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The detection limit (DL) of an analytical method determines the range 
of its applicability. For ion selective electrodes (ISE) used in 
potentiometric measurements, this parameter can vary by several orders 
of magnitude depending on the inner solution concentrations or the time 
of measurement. The detection limit of ISE can be predicted using the 
Nernst-Planck-Poisson model (NPP), as a general approach to the 
description of the time-dependent electro-diffusion processes. To find 
the optimal parameters, we need to formulate the inverse electro-
diffusion problem. In this work, we combine the Nernst-Planck-Poisson 
model with the Hierarchical Genetic Strategy with real number 
encoding (HGS-FP). We use the HGS-FP method to approximate inner 
solution concentrations as well as the measuring time that provide a 
linear dependence of the membrane potential over the widest 
concentration range. We show that the HGS-FP method allows us to 
find the solution of the inverse problem. The presented calculations 
show a great future potential of the NPP method combined with the 
HGS-FP strategy. 

 
Introduction 

 
Ion Selective Electrodes (ISE) 
 

ISEs are potentiometric sensors very commonly used in chemical analysis especially 
in the area of clinical and environmental applications. The most import parameters of ISE 
are the selectivity coefficient (Kij) and detection limit (L) (1) 

Detection limit of ISEs can be engineered to vary by several orders of magnitude 
depending on the inner solution concentrations (2) or the time of measurement (3). 
 

Nernst-Planck-Poisson Model (NPP) 
 

There are many models describing the response of ISEs. They differ in generality and 
idealization level. So far the Nernst-Planck-Poisson (NPP) is the most general (1). 

The application of the NPP model to membrane electrochemistry was presented in a 
seminal paper (4). The authors developed an efficient finite difference scheme, totally 
implicit in time. The resulting set of non-linear algebraic equations was solved using the 
Newton-Raphson method. 
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An approach, based upon this idea and dedicated to the general description of ISE 
behaviour, was later developed (3, 5-7). 

The first extension of the NPP model for a two layer system was presented in (8). The 
first NPP model implementation where the method of lines (MOL) was used was 
presented in (9, 10). Later on, MOL extensions of the NPP model for an arbitrary number 
of layers were developed and implemented in C++ (11) or in MathCad (3) and Matlab 
(12) scripts. 
 
NPP Short Description 
 

The Nernst-Planck-Poisson model is an initial-boundary value problem that for one 
dimension is given by the set of equations given below. The system consists of n (2 in 
this particular case) layers, one representing the diffusion layer of aqueous solution and 
one that represents the membrane. Each layer has its own thickness dj and dielectric 
permittivity εj, is flat and isotropic, so it can be considered as a continuous environment 
inside which the change in space and time of concentration of r components 

j
ic  and of 

electric field Ej takes place. This system is presented in Fig. 1. 
 

 
Figure 1. Scheme of a 2-layer system between two solutions. ciL and ciR is the 
concentration of the i-th component in the solution on the left and right side, respectively. 

 
The ionic fluxes are expressed by Nernst-Planck equation: 

( , )
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where: ( ),j
iJ t x  is the flux of the i-th ion in the j-th layer, 

j
iD  is the constant self 

diffusion coefficient of the i-th ion in the j-th layer, ( ),j
ic t x  is the concentration of i-th 

ion in the j-th layer, iz  the valence of i-th ion, and ( ),jE t x  is electric field in the j-th 
layer. F  is Faraday constant, R  and T  denote the gas constant and absolute temperature. 

The evolution of the electric field is represented by the Poisson equation: 
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where: 
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denotes the charge density. The mass conservation law describes the evolution of 
concentrations: 

( ) ( ), ,j j
i ic t x J t x

t x
∂ ∂

= −
∂ ∂

     [4] 

In this work, the Poisson equation is replaced by its equivalent form, the total current 
equation(13): 

 ( ) ( ) ( ),
,

i

jn
j j

i
i

E t x
I t F z J t x

t
ε

∂
= +

∂∑      [5] 

The values of fluxes at the boundaries (the interface λj between layers αj and αj+1) are 
calculated using modified Chang-Jaffe conditions (14) in the form: 

