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Abstract: The real-time recognition of pain level is required to perform an accurate pain assessment
of patients in the intensive care unit, infants, and other subjects who may not be able to communicate
verbally or even express the sensation of pain. Facial expression is a key pain-related behavior that
may unlock the answer to an objective pain measurement tool. In this work, a machine learning-based
pain level classification system using data collected from facial electromyograms (EMG) is presented.
The dataset was acquired from part of the BioVid Heat Pain database to evaluate facial expression
from an EMG corrugator and EMG zygomaticus and an EMG signal processing and data analysis flow
is adapted for continuous pain estimation. The extracted pain-associated facial electromyography
(fEMG) features classification is performed by K-nearest neighbor (KNN) by choosing the value of k
which depends on the nonlinear models. The presentation of the accuracy estimation is performed,
and considerable growth in classification accuracy is noticed when the subject matter from the
features is omitted from the analysis. The ML algorithm for the classification of the amount of pain
experienced by patients could deliver valuable evidence for health care providers and aid treatment
assessment. The proposed classification algorithm has achieved a 99.4% accuracy for classifying the
pain tolerance level from the baseline (P0 versus P4) without the influence of a subject bias. Moreover,
the result on the classification accuracy clearly shows the relevance of the proposed approach.

Keywords: facial electromyograms (fEMG); machine learning; classification; pain intensity

1. Introduction

Facial EMG is an EMG method that measures and analyses the electrical activities of
muscle movement. It senses and amplifies the small electrical impulses that are produced
by muscle strings when they expand and contract on the face. By mounting electrodes on
the muscle surface, the action amount can be measured.

The application of EMG signal processing is multifold. It can be used to diagnose
neuromuscular disease, control artificial organs, and identify pain [1–3]. Studies in [4]
depict an automated pain assessment using wearables and fog computing. The system is
composed of sensors that collect EMG signals, a micro-controller for pre-processing and
signal transmission, and fog and cloud computing that run machine-learning algorithms
for pain assessment. Fog and cloud computing help in reducing the latency, addressing
the security, and reducing the power consumption. Further details are provided in many
published and reported studies [4,5]. In e-health, particularly in remote pain assessment,
the fog layer is responsible for processing and detecting the pain level per patient or per
hospital [4].
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Studies in the BioVid Heat Pain database collection have also shown how the measured
signal is associated with negative or positive emotions [6]. Researchers have discussed how
outward emotional activities such as smiles [7,8] are used in supplementary compound
circumstances and how the smiling action may be hard to understand, as smiles can be
sarcastic, smirking, and wry as well as expressions of real optimistic sensation.

A patient who suffers from pain can illustrate integral emotional reactions that are
measured by facial muscle movement. It is then necessary to make associations that, with
the benefit of fEMG measurement of the EMG corrugator and EMG zygomaticus, grow the
strength of interpreting emotional facial expressions [9,10]. For this analysis, volunteers
were offered a series of stimuli that had been tested earlier to activate a series of precise
emotions, while fEMG, respiration, and skin conductance (GSR) were recorded. According
to the corresponding survey, the fEMG on the zygomaticus is not always related to the
creation of positive emotions [10]. Similarly, a negative association was investigated with
corrugator movement by the indication of the frowning muscle that included a positive
stimulus. In general, it is common to associate the action of the zygomaticus joint with
happiness and the corrugator with negative effectiveness [11]; therefore, the corrugator
muscle, which is related to pain actions, was also analyzed [10]. The author considered a
nonlinear and non-stationary Empirical Mode Decomposition (EMD) technique to evaluate
an EMG dataset in applying the EMG signal stimulated through pain. The classification of
‘no pain’ was determined using the linear SVM algorithm on the most valuable extracted
features. Here, we demonstrated that the muscle activation of the corrugator was able to
support the self-reported pain more than the rest of the facial muscle activation.

