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Abstract. All sufficiently long binary words contain a square but there
are infinite binary words having only the short squares 00, 11 and 0101.
Recently it was shown by J. Currie that there exist cyclically square-free
words in ternary alphabet except for lengths 5, 7, 9, 10, 14, and 17. We
consider binary words all conjugates of which contain only short squares.
We show that the number c(n) of these binary words of length n grows
unboundedly. In order for this, we show that there are morphisms that
preserve cyclically square-free words in the ternary alphabet.

1 Introduction

We shall consider binary (w ∈ {0, 1}∗) and ternary (w ∈ {0, 1, 2}∗) words. A word
u is a factor of a word w if there are words w1 and w2 such that w = w1uw2. In
this case, u occurs in w. Two words u and v are conjugates if u = xy and v = yx
for some words x and y. The conjugate class of a word w consists of the words
that are conjugates of w. For a given lexicographic order on the alphabet, each
conjugate class has a minimal element that is called a Lyndon word. A nonempty
factor u2 (= uu) of a word w is a square in w. The word w is square-free if it
has no squares in it. Moreover, w is cyclically square-free if its conjugates are
square-free.

While each binary word w ∈ {0, 1}∗ of length at least four contains a square,
Entringer, Jackson, and Schatz [3] showed that there exists an infinite word with
only 5 different squares. Afterwards Fraenkel and Simpson [4] showed that there
exists an infinite binary word having only the three squares 00, 11, and 0101.
We say that a binary word w is short-squared if its squares belong to the set
{00, 11, 0101} – but we do not allow the square 1010.

Theorem 1 (Fraenkel–Simpson). For each n ≥ 1, there exists a short-squared
binary word of length n.

A simplified proof of Theorem 1 was given by Rampersad, Shallit, and
M.-w. Wang [7] which was still shortened by the present authors in [5]. In this
paper we consider cyclic words with short squares. The problem was motivated
by the following result due to J. Currie [2].



Theorem 2 (Currie). There exists a cyclically square-free ternary word w of
length n if and only if n 6∈ {5, 7, 9, 10, 14, 17}.

A word w is cyclically short-squared if its conjugates are all short-squared. We
shall show in Theorem 5 that there are arbitrarily long cyclically short-squared
binary words.

The exception list of lengths for cyclically short-squared binary words is
much more extensive than the list for cyclically square-free ternary words given
by Currie. Indeed, it is an open problem to characterize the set Lcyc of lengths n
for which there exists a cyclically short-squared binary word of length n. Also,
even for each length n ∈ Lcyc there seems to be only a small number of solutions
as seen from the next table.

Let c(n) denote the number of conjugate classes of cyclically short-squared
binary words of length n, i.e., c(n) is the number of cyclically short-squared
binary Lyndon words having length n.

n 4 5 6 7 8 9 10 11 12 13 14 15 16 17

c(n) 3 2 2 2 1 0 0 0 3 0 1 0 0 0

n 18 19 20 21 22 23 24 25 26 27 28 29

c(n) 0 2 1 0 0 0 3 0 0 0 1 0

n 30 31 32 33 34 35 36

c(n) 1 0 0 0 0 0 2

Table 1. Curious sequence of numbers of cyclic short-squared binary words.

Remark 1. Note that any (not necessarily cyclic) short squared word w that does
not have both factors 000 and 111 is not longer than 21. The longest such words
are of length 21:

110111001101001110010 and 110111001101001110100

and their duals, where 0 and 1 are interchanged. Hence a Lyndon representative
of a cyclic short-squared binary word w of length at least 22 starts with 11100
when the order is given as 1 ≺ 0. Indeed, it cannot start with 11101 since it then
has a conjugate starting with 0111011 which gives a contradiction at the next
bit.

Example 1. Let us consider some examples of cyclically short-squared binary
words. We choose the ordering 1 ≺ 0 for the alphabet for our own convenience.

The Lyndon representative of length n = 12 are the following three words:

111001011000 ,
111000101100 ,
111000110010 .



The Lyndon representative of length n = 24 are the following words:

111001011001110001011000 ,
111001011100011001011000 ,
111000110010111000101100 .

There are, however, only two Lyndon representatives of length n = 36:

111001011001110001100101110001011000 ,
111001011100010110011100011001011000 .

Despite of Table 1 suggesting a shrinking number of cyclic short-squared
binary words when the length grows, we will show

Theorem 3. The function c(n) is unbounded:

lim sup
n→∞

c(n) =∞ .

Consider now a uniform morphism ξ : {0, 1, 2}∗ → {0, 1}∗ that takes cyclic
ternary words to cyclic short-squared binary words. Such a morphism can be
found by composing β from Section 3 with α from Section 2 below. Let u and v
be two different cyclic square-free ternary words of the same length. Then ξ(u)
and ξ(v) are two different cyclic short-squared binary words of the same length.
Hence, Theorem 3 follows from the next result. Let c3(n) denote the number of
cyclically square-free ternary Lyndon words of length n w.r.t. some fixed order.

