Prolongation of H_{2} photoproduction by immobilized, sulfur-limited Chlamydomonas reinhardtii cultures

Tatyana V. Laurinavichene ${ }^{\text {a }}$, Sergey N. Kosourov ${ }^{\text {a,b }}$, Maria L. Ghirardi ${ }^{\text {b }}$, Michael Seibert ${ }^{\text {b,* }}$, Anatoly A. Tsygankov ${ }^{\text {a }}$
${ }^{\text {a }}$ Institute of Basic Biological Problems RAS, Pushchino, Moscow Region 142290, Russia
${ }^{\mathrm{b}}$ National Renewable Energy Laboratory Golden, CO 80401 USA

Received 5 September 2007; received in revised form 27 November 2007; accepted 7 January 2008

Abstract

Two approaches to prolong the duration of hydrogen production by immobilized, sulfur-limited Chlamydomonas reinhardtii cells are examined. The results demonstrate that continuous H_{2} photoproduction can occur for at least 90 days under constant flow of TAP medium containing micromolar sulfate concentrations. Furthermore, it is also possible to prolong the duration of H_{2} production by cycling immobilized cells between minus and plus sulfate conditions.

© 2008 Elsevier B.V. All rights reserved.
Keywords: Hydrogen production; Algae; Chlamydomonas reinhardtii; Immobilized cells; Sulfur deprivation; Limiting sulfur concentrations; Cyclic sulfur additions

Hydrogen production can be achieved by a number of different renewable technologies, including photobiological water-splitting processes (Prince and Kheshgi, 2005; Esper et al., 2006). The current major limitation on the use of microalgae for commercial H_{2} production is the high sensitivity of algal hydrogenases to O_{2} (Ghirardi et al., 1997), an obligatory byproduct of water splitting. Progress was reported by Melis et al. (2000), who partially inactivated the photosynthetic O_{2} evolution process by depriving the algal growth medium of sulfate nutrients. This method allowed for volumetric amounts of H_{2} production and has been further optimized in suspension cultures (Kosourov et al., 2002; Laurinavichene et al., 2004; Kruse et al., 2005). A recent, promising optimization approach has involved algal cell immobilization on a glass fiber matrix, which resulted in increased productivity per reactor volume and prolongation of the H_{2}-production phase (Laurinavichene et al., 2006); however, the cultures were exposed to only one cycle of sulfur deprivation. We report here that H_{2} production in immobilized

[^0]cells under sulfur-deprived conditions can be extended by (a) continuously flowing medium containing limiting amounts of sulfate or (b) cycling the cells between minus and plus sulfate conditions.

The non-motile Chlamydomonas reinhardtii mutant, CC1036 pf18 mt+, was grown, immobilized on fiber glass, and placed in a rectangular PhBR (160 ml volume) as described before (Laurinavichene et al., 2006). Hydrogen was produced by continuously flowing ($10 \mathrm{ml} \mathrm{h}^{-1}$) TAP medium containing $10-20 \mu \mathrm{M}$ sulfate through the PhBR or by periodic sulfate re-additions (argon was also flowed through the PhBR). The latter was accomplished either by 1-2 days of medium flow with $60-100 \mu \mathrm{M}$ sulfate at $10-30 \mathrm{ml} \mathrm{h}^{-1}$ or by rapid medium exchanges.

Decreasing the sulfate concentration to $20 \mu \mathrm{M}$ in the flow medium 2 days after the start of the experiment resulted in an initial increase in the rate of H_{2} photoproduction to a maximum of $11 \mathrm{ml} \mathrm{d}^{-1}$ per PhBR up to days $8-9$, when the rate decreased to about $4-6 \mathrm{ml} \mathrm{d}^{-1}$ (Fig. 1). On day 16, the sulfate concentration in the flow medium was decreased to $10 \mu \mathrm{M}$. This change did not further affect the rate of H_{2} production, which maintained a fairly constant level of around $6 \mathrm{ml} \mathrm{d}^{-1}$ before gradually decreasing toward the end of the experiment. Thus, the continuous presence

Fig. 1. Continuous H_{2} photoproduction by immobilized Chlamydomonas reinhardtii cells. At the start of the experiment (day 0), the PhBR was operated under continuous flow of TAP $+200 \mu \mathrm{M}$ sulfate medium. On the 2 nd day, the concentration of sulfate was decreased to $20 \mu \mathrm{M}$, and the argon flow rate was set at $500 \mathrm{ml} \mathrm{h}^{-1}$. From the 16th day on, the sulfate concentration was further decreased to $10 \mu \mathrm{M}$. The experiment shown in the figure was replicated three times. The two experiments not presented also exhibited an initial peak in the rate data at 10 ± 4 days but were only kept running for a total of 42 and 60 days (the 60-day experiment produced over two times the H_{2} compared to that shown in the figure). H_{2} production rates (\bigcirc); accumulated H_{2} gas produced in the photobioreactor (\bigcirc).
of small amounts of sulfate increased the duration of continuous H_{2} production from 30 (Laurinavichene et al., 2006) to at least 90 days.