Diverse phases of heat pain were confirmed using bio-signals such as EMG, ECG,
GSR, EEG, etc. [10–12]; additionally, the transformation of the facial appearance was noted
using video signals during various pain levels [3]. Studies have been done to show the
association between pain and the actions of facial muscles. Ref. [13] has revealed that the
movements of seriously sick people’s facial expressions through pain are analogous to
those of fit people. The combined facial activity of pain has been reported to be associated
with the facial expression of the brow, lip, nose, mouth, and eye movements [14,15]. At
present, doctors depend on the tentative patient’s explanation of pain as it relates to a rating
scale [16] and another rating scale for ’no pain’ and ‘worst possible pain’ [17] to determine
the level, location, and intensity of the pain. Another study [18] has revealed that the EMG
and machine vision data with similar performance and results support machine vision as a
suitable tool for assessing the effects of facial reactions. Video signals have been used for
classifying significant pain versus no significant pain in children [19]. As detailed in [20],
for anesthetized patients, bioimpedance spectroscopy is the most appropriate method for
pain assessment [21]. Nevertheless, these approaches for pain assessment do not work
adequately when the patient can respond, therefore, self-determining pain recognition
schemes are extremely significant and real-time schemes for the acknowledgment of the
level of pain through facial expressions are needed. Facial expression is an ideal representa-
tion of feeling that can demonstrate the subject’s emotional situation and alteration of the
sentimental conditions during a progression of stimulation [22,23]. Pain is associated with
actions that can vary the mutual biopotential stages of ECG, EEG, EMG, etc.; the activities
and assessment of pain can correspond with the studies of the distinctive bio-signal. Our
previous paper [24] shows a result obtained from testing our prototype module [25,26] in
an experimental setting using volunteers for facial emotion identification and detection
of fEMG movement (frowning and smiling). We learned that, to relate it to the practice of
pain assessment based on emotion and the recognition of fEMG signals, fEMG signals need
to be used with a clinically approved database for a better pain prediction model and to
associate the fEMG and pain assessment.

Nowadays, there is rising attention from medical professionals and academic studies
on the bio-signal analysis of pain assessments using the Internet of Medical Things (IoMT).
As mentioned, heat pain realized by using bio-signals was analyzed through facial expres-
sions collected by employing video signals on several pain steps [10]. Nevertheless, pain
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assessments using video need an intricate and expensive system. We support a research-
based, cost-effective way of pain assessment that can be obtained from the facial expression
of EMG signals from zygomaticus and corrugator muscles. The advanced methodology
is applied for real-time pattern recognition on surface electromyography (sEMG) using
a non-invasive methodology for computing the electrical action of facial muscles with
electrodes sited on the skin [27]. The changes in facial expression detection upon diverse
pain levels through signal collection from the zygomaticus and corrugator muscles have
gained tremendous positive results. Individuals were subjected to painful heat stimuli
to modify the biopotential level of the facial EMG muscle to note with practical accuracy
the pain level (P4) concerning the ‘no pain’ and ‘pain’ state [28]. The benefit of an sEMG
methodology is the capacity to distinguish facial muscle movement that can be impossible
and imperceptible to viewers [27]. Though, a current assessment [29] initiates a unique
study with the application of sEMG to recognize facial pain expressions accurately. Addi-
tionally, the proposed relationship between pain intensity and muscle strain has continued
unverified. Automatic pain assessments for seriously sick patients were studied to assess
the sEMG signal possibility for pain detection in comparison to healthy individuals. The
goal was to observe the facial muscles’ expressions to be able to distinguish pain and
consider the certainty of pain strength [2].

The investigation of facial expression to assess pain intensity was to propose an
opportunity to specify the need for health care and medicine for patients who are in the
Intensive Care Unit (ICU) and for those who are unable to communicate their level of pain.
The analysis of facial expressions to measure pain strength delivers a way to regulate the
essential pain medicine in patients that lack communication ability. The use of EMG is a
promising method for continuous pain monitoring in assisting daily living. In this article,
we propose the EMG analysis of the zygomaticus and the corrugator for investigating facial
expressions as pain monitoring systems using EMGs with machine learning algorithms.
Still, there is limited research considering the ML challenge of real-time pain recognition.
Up to the present, to the best of our knowledge, there are no studies that compare the signal
from subject bias analysis and identify limitations in the classification of the signals on the
level of pain. Further, we will discuss and study whether emotional activity due to pain
can be detected in patients based on the activity of two facial muscles, the zygomaticus and
corrugator. Our findings represent the classification of pain intensity based on a selected
optimal feature that can reveal the pain level for emotional reactions measured by fEMG:

• We analyzed the data without subject matter to approve the EMG signal accuracy. To
the best of our knowledge, this approach has not been done before.