Theorem 4. The function c3(n) is unbounded:

lim sup
n→∞

c3(n) =∞ .

This result will be proved in Section 3. We also state the following conjecture
that is stronger than Theorem 3.

Conjecture 1. There exists an integer N such that c(n) > 0 for all n ≥ N .

2 On Cyclic Binary Words with Short Squares

The following theorem is proven in this section.

Theorem 5. There are arbitrarily long cyclically short-squared binary words.

Before we prove Theorem 5 let us recall a morphism that maps square-free
ternary words to short-squared binary words.

Let α : {0, 1, 2}∗ → {0, 1}∗ be the morphism defined by

α(0) = A := 13031202101203130210 ,

α(1) = B := 1303101203130210120310 ,

α(2) = C := 13031202101203101302101202 .



We notice in passing that these words are short-squared, and the words A
and C are cyclically short-squared, but B is not. Indeed, B has a conjugate
100010111000101100011100101 which has the long square (10001011)2 as its
prefix.

The following result was shown in [5].

Theorem 6. Let w ∈ {0, 1, 2}∗. Then w is a square-free ternary word if and
only if α(w) is a short-squared binary word.

We now turn to the proof of the announced result.

Proof (of Theorem 5). Let then w be a cyclically square-free ternary word
provided by Theorem 2, and consider the binary word α(w). By Theorem 6,
α(w) is short-squared. The claim follows when α(w) is shown to be cyclically
short-squared. Assume, on the contrary, that α(w) has a conjugate v that is not
short-squared. Without loss of generality, we can assume that v has a square as
a suffix, say

v = su2 ,

where u2 is a shortest possible square in the conjugates of α(w). One easily
checks from the α images of words of length at most two that |u| ≥ 3 (see also
the comment above Theorem 6). Since w is cyclically square-free, it follows that
v 6= α(u) for all conjugates u of w.

Denote ∆ = {A,B,C}. We have the following marking property of 1303:

1303 occurs only as a prefix in A, B and C.

Let z be a shortest prefix of v, say v = zt, such that the conjugate tz is in ∆∗.
In particular, there exists an X ∈ ∆ such that X = yz for some y.

Since u2 is not a factor of the conjugate tz, we must have |s| < |z|, say z = sz′.
Therefore, u2 = z′t = z′x′y for some word x′. However, the marking property
and |u| ≥ 3 implies that |u| > |y| and, hence,

u = z′xy and X = ysz′

for some prefix x of a word in ∆∗. Now tz = xyz′xyz ∈ ∆∗ which ends with the
word X = yz. It follows that xyz′x ∈ ∆∗, i.e., x occurs as a suffix and a prefix
in ∆∗. This implies that x ∈ ∆∗ by the marking property. Hence also for the
middle part yz′ ∈ ∆∗. Since yz′ is shorter than X, it follows that yz′ ∈ ∆. Now
both yz′ and ysz′ are in ∆. This would imply that |s| = 3 or 6; however there is
no solution for these parameters in ∆. (The length of the longest common prefix,
rep. suffix, of two different words of ∆ is 18, resp. 4.) ut

3 On the Number of Cyclic Square-Free Words

A morphism is called (cyclic) square-free whenever the image of any (cyclic)
square-free word is itself (cyclic) square-free. In this section we will construct a



set of uniform cyclic square-free morphisms on {0, 1, 2}∗ such that an arbitrary
number of cyclic square-free words of the same length can be generated.

We start from certain square-free factors taken from an infinite square-
free word in order to find substitutions that preserve square-freeness. Then
we introduce several markers that allow us to both ensure cyclic square-freeness
and the construction of arbitrarily many different substitutions without sacrificing
the preservation of square-freeness.

Thue gave in [8] the following morphism ϑ on {0, 1, 2}∗ which generates the
infinite Thue word t when iterated starting in 0. Consider

ϑ(0) = 012 , ϑ(1) = 02 , ϑ(2) = 1

which gives

t = lim
k→∞

ϑk(0) = 012021012102012021020121012021012102012 · · · (1)

where we point out three underlined factors of t which will be used further below.
It is well-known that t is square-free. We will take factors of t as building blocks
for the morphisms (γn)n∈N. The following morphism η : {0, 1, 2}∗ → {0, 1}∗
maps t to an overlap-free binary word [6], the so called Thue-Morse word,

η(0) = 011 , η(1) = 01 , η(2) = 0 .

