}^{*}$ of length at least four contains a square, Entringer, Jackson, and Schatz [3] showed that there exists an infinite word with only 5 different squares. Afterwards Fraenkel and Simpson [4] showed that there exists an infinite binary word having only the three squares 00,11 , and 0101. We say that a binary word w is short-squared if its squares belong to the set $\{00,11,0101\}$ - but we do not allow the square 1010.
Theorem 1 (Fraenkel-Simpson). For each $n \geq 1$, there exists a short-squared binary word of length n.

A simplified proof of Theorem 1 was given by Rampersad, Shallit, and M.-w. Wang [7] which was still shortened by the present authors in [5]. In this paper we consider cyclic words with short squares. The problem was motivated by the following result due to J. Currie [2].

Theorem 2 (Currie). There exists a cyclically square-free ternary word w of length n if and only if $n \notin\{5,7,9,10,14,17\}$.

A word w is cyclically short-squared if its conjugates are all short-squared. We shall show in Theorem 5 that there are arbitrarily long cyclically short-squared binary words.

The exception list of lengths for cyclically short-squared binary words is much more extensive than the list for cyclically square-free ternary words given by Currie. Indeed, it is an open problem to characterize the set $L_{\text {cyc }}$ of lengths n for which there exists a cyclically short-squared binary word of length n. Also, even for each length $n \in L_{\text {cyc }}$ there seems to be only a small number of solutions as seen from the next table.

Let $c(n)$ denote the number of conjugate classes of cyclically short-squared binary words of length n, i.e., $c(n)$ is the number of cyclically short-squared binary Lyndon words having length n.

n	4	5	6	7	8	9	10	11	12	13	14	15	16

$$
\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline n & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 \\
\hline c(n) & 0 & 2 & 1 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 1 & 0 \\
\hline
\end{array}
$$

n	30	31	32	33	34	35	36
$c(n)$	1	0	0	0	0	0	2

Table 1. Curious sequence of numbers of cyclic short-squared binary words.

Remark 1. Note that any (not necessarily cyclic) short squared word w that does not have both factors 000 and 111 is not longer than 21 . The longest such words are of length 21 :

$$
110111001101001110010 \text { and } 110111001101001110100
$$

and their duals, where 0 and 1 are interchanged. Hence a Lyndon representative of a cyclic short-squared binary word w of length at least 22 starts with 11100 when the order is given as $1 \prec 0$. Indeed, it cannot start with 11101 since it then has a conjugate starting with 0111011 which gives a contradiction at the next bit.

Example 1. Let us consider some examples of cyclically short-squared binary words. We choose the ordering $1 \prec 0$ for the alphabet for our own convenience.

The Lyndon representative of length $n=12$ are the following three words:
111001011000 ,
111000101100 ,
111000110010 .

The Lyndon representative of length $n=24$ are the following words:

$$
\begin{aligned}
& 111001011001110001011000, \\
& 111001011100011001011000, \\
& 111000110010111000101100
\end{aligned}
$$

There are, however, only two Lyndon representatives of length $n=36$:

$$
\begin{aligned}
& 111001011001110001100101110001011000, \\
& 111001011100010110011100011001011000 \text {. }
\end{aligned}
$$

Despite of Table 1 suggesting a shrinking number of cyclic short-squared binary words when the length grows, we will show

Theorem 3. The function $c(n)$ is unbounded:

$$
\limsup _{n \rightarrow \infty} c(n)=\infty
$$

Consider now a uniform morphism $\xi:\{0,1,2\}^{*} \rightarrow\{0,1\}^{*}$ that takes cyclic ternary words to cyclic short-squared binary words. Such a morphism can be found by composing β from Section 3 with α from Section 2 below. Let u and v be two different cyclic square-free ternary words of the same length. Then $\xi(u)$ and $\xi(v)$ are two different cyclic short-squared binary words of the same length. Hence, Theorem 3 follows from the next result. Let $c_{3}(n)$ denote the number of cyclically square-free ternary Lyndon words of length n w.r.t. some fixed order.

Theorem 4. The function $c_{3}(n)$ is unbounded:

$$
\limsup _{n \rightarrow \infty} c_{3}(n)=\infty
$$

This result will be proved in Section 3. We also state the following conjecture that is stronger than Theorem 3.
Conjecture 1. There exists an integer N such that $c(n)>0$ for all $n \geq N$.

2 On Cyclic Binary Words with Short Squares

The following theorem is proven in this section.
Theorem 5. There are arbitrarily long cyclically short-squared binary words.
Before we prove Theorem 5 let us recall a morphism that maps square-free ternary words to short-squared binary words.