• We compared our result with different K values, i.e., using accuracy versus the number
of K for K-NN classifiers (Fine, Medium, and Coarse), and the Medium K-NN has
shown a shown a better accuracy than the others.

• We showed, using real data to improve the results through our selected analysis, that
an EMG signal can classify the level of pain very accurately.

• We suggest that our method may establish the relevance of the pain assessment for
health care facilities and improve approaches for proper treatment.

The rest of the paper is organized as follows: Section 2 presents the background mate-
rials and methods used to collect the fEMG data, analysis, and identification techniques.
This section also describes the prototype developed by the author for the fEMG signal
acquisition and analysis methodology and further discusses the BioVid Heat Pain Database
that is used as the benchmark for our contributions of fEMG signal analysis and feature
extraction classification algorithms. The experimental results and implementation analysis
are presented in Section 3. Finally, Section 4 summarizes the key result and steps for further
research in this work.

2. Materials and Methods

Researchers from the academic and commercial sectors have used the characterization
of fEMG for emotional expressions for more than 30 years. The facial muscles, being
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responsible for raising the eyebrows and corners of the mouth, are measured simultaneously
with the EMG during experiments. Detection and analysis include the work of detecting the
facial emotions of the person and analyzing this data to note how it is different from their
normal face. In our previous paper [28–30], the collection of the sEMG dataset was done
on an experimental setup in our lab. The data is composed of the facial muscle movement
that is formed by the emotion of the facial expressions by the insertion of our developed
biosensor prototype. The prototype is a mixed single chip consisting of an analog front end
(AFE), a successive approximation register analog to digital converter (ADC), and a digital
core. The vital part of the bioelectric SoC is that EOG, EMG, ECG, and EEG signals can be
effectively recorded through this. The collected data is evaluated and analyzed in this work
in a MATLAB [31] environment by signal processing tools and methods. An algorithm for
a signal processing of raw EMG signals to be converted into the signals that represent the
intensity of facial movements has also been developed.

The fEMG collection method uses one electrode per muscle that has multi-channel
sEMG measurement capacity on wireless devices, providing a constant recording for at
least a couple of hours. To acquire EMG signals, the ADS1192 [32] Analog Front End
(AFE) from Texas Instruments was selected. This unit delivers real-time sampling, 16-bit,
delta-sigma (∆Σ) analog-to-digital converters (ADCs) with an in-built programmable gain
amplifier (PGA). The ADS1192 has a configurable gain from 1 to 12 and samples 2 channels
of sEMG signals at the same time at 500 samples per second with a resolution of 16 bits.
The ADS1192 is interfaced to the RTX4140 module via the SPI (Serial Peripheral Interface)
bus [30]. The SPI bus is boosted to deliver commands to the ADS1192 to be used for gain
adjustments, channel configuration, etc. The SPI bus is also assisted to obtain the renewed
data from the ADS1192, and the ADS1192 delivers available data for each channel such as
lead-off detection [30]. The ADS1192 manufacturer has a demonstration kit (ADS1192ECG-
FE) [32] which we used in our lab for the experiment. The board consists of test points
that were used to connect the SPI bus to our prototyping board, employing a jumper to
connect to the RTX4140 SPI ports using the provided docking station. The prototype also
includes a software package that can communicate with the application through UDP and
TCP protocols

In summary, we delivered a battery-powered Wi-Fi-based wearable IoT unit for the
assessment and control of patients’ bio-signal for their health control at any time and from
anywhere employing an IP-based network. We applied the device to monitor biomedical
signals and applicable techniques for the real-time feature selection and classifications
approach. In our previous paper, we showed the experimental result of the muscle activity
of the face which formed upon emotional expressions. The main task was to find a specific
classification technique for the collected facial sEMG signals. We also investigated an ML
algorithm as a suitable method for the recognition and classification of EMG signals using
the obtained facial EMG dataset. The SVM classifier was processed for the classification
of facial sEMG signals related to the pain intensity dataset. The result obtained from the
assessment effects and approaches showed that the pattern recognition and facial EMG
signal classification are based on emotional expression. Even though the classification
result is 99% [24] accurate using the SVM technique, the dataset we collected was not
clinically approved. It was based on the experimental procedure used in our lab. However,
the result shows that SVM is an effective classification technique for a dataset related to
facial emotion expression using experimental data. We need clinically approved data in
context for our proposed use of fEMG as a communication tool for healthcare services.