A word is called overlap-free if it has no overlapping factors, i.e., if no factor of
the form awawa occurs where a is a letter and w is a (possibly empty) word. In
particular the words in the following set do not occur in t:

Tno = {010 , 212 , 1021 , 1201} . (2)

Indeed, η(010) = 01101011 which contains the overlap 10101. Assume that
contrary to the claim 212 occurs in t. Then it must be preceded and succeeded
by 0 otherwise t is not square-free. But, η(02120) = 0110010011 contains the
overlap 1001001; a contradiction. If 1021 occurs in t, then it must be preceded
by 2 and succeeded by 0 by the previous arguments. But, then t contains the
square 210210; a contradiction. A similar argument holds for the word 1201.

So far, we have identified in Tno square-free words that do not occur in t.
They will serve as markers in the proof of Theorem 4 below. Let us now turn to
factors of t that we can use as building blocks for the morphisms (γn)n∈N.

Iterating ϑ gives

ϑ(0) = 012

ϑ2(0) = 012021

ϑ3(0) = 012021012102

ϑ4(0) = 012021012102012021020121
...



and

ϑ(1) = 02 ϑ(2) = 1

ϑ2(1) = 0121 ϑ2(2) = 02

ϑ3(1) = 01202102 and ϑ3(2) = 0121

ϑ4(1) = 0120210121020121 ϑ4(2) = 01202102
...

...

Consider the words ϑ4(0) and ϑ4(1) and ϑ4(2) that start with 012021 and that all
have an occurrence in t followed by 0120. Indeed, ϑ6(0) is a prefix of t implying
ϑ6(0) = ϑ4(012021) = ϑ4(0)ϑ4(1)ϑ4(2)ϑ4(0)ϑ4(2)ϑ4(1).

Let δ be a morphism on {0, 1, 2}∗ defined by

δ(0) = (012)−1ϑ4(0)012 = 021012102012021020121012 ,

δ(1) = (012)−1ϑ4(1)012 = 0210121020121012 ,

δ(2) = (012)−1ϑ4(2)012 = 02102012 .

We have

Claim 1. The δ-image of each factor of t occurs itself in t followed by 021.

Indeed, let w be a factor of t, then ϑ(w), and hence, ϑ4(w) is a factor of t. There-
fore, (012)−1ϑ4(w) is a factor of t which proves the claim since (012)−1ϑ4(wa)
occurs in t, for some letter a such that wa occurs in t, and 012 ≤p ϑ

4(a).
Consider the factors 0201210 and 0120210 and 0121020 of t as marked in (1).

Note that these factors are of the same length and have the same number of
occurrences of 0, 1, and 2, respectively.

Let us define the following uniform morphism β on {0, 1, 2}∗ where the length
of the images of letters is |β(0)| = 122:

β(0) = δ(0201210)01
β(1) = δ(0120210)01
β(2) = δ(0121020)01

Claim 2. The images β(i) are cyclic square-free for all 0 ≤ i ≤ 2.

Proof. The claim can be easily proven by inspection or a computer test. However,
we give an alternative proof here for illustrating some arguments also used later
below.

By Claim 1 the prefix β(i)1−1 of β(i) is a factor of t for all 0 ≤ i ≤ 2. The
words β(i) end with 1201 which is in the set Tno of forbidden factors of t. It
follows that the words β(i) are square-free. It is also straightforward to verify
that β(i) are cyclic square-free. Indeed, any cyclic square x2 must contain the
last letter 1 of β(i). The case where |x| < 6 is easily checked by hand. Note that
1β(i)1−1 begins with 1021 and β(i) ends with 1201. Hence, if |x| ≥ 6 then x



contains 1021 or 1201. But 1021, 1201 ∈ Tno and therefore they occur at most
once in any conjugate of β(i) which contradicts that x2 occurs in a conjugate
of β(i). This concludes the proof of Claim 2.

Let π be any permutation on {0, 1, 2}. Then we define the following morphisms

βπ(i) = β(π(i))

for all 0 ≤ i ≤ 2. Before we show that every βπ is cyclic square-free, we recall the
following theorem by Thue [8]; see [1] for a slightly improved version.

Theorem 7. A morphism α is square-free if the following two conditions are
satisfied:

(1) α(w) is square-free whenever u is square-free and |u| ≤ 3 and
(2) α(a) is not a proper factor of α(b) for any letters a and b.

In order to show that the constructed morphisms are cyclic square-free we
state the following result.

Proposition 1. A morphism α is cyclic square-free if the following two condi-
tions are satisfied:

(1) α is square-free and
(2) α(a) is cyclic square-free for all letters a.

Proof. Let w(i) denote ith letter of the word w. Consider a cyclic square-free
word w of length n and suppose, contrary to the claim, that α(w) is not
cyclic square-free. Let x2 be a shortest square in α(w). Then x2 occurs ei-
ther in w(i)w(i+1) · · ·w(n)w(1) · · ·w(i−1) or in w(i)w(i+1) · · ·w(n)w(1) · · ·w(i−1)w(i)

for some i. Both of these words are square-free if w is cyclic square-free, except
if n = 1; a contradiction in any case. ut

It is now straightforward to establish the cyclic square-freeness of any βπ
which implies Theorem 4.