Let $\alpha:\{0,1,2\}^{*} \rightarrow\{0,1\}^{*}$ be the morphism defined by

$$
\begin{aligned}
& \alpha(0)=A:=1^{3} 0^{3} 1^{2} 0^{2} 101^{2} 0^{3} 1^{3} 0^{2} 10, \\
& \alpha(1)=B:=1^{3} 0^{3} 101^{2} 0^{3} 1^{3} 0^{2} 101^{2} 0^{3} 10, \\
& \alpha(2)=C:=1^{3} 0^{3} 1^{2} 0^{2} 101^{2} 0^{3} 101^{3} 0^{2} 101^{2} 0^{2}
\end{aligned}
$$

We notice in passing that these words are short-squared, and the words A and C are cyclically short-squared, but B is not. Indeed, B has a conjugate 100010111000101100011100101 which has the long square $(10001011)^{2}$ as its prefix.

The following result was shown in [5].
Theorem 6. Let $w \in\{0,1,2\}^{*}$. Then w is a square-free ternary word if and only if $\alpha(w)$ is a short-squared binary word.

We now turn to the proof of the announced result.
Proof (of Theorem 5). Let then w be a cyclically square-free ternary word provided by Theorem 2, and consider the binary word $\alpha(w)$. By Theorem 6, $\alpha(w)$ is short-squared. The claim follows when $\alpha(w)$ is shown to be cyclically short-squared. Assume, on the contrary, that $\alpha(w)$ has a conjugate v that is not short-squared. Without loss of generality, we can assume that v has a square as a suffix, say

$$
v=s u^{2}
$$

where u^{2} is a shortest possible square in the conjugates of $\alpha(w)$. One easily checks from the α images of words of length at most two that $|u| \geq 3$ (see also the comment above Theorem 6). Since w is cyclically square-free, it follows that $v \neq \alpha(u)$ for all conjugates u of w.

Denote $\Delta=\{A, B, C\}$. We have the following marking property of $1^{3} 0^{3}$:

$$
1^{3} 0^{3} \text { occurs only as a prefix in } A, B \text { and } C .
$$

Let z be a shortest prefix of v, say $v=z t$, such that the conjugate $t z$ is in Δ^{*}. In particular, there exists an $X \in \Delta$ such that $X=y z$ for some y.

Since u^{2} is not a factor of the conjugate $t z$, we must have $|s|<|z|$, say $z=s z^{\prime}$. Therefore, $u^{2}=z^{\prime} t=z^{\prime} x^{\prime} y$ for some word x^{\prime}. However, the marking property and $|u| \geq 3$ implies that $|u|>|y|$ and, hence,

$$
u=z^{\prime} x y \quad \text { and } \quad X=y s z^{\prime}
$$

for some prefix x of a word in Δ^{*}. Now $t z=x y z^{\prime} x y z \in \Delta^{*}$ which ends with the word $X=y z$. It follows that $x y z^{\prime} x \in \Delta^{*}$, i.e., x occurs as a suffix and a prefix in Δ^{*}. This implies that $x \in \Delta^{*}$ by the marking property. Hence also for the middle part $y z^{\prime} \in \Delta^{*}$. Since $y z^{\prime}$ is shorter than X, it follows that $y z^{\prime} \in \Delta$. Now both $y z^{\prime}$ and $y s z^{\prime}$ are in Δ. This would imply that $|s|=3$ or 6 ; however there is no solution for these parameters in Δ. (The length of the longest common prefix, rep. suffix, of two different words of Δ is 18 , resp. 4.)

3 On the Number of Cyclic Square-Free Words

A morphism is called (cyclic) square-free whenever the image of any (cyclic) square-free word is itself (cyclic) square-free. In this section we will construct a
set of uniform cyclic square-free morphisms on $\{0,1,2\}^{*}$ such that an arbitrary number of cyclic square-free words of the same length can be generated.

We start from certain square-free factors taken from an infinite squarefree word in order to find substitutions that preserve square-freeness. Then we introduce several markers that allow us to both ensure cyclic square-freeness and the construction of arbitrarily many different substitutions without sacrificing the preservation of square-freeness.