The publicly available and clinically verified datasets are strongly recommended
to be shared among researchers to accelerate progress in pain recognition research and
facilitate the comparison of competing approaches. A special thanks to the BioVid Heat
Pain database [28] group for being willing to share their clinically approved database of
biopotentials to advance an automated pain recognition system. The dataset contains
the painful heat stimuli of eighty-five participants under measured situations, and fEMG
signals are one of the collected signals. A total of 156 features were extracted from the
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mathematical groupings of amplitude, frequency, stationarity, entropy, linearity, variability,
and similarity. In this paper, we focus on the fEMG of the BioVid Heat Pain database for
use in pain assessment and pain detection by showing a significant improvement over the
current techniques. The dataset classification phases are described in the following sections:
data collection, data pre-processing, feature extraction, feature selection, and classification.

2.1. Benchmark Datasets

Our paper investigates the possibilities of acquiring and processing the fEMG signals
to extract the time-frequency domain signal intensity (by various filtering, rectification, and
similar techniques) for further measuring the sensitivity of the pain signals.

In this paper, we use the BioVid Heat Pain Database [6,28], where the study was con-
ducted by the ethics committee of the University of Ulm (Helmholtzstraße 20,
89081 Ulm, Germany). All contributors provided written informed consent to partici-
pate in the study. The experimental setup [27], that was used for pain elicitation on the right
arm. Before the data collection happened, each subject’s pain threshold was investigated.
These thresholds were applied as the temperatures for the lowest and highest pain levels
(T1 and T4, respectively) together with two additional intermediate levels (T2 and T3), thus
obtaining four pain levels. These temperatures were equally distributed as described in
their paper [26], between P1 and P4 and are not over 50.5 ◦C, and the baseline (no pain) was
32 ◦C. We used the bench band dataset for our experiment; the BioVid heat Pain dataset
collecting process is explained in detail [32] and indicated in Figure 1.
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Figure 1. Automatic pain assessment using fog computing paradigm.

2.1.1. Facial Expression Techniques

One of the ways to collect and analyze facial expressions is by tracking fEMG activities.
The signal can show the movement of facial muscles with electrodes placed on the surface
of the skin. There are two main facial muscles used for emotion recognition using fEMG:

• Corrugator muscle—causes the eyebrow wrinkle, forehead wrinkling, and mainly
expresses negative emotions such as pain.

• Zygomaticus muscle—located around the cheekbone and mouth corner and moves
the mouth up and out; naturally related positive emotions such as smiling.

Table 1 is discussing the benefits and limitations of fEMG:
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Table 1. Benefits and limitations of fEMG.

Benefits of fEMG Limitations of fEMG

It shows a process of nonstop
facial muscle movement.

Needs electrode or other means,
to measure the facial action.

It does not take much effort to measure the
activity in facial muscle.

It is composed of artifacts and electrical
interfaces.

There is no need for memory to store the
measured movement actions.

Analysis skills are needed for signal
processing.

2.1.2. Data Analysis

Our research also considered the fEMG from the EMG corrugator and EMG zygomati-
cus for the use of EMG to investigate and to characterize using the ML approach to qualify
the nonstop monitoring of patients in the health care center or ICU. The target task and
application of this paper is to focus on describing the method for the assessment of acute
pain which results in changes in the facial electrical activity of skeletal muscles as measured
by an EMG signal.