Lemma 1. Let π be any permutation on {0, 1, 2}. Then βπ is a cyclic square-free
morphism.

Proof. Let w(i) denote ith letter of the word w.
We begin by showing that βπ is square-free. By Theorem 7 the square-freeness

of βπ can be checked by hand. However, this is cumbersome and therefore we give
an alternative proof without the use of Theorem 7. Suppose contrary to the claim
that βπ(w) contains a square x2 where w is square-free. Surely, x2 does not occur
in βπ(a) for any letter a by Claim 2. Note that 1201021 occurs in βπ(w) only at a
point where two βπ images of letters are concatenated. Assume that |x| ≥ 6; the
smaller cases can be easily checked. Then, again as in Claim 2, x contains 1201
or 1021. Both 1021 and 1201 mark the beginnings and ends of the βπ images of
letters, and hence, βπ is injective. Let u ∈ {1021, 1201} be such that u occurs in



x. Suppose u = 1201, the other case follows analogous reasons. Then either u
occurs in the beginning or end of x and the injectivity of βπ gives a contradiction
on the square-freeness of w, or x = yuβπ(w(j))βπ(w(j+1)) · · ·βπ(w(j+r))z where
1 < j < |w| − r and −1 ≤ r < |w|/2 and |y| = |z| = 59 and zyu = βπ(w(j+r+1)).
Note that for any two different letters a and b we have that the suffixes of length
61 of βπ(a) and βπ(b) differ. Therefore, yu determines the image βπ(w(j−1)) to
equal to βπ(w(j+r+1)). But, now we get a contradiction since w(j−1)w(j) · · ·w(j+r)

forms a square in w. Therefore, βπ is square-free.
Claim 2 and Proposition 1 conclude the proof.

Now, Theorem 4 follows.

Theorem 4. The function c3(n) is unbounded:

lim sup
n→∞

c3(n) =∞ .

Indeed, the image of the cyclic square-free word 021 under βπ gives a different
cyclic square-free word for any permutation π by Lemma 1. Each of these cyclic
square-free words starts with 021, and hence, gives six new cyclic-square-free
words (one for each βπ). This process can be arbitrarily often iterated. The
uniformness of βπ ensures that the images of a word are of the same length for
each π. The number of different cyclic square-free words after k iterations equals
6k and they are of length 3 · 122k.

Remark 2. We mention here shortly another way to prove Theorem 4. Let T be
an infinite set {t0, t1, . . . tn, . . .} of triples of different square-free words of the
same length such that the length of those words does not decrease as the index i
increases.

It shall be noted that the arguments of Claim 2 and Lemma 1 also imply that
for any triple t = (u0, u1, u2) of T of different square-free words of some length
m and for any permutation π we have that

γt(i) = 0212βπ(ui)

is a uniform cyclic square-free morphism. Indeed, that βπ(ui) is square-free
follows from Lemma 1 and the square-freeness of ui, and the prefix 0212 serves
as a marker that makes γt injective.

Since T exists, we get a sequence (γti)n∈N of uniform cyclic square-free mor-
phisms which also imply Theorem 4. Indeed, in order to construct k-many cyclic
square-free words of the same length one may consider the set {γt1 , γt2 , . . . , γtk}
and the least common multiple m of the length mj of the words in tj for all
1 ≤ j ≤ k. Then {γmj/m

tj (0) | 1 ≤ j ≤ k} gives a set of cyclic square-free words of
length m of the required size k.

References

1. D. R. Bean, A. Ehrenfeucht, and G. F. McNulty. Avoidable patterns in strings of
symbols. Pacific J. Math., 85(2):261–294, 1979.



2. J. D. Currie. There are ternary circular square-free words of length n for n ≥ 18.
Electron. J. Combin., 9(1):Note 10, 7 pp. (electronic), 2002.

3. R. C. Entringer, D. E. Jackson, and J. A. Schatz. On nonrepetitive sequences. J.
Combin. Theory, Ser. A, 16:159–164, 1974.

4. A. S. Fraenkel and J. Simpson. How many squares must a binary sequence contain?
Electronic J. Combin., 2(#R2 ( electronic)), 1995.

5. T. Harju and D. Nowotka. Binary words with few squares. Bull. EATCS, 89:164–166,
2006.

6. M. Lothaire. Combinatorics on Words, volume 17 of Encyclopedia of Mathematics.
Addison-Wesley, Reading, MA, 1983. Reprinted in the Cambridge Mathematical
Library, Cambridge Univ. Press, 1997.

7. N. Rampersad, J. Shallit, and Wang M.-w. Avoiding large squares in infinite binary
words. Theoret. Comput. Sci., 339, 2005.
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