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Pollen exposure weakens the immunity against certain seasonal
respiratory viruses by diminishing the antiviral interferon re-
sponse. Here we investigate whether the same applies to the
pandemic severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), which is sensitive to antiviral interferons, if infec-
tion waves coincide with high airborne pollen concentrations. Our
original hypothesis was that more airborne pollen would lead to
increases in infection rates. To examine this, we performed a cross-
sectional and longitudinal data analysis on SARS-CoV-2 infection,
airborne pollen, and meteorological factors. Our dataset is the
most comprehensive, largest possible worldwide from 130 sta-
tions, across 31 countries and five continents. To explicitly inves-
tigate the effects of social contact, we additionally considered
population density of each study area, as well as lockdown effects,
in all possible combinations: without any lockdown, with mixed
lockdown−no lockdown regime, and under complete lockdown.
We found that airborne pollen, sometimes in synergy with humid-
ity and temperature, explained, on average, 44% of the infection
rate variability. Infection rates increased after higher pollen con-
centrations most frequently during the four previous days. With-
out lockdown, an increase of pollen abundance by 100 pollen/m3

resulted in a 4% average increase of infection rates. Lockdown
halved infection rates under similar pollen concentrations. As
there can be no preventive measures against airborne pollen ex-
posure, we suggest wide dissemination of pollen−virus coexpo-
sure dire effect information to encourage high-risk individuals
to wear particle filter masks during high springtime pollen
concentrations.

COVID-19 | pollen | viral infection | aerobiology

Progress of COVID-19 is presumed to be often asymptomatic
or associated with only mild to moderate symptoms, mainly

fever and dry cough (1). However, in susceptible individuals,
such as elderly persons with metabolic, cardiovascular, and/or
pulmonary comorbidities (2), COVID-19 can exacerbate to se-
vere pneumonia requiring oxygen supplementation and intensive
care treatment. COVID-19−associated deaths are mainly due to
severe acute respiratory syndrome (SARS), cytokine storm
(3–5), or disseminated coagulopathy leading to multiorgan fail-
ure. According to World Health Organization (WHO) estimates,
the overall case fatality rate is 3.4% (6, 7).
SARS coronavirus 2 (SARS-CoV-2), the causative of COVID-

19, is a novel member of the Betacoronaviridae family with
presumed zoonotic origin (8). It is a positive-stranded RNA virus
with a genome size of ∼30 kb (9). SARS-CoV, the agent of the

SARS epidemic of 2002 and its closest related sibling, is highly
susceptible to antiviral interferons (IFNs) and has developed
immune suppression mechanisms on the basis of antagonizing
host cell IFNs. The accessory proteins encoded by the genes
ORF3b, ORF6, M, and N of SARS-CoV-2 are highly homolo-
gous to their SARS-CoV and Middle East respiratory syndrome
counterparts, which are type I IFN antagonists (10). Another set
of accessory proteins, encoded by the genes E, ORF3a, and
ORF8b and common to both SARS-CoV and SARS-CoV-2, are
activators of the NLRP3 inflammasome (11, 12) and have up to
95% interstrain amino acid sequence identity (9). Excessive
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Coexposure to airborne pollen enhances susceptibility to re-
spiratory viral infections, regardless of the allergy status. We
hypothesized this could be also true for SARS-CoV-2 infections.
To investigate this, we tested for relationships between
SARS-CoV-2 infection rates and pollen concentrations, along
with humidity, temperature, population density, and lockdown
effects. Our unique dataset derives from 130 sites in 31 coun-
tries and across five continents. We found that pollen, some-
times in synergy with humidity and temperature, explained, on
average, 44% of the infection rate variability. Lockdown
halved infection rates under similar pollen concentrations. As
we cannot completely avoid pollen exposure, we suggest wide
dissemination of pollen−virus coexposure information to en-
courage high-risk individuals to wear particle filter masks
during high springtime pollen concentrations.

Author contributions: A.D. and S.G. designed research; A.D., S.G., M.S., V.S., F.K., D.B.,
M.P.P., V.L.-W., S.K., L.H.Z., L.B., L.M., M.d.M.T., C.-1.s.g., and C.T.-H. performed research;
A.D., S.G., M.S., and V.S. contributed analytic tools; A.D., S.G., M.S., V.S., F.K., D.B., and
M.P.P. analyzed data; A.D., S.G., and M.S. wrote the paper; A.D. coordinated the
study; A.D., S.G., F.K., D.B., M.P.P., and S.K. curated data; V.L.-W., L.H.Z., L.B., L.M.,
M.d.M.T., C.-1.s.g., and C.T.-H. provided airborne pollen data; and V.L.-W., L.H.Z., L.B.,
L.M., M.d.M.T., and C.-1.s.g. curated airborne pollen data.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution License 4.0
(CC BY).
1To whom correspondence may be addressed. Email: thanos.damialis@tum.de.
2A.D. and S.G. contributed equally to this work.
3A complete list of the COVID-19/POLLEN study group can be found in SI Appendix.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.2019034118/-/DCSupplemental.

Published March 8, 2021.