T2 =

(
P4 − P1

3

)
+ P1 (1)

P3 =

((
P4 − P1

3

)
× 2
)
+ P1 (2)

Part of the experimental sequence on which we evaluated the EMG signals were
initially filtered with a Butterworth bandpass filter (20–250 Hz). For further noise reduction,
a signal separation method (“decomposition analysis”) was subsequently applied [33].
Characteristics describing the amplitude, variability, stationarity, entropy, and frequency
characteristics of the respective signal were extracted from the processed signals [33]. The
database involved healthy people subjected to heat stimuli in four altered pain stages
(P1, P2, P3, and P4). The standard (no pain) was 32 ◦C. T1 is the threshold temperature
stage. The maximum temperature which was used for tolerance heat pain stimulus (T4) is
50.50 ◦C. The stage of the temperature was divided equally, and the middle-temperature
stage was calculated as Equations (1) and (2).

Every pain stage, including no pain, was applied 20 times, making 100 responses. Each
stimulus was applied for 4 s with pauses of 8–12 s between the stimuli. Bio-signals such
as Galvanic skin response (GSR), EMG, ECG, EEG, and video signals were also recorded
using a Nexus 32 amplifier [34]. However, there are many situations where webcam-based
facial expressions could not be collected. Therefore, our consideration focused on the
facial expression analysis as a tool for measuring pain from the EMG-corrugator and
EMG-zygomaticus for continuous pain estimation (Figure 2).

The optimal pain classification using fEMG signals is shown by applying the selected
fEMG features as the input, and the pain stage PA1–PA4 as the output for each EMG-
zygomaticus and EMG-corrugator, as illustrated in Figure 4.

2.2. Preprocessing

The use of EMG investigations to characterize has a different approach to qualifying
the nonstop monitoring of patients in the ICU. The target task and application of this paper
is to focus on describing the method for the assessment of acute pain which results in
changes in the facial electrical activity of skeletal muscles with the measurement of sEMG
signal.
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(c) labor setting, and (d) study procedure [27].

Figure 3 shows the fEMG signal with the corresponding applied level of heat stimuli.
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Figure 3. (a) Original EG signals resulting from the level of heat stimuli; (b) facial Expression of pain
tolerance according to the EMG-corrugator and EMG-zygomaticus for a continuous level of heat
stimuli pain by T1–T4 [34].

Alternatively, the activity of electromyography (EMG) signals, in particular of the
zygomatic and corrugator muscles, could provide information on pain intensity [12,35].
Part of the experimental sequence on which we evaluated the EMG signals were filtered
with a Butterworth bandpass filter (20–250 Hz). For further noise reduction, a signal sepa-
ration method (“decomposition analysis”) was subsequently applied [35]. Characteristics
describing the amplitude, variability, stationarity, entropy, and frequency characteristics of
the respective. The database involved healthy people and their processed signals became
extracted features that determined the amplitude, variability, stationarity, entropy, and fre-
quency characteristics of the respective signal. As described earlier, the filtered EMG signal
was processed with a Butterworth bandpass filter (20–250 Hz). A signal decomposition
method (“decomposition analysis”) was then applied to further reduce noise [33].
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Figure 5; describes the undertaken stages for the dataset classification stage.
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We were able to analyze the recorded EMG with pain signal by comparing the activa-
tion that occurred because of pain and the onset of the signal as determined by amplitude,
frequency content, and timing of the signal. We used the rectified fEMG that were recorded,
performed preprocessing steps to eliminate the dc onset, extracted the interfaces, and
processed them at a sampling rate of 512 Hz. The Butterworth filter of order 4 with cutoff
frequencies at 20–250 Hz was applied to the EMG signal for processing.

The Preprocessing of the EMG signal was already performed using these steps:

1. The the raw signal was visualized to quantify the noise intensity and the movement
that corresponded to the stimulation of the pain.

2. The EMG signals were filtered between 20–250 Hz using the Butterworth filter.
3. The level of pain was measured practically by heat using four pain thresholds (T1–T4)

with each 5.5 s “pain window” that corresponded to the base concerning the baseline
during the “non-pain window” (see Figure 2).

4. The eruptions of EMG activity are distinguished by using the Hilbert Spectrum [34].

2.3. Feature Extraction

The Time-domain of the sEMG features lies in four groups under the mathematical
specifications [36]:

• Calculations that depend on the amplitude amount of the sEMG signal, which consist
of features energy information of the signal (e.g., RMS) and other information of
the signal;

• The features include the frequency information (e.g., ZC and SSC) where a threshold
parameter needs to be predefined;

• Coefficients of the prediction model (e.g., AR);
• Features extracted from two adjacent or several segments of an sEMG signal (e.g., MAVS).