Thue gave in [8] the following morphism ϑ on $\{0,1,2\}^{*}$ which generates the infinite Thue word \mathbf{t} when iterated starting in 0 . Consider

$$
\vartheta(0)=012, \quad \vartheta(1)=02, \quad \vartheta(2)=1
$$

which gives

$$
\begin{equation*}
\mathbf{t}=\lim _{k \rightarrow \infty} \vartheta^{k}(0)=\underline{012021012102012021 \underline{020121012021012102012} \cdots} \tag{1}
\end{equation*}
$$

where we point out three underlined factors of \mathbf{t} which will be used further below. It is well-known that \mathbf{t} is square-free. We will take factors of \mathbf{t} as building blocks for the morphisms $\left(\gamma_{n}\right)_{n \in \mathbb{N}}$. The following morphism $\eta:\{0,1,2\}^{*} \rightarrow\{0,1\}^{*}$ maps \mathbf{t} to an overlap-free binary word [6], the so called Thue-Morse word,

$$
\eta(0)=011, \quad \eta(1)=01, \quad \eta(2)=0 .
$$

A word is called overlap-free if it has no overlapping factors, i.e., if no factor of the form awawa occurs where a is a letter and w is a (possibly empty) word. In particular the words in the following set do not occur in \mathbf{t} :

$$
\begin{equation*}
T_{\mathrm{no}}=\{010,212,1021,1201\} . \tag{2}
\end{equation*}
$$

Indeed, $\eta(010)=01101011$ which contains the overlap 10101. Assume that contrary to the claim 212 occurs in \mathbf{t}. Then it must be preceded and succeeded by 0 otherwise \mathbf{t} is not square-free. But, $\eta(02120)=0110010011$ contains the overlap 1001001; a contradiction. If 1021 occurs in \mathbf{t}, then it must be preceded by 2 and succeeded by 0 by the previous arguments. But, then \mathbf{t} contains the square 210210; a contradiction. A similar argument holds for the word 1201.

So far, we have identified in $T_{\text {no }}$ square-free words that do not occur in \mathbf{t}. They will serve as markers in the proof of Theorem 4 below. Let us now turn to factors of \mathbf{t} that we can use as building blocks for the morphisms $\left(\gamma_{n}\right)_{n \in \mathbb{N}}$.

Iterating ϑ gives

$$
\begin{aligned}
\vartheta(0) & =012 \\
\vartheta^{2}(0) & =012021 \\
\vartheta^{3}(0) & =012021012102 \\
\vartheta^{4}(0) & =012021012102012021020121
\end{aligned}
$$

and

$$
\begin{aligned}
\vartheta(1) & =02 \\
\vartheta^{2}(1) & =0121 \\
\vartheta^{3}(1) & =01202102 \\
\vartheta^{4}(1) & =0120210121020121
\end{aligned}
$$

$$
\begin{aligned}
\vartheta(2) & =1 \\
\text { and } \quad \vartheta^{2}(2) & =02 \\
\vartheta^{3}(2) & =0121 \\
\vartheta^{4}(2) & =01202102
\end{aligned}
$$

Consider the words $\vartheta^{4}(0)$ and $\vartheta^{4}(1)$ and $\vartheta^{4}(2)$ that start with 012021 and that all have an occurrence in \mathbf{t} followed by 0120 . Indeed, $\vartheta^{6}(0)$ is a prefix of \mathbf{t} implying $\vartheta^{6}(0)=\vartheta^{4}(012021)=\vartheta^{4}(0) \vartheta^{4}(1) \vartheta^{4}(2) \vartheta^{4}(0) \vartheta^{4}(2) \vartheta^{4}(1)$.

Let δ be a morphism on $\{0,1,2\}^{*}$ defined by

$$
\begin{aligned}
& \delta(0)=(012)^{-1} \vartheta^{4}(0) 012=021012102012021020121012 \\
& \delta(1)=(012)^{-1} \vartheta^{4}(1) 012=0210121020121012 \\
& \delta(2)=(012)^{-1} \vartheta^{4}(2) 012=02102012
\end{aligned}
$$

We have
Claim 1. The δ-image of each factor of \mathbf{t} occurs itself in \mathbf{t} followed by 021.
Indeed, let w be a factor of \mathbf{t}, then $\vartheta(w)$, and hence, $\vartheta^{4}(w)$ is a factor of \mathbf{t}. Therefore, $(012)^{-1} \vartheta^{4}(w)$ is a factor of \mathbf{t} which proves the claim since $(012)^{-1} \vartheta^{4}(w a)$ occurs in \mathbf{t}, for some letter a such that $w a$ occurs in \mathbf{t}, and $012 \leq_{\mathrm{p}} \vartheta^{4}(a)$.