In Fig. 2 sulfate was added to the flow medium (downward arrows) at, respectively, days $9,17,23$ and 26 of the process. The time at which sulfate was re-added was prompted by a

Fig. 2. Changes in the H_{2}-production rates measured during cycles of minus sulfate and plus sulfate. On days $1-4$, the PhBR was operated under TAP $+60 \mu \mathrm{M}$ sulfate medium flowing at $10 \mathrm{ml} \mathrm{h}^{-1}$. On the 5 th day, the medium was changed to TAP minus sulfate also at a flow rate of $10 \mathrm{ml} \mathrm{h}^{-1}$. The argon flow rate was set at $540 \mathrm{ml} \mathrm{h}^{-1}$. Times during which sulfate was included in the flow buffer are indicated in the figure as periods between the downward and upward arrows. Sulfate was added as follows-days $9-11: 60 \mu \mathrm{M}$ at a flow rate of $10 \mathrm{ml} \mathrm{h}^{-1}$; days $17-18: 100 \mu \mathrm{M}$ at a flow rate of $30 \mathrm{ml} \mathrm{h}^{-1}$; day $23: 200 \mu \mathrm{M}$ for 1 h (rapid medium change); day $26: 200 \mu \mathrm{M}$ for 3 h (rapid medium change). The entire experiment was replicated four other times, but different concentrations of sulfate were flowed for different amounts of time. In every case oscillations in the rates of H_{2} production resulting from periodic additions of sulfate were observed similar to those reported in this figure.
decrease in the rate of H_{2} photoproduction to about 60-80\% of the preceding maximum. Sulfate was re-added at concentrations of $60-200 \mu \mathrm{M}$ (medium flow rates of either 10 or $30 \mathrm{ml} \mathrm{h}^{-1}$ for periods of 2 days) or by quick ($1-3 \mathrm{~h}$) medium replacement procedures. The results demonstrate that sulfur re-additions do not immediately stop H_{2}-production activity, which in fact continues to decrease slowly for about another $2-3$ days after the re-addition is completed (up arrows). At the end of this period, the rates started to increase again, and reached a maximum value after about two more days, which was somewhat lower than the preceding maximum. Thus, periodic additions of sulfate are able to restore H_{2}-production activity of the cultures, in a much simpler way than with suspension cultures. Additional experiments will be necessary to identify a protocol that will optimize the process for both methods presented here. Heterogeneity in cell concentration throughout the matrix, examined earlier by measuring light penetration in different parts of the matrix (Laurinavichene et al., 2006), is an important factor decreasing the rate of H_{2} production. Variability of the photochemical activity of PSII (measured as described in Antal et al., 2003) is not only a function of sulfur re-addition but also a function of location along the photobioreactor where the measurements were taken (data not shown). The degree of physiological heterogeneity might depend on (a) the properties of the glass matrix itself, which is inevitably deformed during the course of preliminary handling, (b) nonequivalent conditions for green algal cell binding in different parts of matrix during pre-immobilization, and particularly, (c) inadequate mixing of the input medium inside the PhBR . Thus, methods for homogeneous immobilization must be examined.

The immobilization work reported here provides some cause for optimism. The duration of continuous H_{2} production from algae can be prolonged with low sulfate concentration by a factor of at least three compared to the batch system described in our previous immobilization paper (Laurinavichene et al., 2006). It is also possible to recycle the immobilized system by sulfur re-additions as has been shown in suspension cultures (Ghirardi et al., 2000) with the potential for significant process cost reduction.

Acknowledgments

This work was supported in part by Basic Program \#7 RAS, Russia (TL, AT, and SK); and by the Hydrogen, Fuel Cells, and Infrastructure Technologies Program, EERE, US Department of Energy (MLG and MS). TL, AT, and SK also acknowledge support under an NREL subcontract (ACL-4-33097-01).

References

Antal, T.K., Krendeleva, T.E., Laurinavichene, T.V., Makarova, V.V., Ghirardi, M.L., Rubin, A.B., Tsygankov, A.A., Seibert, M., 2003. The dependence of algal H_{2} production on photosystem II and O_{2} consumption activities in sulfur-deprived Chlamydomonas reinhardtii cells. Biochim. Biophys. Acta 1607, 153-160.

Esper, B., Badura, A., Rögner, M., 2006. Photosynthesis as a power supply for (bio-) hydrogen production. Trends Plant Sci. 11, 543-549.
Ghirardi, M.L., Togasaki, R.K., Seibert, M., 1997. Oxygen sensitivity of algal H_{2}-production. Appl. Biochem. Biotechnol. 63-65, 141151.

Ghirardi, M.L., Zhang, L., Lee, J.W., Flynn, T., Seibert, M., Greenbaum, E., Melis, A., 2000. Microalgae: a green source of renewable hydrogen. Trends Biotechnol. 18, 506-511.
Kosourov, S., Tsygankov, A., Seibert, M., Ghirardi, M.L., 2002. Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: effects of culture parameters. Biotechnol. Bioeng. 78, 731-740.
Kruse, O., Rupprecht, J., Bader, K.P., Thomas-Hall, S., Schenk, P.M., Finazzi, G., Hankamer, B., 2005. Improved photobiological H_{2} production in engineered green algal cells. J. Biol. Chem. 280, 34170-34177.

Laurinavichene, T., Tolstygina, I., Tsygankov, A., 2004. The effect of light intensity on hydrogen production by sulfur-deprived Chlamydomonas reinhardtii. J. Biotechnol. 114, 143-151.

Laurinavichene, T., Fedorov, A., Ghirardi, M.L., Seibert, M., Tsygankov, A., 2006. Demonstration of sustained hydrogen photoproduction by immobilized, sulfur-deprived Chlamydomonas reinhardtii cells. Int. J. Hydrogen Energy 31, 659-667.
Melis, A., Zhang, L., Forestier, M., Ghirardi, M.L., Seibert, M., 2000. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol. 122, 127-135.
Prince, R.C., Kheshgi, H.S., 2005. The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Crit. Rev. Microbiol. 31, 19-31.

[^0]: Abbreviations: Chl, total chlorophyll (a and b); PhBR, photobioreactor; PSII, photosystem II; TAP, Tris-acetate-phosphate medium.

 * Corresponding author. Tel.: +1 303384 6279; fax: +1 3033846150.

 E-mail address: mike_seibert @ nrel.gov (M. Seibert).