Moreover, frequency domain features are extracted from power spectral density. Time-
domain features are more commonly found in sEMG pattern recognition studies, and
studies revealed that the frequency domain features did not show better performance
compared to the time domain ones [36].

The considered EMG features are based according to the previous studies [28] which
tend to show high classification accuracy:

• APeak as amplitude peak of the EMG signal;
• ARMS as amplitude quadratic mean of the EMG signal;
• Vrange as variation width of the EMG signal;
• Vstd as standard deviation of the EMG signal;
• Fzc as the number of zero crossings of the EMG signal (frequency measurement);
• Ssd as standard deviation of EMG signal components (degree of stationary); and
• EShannon as the entropy of the EMG signal according to Shannon.

The features were extracted for each of the EMG signals, i.e., for the EMG -zygomaticus
and EMG-corrugator. Then, the features were independently standardized (z-transformation).

Further, as we mentioned earlier, the features were computed on the preprocessed
windows of 5.5 s. In this regard, there were a total of 159 extracted features to be evaluated;
Table 2 shows the feature list and their calculations.
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Table 2. EMG features and their description [29].

Signal Formula Description

IEMG IEMG =
N
∑

i=1
|xi|

Signal power estimator calculating the
summation of the absolute values of EMG
signals

VAR VAR = 1
N

N
∑

i=1
(xi − x)2 How far the numbers lie from the mean

MAV MAV = 1
N

N
∑

i=1
|xi|

Adding the absolute values of all the values
and dividing it by the length

Median Median value of the sequence

SSI SSI = 1
N

N
∑

i=1
(|xi|)2 Energy of EMG

MDV MDV = 1
L

L−1
∑

j=1

(
xj+1 − xj

) Mean value of the differential value of all
peak value of EMGs

RMS RMS =

√
1
N

N
∑

i=1
(|xi|)2

It is modeled as amplitude modulated
Gaussian random process whose RMS is
related to the constant force and
non-fatiguing contraction

WL WL =
N−1
∑

i=1
|xi+1 − xi|

It is the cumulative length of waveform. The
resultant values indicate a measure of
waveform amplitude, frequency, and
duration all within a single parameter

FMD FMD = 1
2

M
∑

i=1
PSDi

The frequency median splits the power
spectrum into two equals parts

FMN FMD = ∑M
i=1 fi PSDi

∑M
i=1 PSDi

The frequency mean

MFMD MFMD = 1
2

M
∑

i=1
Ai

Is the frequency at which the spectrum is
divided into two regions with equal
amplitude

MFMN MFMN = ∑M
i=1 fi Ai

∑M
i=1 Ai

Is the average of the frequency

The extracted features from the raw data are the input variables for the source to
distinguish the pattern and classifiers. The extracted features can show the advanced
information of the pattern in the feature space related to the raw data. Some of the features
extracted from the fEMG signal have been investigated because of facial expression and
emotional state recognition applications. We describe more details on the process of EMG
feature selection in the results section. The results from the sEMG feature comparison
were obtained according to the study [27] by setting a boundary on the number of features
obtained for the estimation of the pain strength. The statistical evaluation of the fEMG
features was manually estimated on the test periods P0–P4; the fEMG feature medians were
investigated, and a statistical comparison of the feature medians was performed.

In addition, for feature detection, from the time domain feature extraction, the mean
absolute value (MAV), number of zero-crossings (ZC), waveform length (WFL), number
of slope sign changes (SSC), root mean square (RMS), and the frequency domain feature
extraction auto-regression coefficients (AR) were considered. The features and their de-
scription [29] are for fEMG analysis. The individual feature was z transformed for the
normalization of the signals indicated, and the extracted feature from the study is available
at [37] after the raw dataset was preprocessed for signals.