 
1 1( , ) ( , ) ( , ) ( , )

j j

j j j j
i j i j i i j i i jJ t J t k c t k c tλ λλ λ λ λ+ += = −    [6] 

where ,
j ji ik kλ λ are the first order heterogeneous rate constants used to describe the 

interfacial kinetics. The jik λ  constant corresponds to the ion i, which moves from layer αj 

to αj+1, and jik λ - to the ion i, which moves from αj+1 to αj. 
The boundary points x = λj are specific points special points which have 

a neighbourhood in two different layers. Because of this fact two values of each ion 

concentration, ( ( , )j
i jc tλ  and

1( , )j
i jc tλ+

) as well as two of electrical field values 

( ( , )j
jE tλ  and ( , )j

jE tλ ), should be considered. 
 

Initial concentrations fulfil the electro-neutrality condition and, consequently, there is 
no initial space charge in the membrane (7): 

( ) ( ) ( ) [ ]0, ,       0, 0           0,j j j
i M ic x c x E x for x d= = ∈    [7] 

The membrane potential, φ (t), is obviously given by:  

  ( ) ( ) ( )
1 2

1

1 2

0

, ,
d d

d

t E t x dx E t x dxφ = − −∫ ∫      [8] 

 
Detection Limit – Inverse Problem 

 
It is well known from the abundant literature data that a gradual decrease in the 

concentration of the main ion in the inner solution of a plastic membrane ISE leads to the 
improvement (decrease) of the detection limit. However, when the concentration of the 
main ion in the inner solution becomes too low, a super-nernstian behaviour, due to the 
over-compensation of the trans-membrane fluxes of ions, is observed. This phenomenon 
is presented in Fig. 2. All the physical properties of ions and other parameters used in 
simulations are given in Appendix A. 
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Figure 2. Influence of the concentration of the preferred ion in the inner solution (15) 
 

If the measuring time is too short (t<300s) to allow steady-state to be achieved, it will 
affect the potential, i.e. the shape of the calibration curve. An ISE with a preferred ion 
concentration in the internal solution equal to 10-6M (ISE6) was used to illustrate this 
phenomenon (Fig. 3).  
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Figure 3. Influence of measuring time for the ISE with preferred ion inner solution 
concentration 10-10 M (15). 
 

At first, with increasing measuring times (t), the detection limit decreases. A further 
increase of t causes the appearance of a super-nernstian section, or jump, in the 
calibration curve. The longer the measuring time becomes, the more this jump moves 
toward higher concentrations, thus increasing the detection limit 

The cases described above are of the "normal problem" type ("What is the value of 
the detection limit if we have a certain set of parameters?"). Equally, or maybe more, 
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important is the so called “inverse problem” namely "Which set of parameters produces 
the best detection limit?” 

The answer to this problem is illustrated in Fig. 4 which shows contour plot of the 
detection limit vs. the measurement time and the concentration of the preferred ion in the 
inner solution (DL-t-[I]). 
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Figure 4. The time-concentration-detection limit map obtained using the NPP mode l(15). 

 
The concentration of I is plotted on the x-axis, the measuring time on the y-axis and 

the resulting value of the detection limit on the z-axis. The detection limit is depicted 
with the help of different colour intensities; the darker the colour, the lower the detection 
limit. The local/global minima can be read from the plot. 

In order to obtain such contour plots, the measuring time was increased from 5 to 500 
seconds with an interval of 5s, and the ion concentration in the inner solution was varied 
over a range of ten orders of magnitude (10-2-10-12 M) with an interval of one order of 
magnitude. For each calibration curve, 11 points were calculated. Thus, 100x12 = 1200 
calibration curves and altogether 13 200 points had to be calculated. The total calculation 
time was 15 days. This is a "brute force" approach that requires a lot of computational 
effort, which is exponentially proportional to the number of investigated parameters. 

 
Hierarchical Genetic Strategy with Real Number Encoding (HGS-FP) (16). 