Consider the factors 0201210 and 0120210 and 0121020 of \mathbf{t} as marked in (1). Note that these factors are of the same length and have the same number of occurrences of 0,1 , and 2 , respectively.

Let us define the following uniform morphism β on $\{0,1,2\}^{*}$ where the length of the images of letters is $|\beta(0)|=122$:

$$
\begin{aligned}
& \beta(0)=\delta(0201210) 01 \\
& \beta(1)=\delta(0120210) 01 \\
& \beta(2)=\delta(0121020) 01
\end{aligned}
$$

Claim 2. The images $\beta(i)$ are cyclic square-free for all $0 \leq i \leq 2$.
Proof. The claim can be easily proven by inspection or a computer test. However, we give an alternative proof here for illustrating some arguments also used later below.

By Claim 1 the prefix $\beta(i) 1^{-1}$ of $\beta(i)$ is a factor of \mathbf{t} for all $0 \leq i \leq 2$. The words $\beta(i)$ end with 1201 which is in the set T_{no} of forbidden factors of \mathbf{t}. It follows that the words $\beta(i)$ are square-free. It is also straightforward to verify that $\beta(i)$ are cyclic square-free. Indeed, any cyclic square x^{2} must contain the last letter 1 of $\beta(i)$. The case where $|x|<6$ is easily checked by hand. Note that $1 \beta(i) 1^{-1}$ begins with 1021 and $\beta(i)$ ends with 1201 . Hence, if $|x| \geq 6$ then x
contains 1021 or 1201 . But $1021,1201 \in T_{\text {no }}$ and therefore they occur at most once in any conjugate of $\beta(i)$ which contradicts that x^{2} occurs in a conjugate of $\beta(i)$. This concludes the proof of Claim 2.

Let π be any permutation on $\{0,1,2\}$. Then we define the following morphisms

$$
\beta_{\pi}(i)=\beta(\pi(i))
$$

for all $0 \leq i \leq 2$. Before we show that every β_{π} is cyclic square-free, we recall the following theorem by Thue [8]; see [1] for a slightly improved version.

Theorem 7. A morphism α is square-free if the following two conditions are satisfied:
(1) $\alpha(w)$ is square-free whenever u is square-free and $|u| \leq 3$ and
(2) $\alpha(a)$ is not a proper factor of $\alpha(b)$ for any letters a and b.

In order to show that the constructed morphisms are cyclic square-free we state the following result.

Proposition 1. A morphism α is cyclic square-free if the following two conditions are satisfied:
(1) α is square-free and
(2) $\alpha(a)$ is cyclic square-free for all letters a.

Proof. Let $w_{(i)}$ denote i th letter of the word w. Consider a cyclic square-free word w of length n and suppose, contrary to the claim, that $\alpha(w)$ is not cyclic square-free. Let x^{2} be a shortest square in $\alpha(w)$. Then x^{2} occurs either in $w_{(i)} w_{(i+1)} \cdots w_{(n)} w_{(1)} \cdots w_{(i-1)}$ or in $w_{(i)} w_{(i+1)} \cdots w_{(n)} w_{(1)} \cdots w_{(i-1)} w_{(i)}$ for some i. Both of these words are square-free if w is cyclic square-free, except if $n=1$; a contradiction in any case.

It is now straightforward to establish the cyclic square-freeness of any β_{π} which implies Theorem 4.

Lemma 1. Let π be any permutation on $\{0,1,2\}$. Then β_{π} is a cyclic square-free morphism.

Proof. Let $w_{(i)}$ denote i th letter of the word w.
We begin by showing that β_{π} is square-free. By Theorem 7 the square-freeness of β_{π} can be checked by hand. However, this is cumbersome and therefore we give an alternative proof without the use of Theorem 7. Suppose contrary to the claim that $\beta_{\pi}(w)$ contains a square x^{2} where w is square-free. Surely, x^{2} does not occur in $\beta_{\pi}(a)$ for any letter a by Claim 2. Note that 1201021 occurs in $\beta_{\pi}(w)$ only at a point where two β_{π} images of letters are concatenated. Assume that $|x| \geq 6$; the smaller cases can be easily checked. Then, again as in Claim 2, x contains 1201 or 1021. Both 1021 and 1201 mark the beginnings and ends of the β_{π} images of letters, and hence, β_{π} is injective. Let $u \in\{1021,1201\}$ be such that u occurs in
x. Suppose $u=1201$, the other case follows analogous reasons. Then either u occurs in the beginning or end of x and the injectivity of β_{π} gives a contradiction on the square-freeness of w, or $x=y u \beta_{\pi}\left(w_{(j)}\right) \beta_{\pi}\left(w_{(j+1)}\right) \cdots \beta_{\pi}\left(w_{(j+r)}\right) z$ where $1<j<|w|-r$ and $-1 \leq r<|w| / 2$ and $|y|=|z|=59$ and $z y u=\beta_{\pi}\left(w_{(j+r+1)}\right)$. Note that for any two different letters a and b we have that the suffixes of length 61 of $\beta_{\pi}(a)$ and $\beta_{\pi}(b)$ differ. Therefore, $y u$ determines the image $\beta_{\pi}\left(w_{(j-1)}\right)$ to equal to $\beta_{\pi}\left(w_{(j+r+1)}\right)$. But, now we get a contradiction since $w_{(j-1)} w_{(j)} \cdots w_{(j+r)}$ forms a square in w. Therefore, β_{π} is square-free.