2.4. Classification

The K-NN classification algorithm was chosen after testing several machine learners’
classifier algorithms. Among them, K-Nearest Neighbor, Neural Networks, SVM, and
Decision Trees were involved [37–39]. K-NN shows a promising approach and results for
the classification of the desired pain intensities since the classifier approach is based on
deciding and comparing new unknown testing data with training or baseline data. The k
Nearest Neighbor (KNN), is a supervised classifier that has a main parameter to obtain the
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cluster label of the data to find the distance of the data within the neighborhood data and
compare the distance, assign the clusters, and visualize the cluster points. This is done by
using the Euclidean distance calculation method or similar other methods. Equation (3)
shows the Euclidean distance between two points in n-dimensional space.

Euclidean distance(d) =
√
(x2 − x1)

2 + (y2 − y1)
2 (3)

The user defines the K-Means method to classify the given data set into K clusters,
i.e., the value of K (number of clusters). The clustering algorithm minimizes the sum of
squared distances between all points and the cluster center.

The calculation or the approach we used to determine the k function or decision
rules for the K-NN algorithm is the majority voting scheme [40,41] which deepens on
the category) or class that has one vote for each instance on the class set of the sample
K-neighborhood samples. In that case, the new data sample is classified according to
the highest number of votes in the class. This majority voting is more commonly used
because it is less sensitive to outliers in emotion classification. In this case, the K-NN
classification algorithm to classify the amount of pain intensity in patients could deliver
valuable evidence for health care providers and aid in treatment assessment. The analysis
had respective average performances of 99.4%. The figures show the actual dataset used
for the classification of the pain level and the result of the K-classifier.

2.4.1. FEMG Classification

In this work, we considered the BioVid Heat Pain database that includes EMG signals
of 159 features from 85 subjects for five levels of pain intensity. Each subject experienced
100 trials for each emotion. Therefore, the database is composed of a sum of 42,500 fEMG
signals for each zygomaticus and corrugator signal for 159 features. The resultant features
are grouped into a set of training and testing vectors for classifying the emotions using
EMG signals. The classification ability of a statistical feature set can be measured through
classification accuracy by averaging five times over a 5-fold cross-validation before the
classification. The extracted 159 features were subjected to statistical analyses by checking
and verification checks. The initial steps were to eliminate out-liners of the features that
include either zero or the static number for all conditions. Therefore, our evaluation is
based on the relationship between the pain threshold (0 vs. 1 vs. 2 vs. 3 vs. 4) and EMG
signal characteristics in Figure 6. Moreover, we noted that the amplitude features P2P
and the entropy feature EShannon were previously investigated as the features for accurate
classification of the pain intensity on both zygomaticus and corrugator signals by using the
K-NN classifier [42,43] We showed an improved method for better classification accuracy by
deploying the fEMG feature independent of the subject. The classification was performed
on the K-NN algorithm by choosing the value of k that depends on the majority voting.
One of the reasons for using K-NN is because it is less sensitive to outliers [44]. Further, the
presentation of the accuracy estimation has shown a considerable increase in classification
accuracy. In this paper, K = 10 delivers the higher classification value rate on record of the
pain level emotions related to other K values.
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Figure 6, shows The maximum classification rate 99.4% was obtained for the training;
however, in the same data analysis with the consideration of subject bias, the highest
accuracy of classification was 38.89%. The subject bias dataset has different categories
for male and female and age which helps the classification to obtain a desirable result.
The fact that male and female subjects do not experience the same emotional inducement
stimuli, and as are compared when they are similar in age, the range can make a significant
difference in the resulting circumstances.

2.4.2. Validation

The application of the ML algorithm to classify the level of pain in patients could
deliver valuable information and evidence for health care providers and aid treatment
assessment. In this work, the classification performance gives an average of 99.4% accuracy.
The process for the classifications is performed on the features that consist of the discrimina-
tion between the baseline and the pain tolerance level (P1 verse P4) independent of the out
subject bias. Three of the K-NN classifiers: Fine, Medium, and Coarse K-NN are considered
for the classification. The procedure also later included the Principal Component Analysis
(PCA) algorithm to reduce the computing and aid faster characterization. The classification
analysis results demonstrate the relevance of the pain assessment for health care facilities
and approaches. Figure 7 shows the K-NN classifiers (K-NN Fine, Medium, and Coarse
K-NN) that are compared on 8501 instants and the accuracy of the 5-fold cross-validations
techniques of the obtained classification accuracy.
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3. Results