 
The genetic algorithms are highly efficient in solving problems with many optima 

(17, 18). The HGS introduced in 2000 (19) is one such efficient algorithm. The ability of 
this algorithm to find optima (maxima or minima) efficiently, i.e. at low computational 
cost, is due to the concurrent search inside the optimization space by small populations of 
individuals (solutions). The creation of these populations is governed by genetic 
processes with low complexity. HGS was further generalized (16) by introduction of the 
floating point encoding (HGS-FP). The real number encoding used in HGS-FP is much 
more efficient than the normally used binary encodings (0,1 codes) due to the 
conservation of the natural (topological) space where all variables are real numbers. 

The HGS accuracy and low computational cost for multimodal benchmarks was 
shown in (16) (20) 
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The main engine of the HGS-FP is running a set of evolutionary processes (21, 22). 
The algorithm in each evolving step creates a new population which is searched for 
optima. 

Let [ , ]N Na bℑ = ⊂ R  denote the fitness function domain (goal function domain). N is 
the dimension of the problem (number of variables) and a, b are the left and right 
boundaries of the search space (goal function domain or optimization space), 
respectively. The two genetic operators for floating point representation are given by: 

1) crossover (generation of a new individual from two already existing ones): 
 

1 2 1( , )( ) , 1,...,i i i iY X mean X X i Nσ= + − =N  [9] 
2) mutation (generation of a  new individual from  the already existing one): 

 
1 ( (0, )) , 1,...,i i iY X i Nσ= + =N  [10] 

where: iY  is a new individual generated by crossover or mutation, 
1

iX  and 
2

iX  are 
parents individuals, ( , )mean σN  denotes the normally distributed random variable, 
where mean  is a random number and σ  its variation.  

For a new population to be produced, the classical roulette selection is used. The 
probability, Pr( )X , of obtaining an individual X  from the population P , ( X P∈ ) is: 

 
( )Pr( ) ,

( )
Y P

fitness XX X P
fitness Y

∈

= ∀ ∈
∑  [11] 

where: ( )fitness X  is an estimation of the adaptation of the X–th individual (the value of 
goal function) 

As an example, the results obtained with HGS-FP method for the 2-dimensional test 
function (23) ( 2 2( , ) cos(5 ) cos(5 ) , , [ 0,7;0,7]f x y x y x y x yπ π= + + + ∈ − ) are shown in 
Fig. 5. This function is generally accepted test function used to compare and evaluate 
different algorithms. The objective was to find all of the function maxima. The dots in the 
Fig. 5 denote the position ( ,i ix y ) of each of the individuals in the search space.  
 

 
Figure 5. The results of searching for maxima for a standard test function with the HGS-
FP method. Dots show the positions of individuals in the search space. The red, green and 
blue colours denote the individuals of the first, second and third populations, respectively. 
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The correctness of the HGS-FP strategy was also checked in the case of the 20-

dimensional test functions (16). In all cases the HGS-FP found the global extreme more 
quickly and accurately than, like Simple Genetic Algorithm (SGA), Genitor and many 
others (16, 20). 
 

Results and Discussion 
 

Applying the HGS-FP strategy in order to find the optimal parameters we 
reformulated the NPP problem into the optimization one (finding the extreme). The 
problem is to find the concentration of the preferred ion in the inner solution and the 
measuring time providing the best detection limit of an ISE.  

Figure 6 shows the time-concentration-detection limit map obtained using the NPP 
model (see Fig. 4) with overlaid points obtained with NPP-HGS method 

The NPP-HGS algorithm was able to find all the minima on the map. It needed to 
calculate only 214 calibration curves in order to achieve this task. The computational 
effort was around 6 times smaller compared with the “brute force” approach. 
 

0 5 10 15

0

200

400

600

log CR = 6.9
t = 52.14 [s]

log CR = 5.95
t = 170.4 [s]

 1st level
 2nd level
 3rd level

log CR = 8.68
t = 24.88 [s]

log CR = 9
t = 24.281 [s]

log c
IS

tim
e,

 s
 

6.000
6.385
6.769
7.154
7.538
7.923
8.308
8.692
9.077
9.462
9.846
10.23
10.62
11.00

log CR = 5.66
t = 435.21 [s]

 
Figure 6. Time concentration map with all the individuals (points) of HGS. The red, 
green and blue colours denote the individuals of the first, second and third populations, 
respectively. 
 