Claim 2 and Proposition 1 conclude the proof.
Now, Theorem 4 follows.
Theorem 4. The function $c_{3}(n)$ is unbounded:

$$
\limsup _{n \rightarrow \infty} c_{3}(n)=\infty
$$

Indeed, the image of the cyclic square-free word 021 under β_{π} gives a different cyclic square-free word for any permutation π by Lemma 1 . Each of these cyclic square-free words starts with 021, and hence, gives six new cyclic-square-free words (one for each β_{π}). This process can be arbitrarily often iterated. The uniformness of β_{π} ensures that the images of a word are of the same length for each π. The number of different cyclic square-free words after k iterations equals 6^{k} and they are of length $3 \cdot 122^{k}$.

Remark 2. We mention here shortly another way to prove Theorem 4. Let T be an infinite set $\left\{t_{0}, t_{1}, \ldots t_{n}, \ldots\right\}$ of triples of different square-free words of the same length such that the length of those words does not decrease as the index i increases.

It shall be noted that the arguments of Claim 2 and Lemma 1 also imply that for any triple $t=\left(u_{0}, u_{1}, u_{2}\right)$ of T of different square-free words of some length m and for any permutation π we have that

$$
\gamma_{t}(i)=0212 \beta_{\pi}\left(u_{i}\right)
$$

is a uniform cyclic square-free morphism. Indeed, that $\beta_{\pi}\left(u_{i}\right)$ is square-free follows from Lemma 1 and the square-freeness of u_{i}, and the prefix 0212 serves as a marker that makes γ_{t} injective.

Since T exists, we get a sequence $\left(\gamma_{t_{i}}\right)_{n \in \mathbb{N}}$ of uniform cyclic square-free morphisms which also imply Theorem 4. Indeed, in order to construct k-many cyclic square-free words of the same length one may consider the set $\left\{\gamma_{t_{1}}, \gamma_{t_{2}}, \ldots, \gamma_{t_{k}}\right\}$ and the least common multiple m of the length m_{j} of the words in t_{j} for all $1 \leq j \leq k$. Then $\left\{\gamma_{t_{j}}^{m_{j} / m}(0) \mid 1 \leq j \leq k\right\}$ gives a set of cyclic square-free words of length m of the required size k.

References

1. D. R. Bean, A. Ehrenfeucht, and G. F. McNulty. Avoidable patterns in strings of symbols. Pacific J. Math., 85(2):261-294, 1979.
2. J. D. Currie. There are ternary circular square-free words of length n for $n \geq 18$. Electron. J. Combin., 9(1):Note 10, 7 pp. (electronic), 2002.
3. R. C. Entringer, D. E. Jackson, and J. A. Schatz. On nonrepetitive sequences. J. Combin. Theory, Ser. A, 16:159-164, 1974.
4. A. S. Fraenkel and J. Simpson. How many squares must a binary sequence contain? Electronic J. Combin., 2(\#R2 (electronic)), 1995.
5. T. Harju and D. Nowotka. Binary words with few squares. Bull. EATCS, 89:164-166, 2006.
6. M. Lothaire. Combinatorics on Words, volume 17 of Encyclopedia of Mathematics. Addison-Wesley, Reading, MA, 1983. Reprinted in the Cambridge Mathematical Library, Cambridge Univ. Press, 1997.
7. N. Rampersad, J. Shallit, and Wang M.-w. Avoiding large squares in infinite binary words. Theoret. Comput. Sci., 339, 2005.
8. A. Thue. Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske Vid. Skrifter I. Mat.-Nat. Kl., Christiania, 1:1-67, 1912.