The feature selection algorithm was achieved by the preselection of all the extracted
159 features using statistical analyses, checking, and verification checks. The initial step
was to eliminate outliners of the features that included either a zero or a static number for
all conditions. The relationship among pain thresholds (0 vs. 1 vs. 2 vs. 3 vs. 4) and EMG
signal characteristics (APeak, ARMS, Vrange, Vstd, Fzc, Ssd, and EShannon) for the zygomaticus
verse corrugator of the experimental results with the experimental conclusions is illustrated
in Figure 8.
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Figure 8. Selected feature classification comparison of the zygomaticus versus the corrugator
EMG signals.

We proved that the signal characteristics (APeak, ARMS, Vrange, Vstd, Fzc, Ssd, and
EShannon) for the zygomaticus verse corrugator with the experimental results that the
corrugator had a better performance than the zygomaticus for classification of pain.
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In addition, part of the confusion matrix and ROC are demonstrated in Figure 9.
In this paper, K = 10 delivers a higher classification value from the record of the pain
level emotions related to other K values. The maximum classification rate of 99.4% was
determined on pain levels using the K-NN classifier. The confusion Matrices and the ROC
curve for classification performance can also be accessed by the area under the ROC curve
(AUC) as seen in Figure 9. The analysis is discussed according to the performance which
was dependent on the accuracy of the classification. The best performance was obtained
from the K-NN classifiers: Fine, Medium, and Coarse K-NN is shown in Figure 10.
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and the red dot is ‘Current classifiers’.
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The aim of this work is to propose a solution that can be implemented with IoT. Deep
learning algorithms require more computing power compared with KNN. Implementation
of KNN on tiny devices has been demonstrated in many published reports [44,45].



Electronics 2022, 11, 1671 15 of 17

Further, concerning the training dataset scope, the result of classification depends on
the training dataset size. The result was better using a bigger training dataset. Still, the
number K has an impact on the result; with a higher K, the the classification performance
result will be reduced. By reducing the training dataset in a specific ratio, some classifiers
can still perform well, however, some cannot. Figure 10 gives the overall accuracy variation
by changing the number of k of three classifiers mentioned earlier, the K-NN classifiers (K-
NN Fine, Medium, and Coarse K-NN). With these variations, the Medium K-NN classifiers
can still perform very well. Therefore, in this experiment, the K-NN classifier should be
the most appropriate classifier, which means limited data can have higher recognition
accuracy with different evaluated values of K: 1 to 10, and 100; K = 10 eventually provided
the highest classification accuracy as seen in Figure 5. We noted that the highest accuracies
were at K = 10 and after that, there was a decreasing trend in accuracy. Based on that
information, the appropriate value for K = 10.

4. Conclusions

A novel methodology utilizing the facial expression associated with pain amplified
on the corrugator and zygomaticus EMG on the classification analysis independent of
a subject bias was performed. Features based on the comparisons resulting from the
zygomaticus and corrugator were extremely applicable. It was shown that the facial
zygomaticus EMG actions associated more with no pain or neutral which was especially
notable. Considering prior research studies on the corrugator and zygomaticus, the EMG
is capable of recognizing negative and positive reactions separately. Hence, the corrugator
and zygomaticus EMGs can be used to measure indicators of pain and no pain expressive
conditions. Furthermore, the corrugator is good for indicating when there is pain or no
pain, however, the zygomaticus is vague with no pain, neutral, and negative emotions. In
our case, facial EMGs and individual emotional involvement were related and exhibited in
the features enough to discriminate between the baseline and the pain tolerance level (P0
versus P4) independent of the subject bias.

Future studies using fEMG over the corrugator and zygomaticus should be united with
the emotional state to identify more intricate feelings. Personal situations of behavior and
gender should also be considered. Finally, from the collected BioVid Heat Pain database, the
fEMG signal of the corrugator and zygomaticus can successfully distinguish pain and no
pain excitements. Additionally, fEMG actions are meaningfully associated with individual
emotional practices. However, we relied on the applications of real-time classification
methods for identifying emotional states mainly by simplifying their identification in
people in daily routine but not having the same sort of incapacities in healthcare.
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