To further demonstrate the effectiveness of NPP-HGS method the optimization of 
three parameters (concentration of the primary ion in the inner solution, measuring time, 
and diffusion coefficient of the preferred ion in the membrane) was made. The results are 
presented in Fig. 7. 
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Figure 7. The individuals (points) of HGS in (D1,c1R, time) space. The red, green and blue 
colours denote the individuals of the first, second and third populations, respectively. 
 

They show that the lowest detection limit is obtained in two regions:  
1) ( ) 5.11log −<DLc when the diffusion coefficient of the preferred ion is in the range 

11101.5 −⋅ to 11109.5 −⋅ m2/s, its internal solution is in the range 9108.8 −⋅ to 9106.9 −⋅ M and 
measuring time is around 27 s. 
2) ( ) 5.10log −<DLc when the diffusion coefficient of the preferred ion is in the range 

11100.1 −⋅ to 11102.1 −⋅ m2/s, its internal solution is in the range 6102.2 −⋅ to 6104.2 −⋅ M and 
measuring time is around 482 s. 

This result would be very unfeasible to obtain by the brute force approach. We would 
have to calculate 12 000 calibration curves (132 000 points) which would take around 
150 days. The computational effort using NPP-HGS method was around 20 times smaller 
compared with the “brute force” approach. The parallel version of HGS allows for further 
decrease of the computation time (22). 
 

Conclusions 
 

The NPP model is the most rigorous, complete and general from all models 
introduced to describe open-circuit membrane potential. The NPP allows direct prediction 
of the response of ion-selective membrane electrodes over space and time, including the 
propagation of selectivity and detection limit over time. As the least arbitral model from 
all used so far it makes possible solving inverse problems with a given target. 

We showed how to combine the Hierarchical Genetic Strategy with real number 
encoding (HGS-FP) and the Nernst-Planck-Poisson (NPP) model. The NPP-HGS method 
was used to solve the inverse problem i.e. to find the optimal parameters for achieving the 
best detection limit of an ISE. The results in the case of two parameter optimization were 
compared with those obtained by the brute force approach. The agreement was good and 
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the computational effort much smaller for the NPP-HGS method. The gain in 
computational time was even bigger in the case of three parameter optimization. The 
presented results show potential of HGS-FP strategy. 

The HGS-NPP method could be used for solving problems related to the analytical 
applications of ISEs. In particular, the advantages of time dependent selectivity and/or 
detection limit can be exploited, disadvantages of poor response can be diagnosed and 
avoided or optimized design of ISEs can be undertaken. 
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Appendix A. Simulation data 

 
Data used in simulations are: thickness of the layers: 1 100d =  and 2 200d = μm, 

absolute temperature: 298.16 K. Properties of ions are given in the below table 
 
Table 1. The ion properties used in simulations: 

 Ion 1 Iont 2 Iont 3 Ion 4 
1 2 1
iD m s−⎡ ⎤⋅⎣ ⎦  91.98 10−⋅  92.01 10−⋅  91.36 10−⋅  91.0 10−⋅  
2 2 1
iD m s−⎡ ⎤⋅⎣ ⎦  111.98 10−⋅  112.01 10−⋅  111.36 10−⋅  111.0 10−⋅  

iz  1 -1 1 -1 
[ ]Lc M  1 1 10-7 0 

[ ]1
Mc M  0.01 0.01 10-7 0 

[ ]2
Mc M  0.0001 0 0 0.0001 

[ ]Rc M  optimized 100.1 100 0 

0

1
ik m sλ

−⎡ ⎤⋅⎣ ⎦  100 100 100 0 

1

1
ik m sλ

−⎡ ⎤⋅⎣ ⎦  100 0.001 510−  0 

2

1
ik m sλ

−⎡ ⎤⋅⎣ ⎦  100 100 100 0 

0

1
ik m sλ

−⎡ ⎤⋅⎣ ⎦  100 100 100 0 

1

1
ik m sλ

−⎡ ⎤⋅⎣ ⎦  100 100 100 0 

2

1
ik m sλ

−⎡ ⎤⋅⎣ ⎦  100 0.001 510−  0 
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