PNAS 2021 Vol. 118 No. 12 e2019034118 https://doi.org/10.1073/pnas.2019034118 | 1 of 10

EN
V
IR
O
N
M
EN

TA
L

SC
IE
N
CE

S

D
ow

nl
oa

de
d 

at
 K

IR
JA

S
T

O
/L

IB
R

 M
E

D
. o

n 
M

ar
ch

 1
5,

 2
02

1 

https://orcid.org/0000-0003-2917-5667
https://orcid.org/0000-0001-9542-5746
https://orcid.org/0000-0003-1192-2214
https://orcid.org/0000-0002-6220-1620
https://orcid.org/0000-0002-6090-4920
https://orcid.org/0000-0001-7424-8963
https://orcid.org/0000-0002-6571-5205
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2019034118&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:thanos.damialis@tum.de
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2019034118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2019034118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2019034118/-/DCSupplemental
https://doi.org/10.1073/pnas.2019034118
https://doi.org/10.1073/pnas.2019034118


inflammasome activation and subsequent pyroptosis is the un-
derlying mechanism for the IL-1β dominated cytokine storm
associated with SARS-CoV mediated multiorgan failure (4, 13).
A recent, large cohort study from South Korea reported that

asthma exacerbations in school-aged children are associated with
coexposure to multiple seasonal environmental factors, that is,
ozone, rhinovirus, and tree pollen (14). Another study recently
reported that pollen grains of various plant taxa release as yet
unidentified compounds that down-modulate the production of
antiviral λ-IFNs in respiratory epithelial cells, and provided ev-
idence from human and mouse models that pollen exposure
leads to enhanced susceptibility to infection with two different
respiratory viruses, human rhinovirus and respiratory syncytial
virus (15). Also, some pollen types enhance the release of the IL-
1 family cytokines IL-1β, IL-18, and IL-33 from epithelial cells
in vitro, indicating a role for pollen in NLRP3 inflammasome
activation (16, 17). Thus, two mechanisms of the innate immune
response, inflammasome activation and antiviral IFN response,
appear to be modulated toward the same direction by pollen and
SARS-CoV-2.
The first COVID-19 cases were officially reported for Euro-

pean countries at the middle to end of January 2020. On 12
March, the WHO officially announced the onset of a global
COVID-19 pandemic, with over 33% of the world´s nations
reporting local spreading of the infection. Around the same time,
a large-scale warm spell across the bulk of the Northern Hemi-
sphere initiated the first large seasonal peak in tree pollen
emissions. The synchronized timing of the spreading of the in-
fection and the higher pollen concentrations, in combination
with the recently found potential of pollen to enhance suscep-
tibility for respiratory viruses, prompted us to analyze whether,
under certain weather conditions, a positive correlation between
SARS-CoV-2 infections and airborne pollen could be observed.
We therefore collected airborne pollen data from most pollen

monitoring stations operating at that time, from a total of 31
countries and from all inhabited continents, including both the
Northern and Southern Hemispheres, and investigated for rela-
tionships between daily pollen concentrations and SARS-CoV-2
infection rates, also taking meteorological and sociodemographic
factors into account.
Our results reveal that the simultaneous exposure to SARS-CoV-2

(via other infected human carriers) and airborne pollen may,
under “favorable” weather conditions, promote viral infection.
While it is meaningful to inform the public about this risk, the
wording should be extremely well considered to avoid misun-
derstandings and to not cause panic. On the other hand, wide
dissemination of the potential dire effects of virus−pollen
coexposure ought to be urgently and clearly communicated: As
we cannot avoid airborne pollen exposure, high-risk groups
have to be informed to wear particle filter masks during the
pollen season, especially in springtime.

Results
To examine the potential effects of pollen−virus coexposure, a
large cross-sectional and longitudinal study was set up, based on
248 airborne pollen monitoring sites, from 31 countries in all
inhabited continents across the globe (Fig. 1). The initiative
started when, during 10 to 14 March 2020, a warm weather ep-
isode brought about higher airborne pollen concentrations
across the Northern Hemisphere (denoted as larger circles in
Fig. 2), which was evident in mainland Europe mainly on 12
March. This coincided with high SARS-CoV-2 infection rates
(denoted with darker color circles in Fig. 2) characteristic for the
early exponential infection phase.
The median day of onset of COVID-19 exponential phase (for

definition, see Materials and Methods) was 13 March 2020
(Fig. 3), which corresponds, on average, to a cumulative pollen
concentration of 1,201 grains/m3 up to 4 d before (daily average:

Fig. 1. Map of pollen monitoring stations. Green dots represent the 248 monitoring stations from which data were obtained. (A) Overview of all stations
worldwide. (B) Zoom-in on all European stations.
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240 pollen/m3). On a cross-sectional design for all 80 regions
under study, it was found that the onset date of the exponential
phase per region positively and significantly correlated with the
cumulative amount of pollen up to 4 d before (P < 0.001, r =

0.25). Those regions mainly with lower pollen concentrations and
high human contact because of the carnival events in late Feb-
ruary, as well as with humid, colder continental climates (on
20–21 March), were categorized as outliers in Fig. 3.
On a cross-sectional approach, we investigated for differences

during the exponential infection phase between the infection
rates for all sites of the study, grouped into four categories: low
vs. high population density and low vs. high pollen concentra-
tions (Fig. 4). To isolate the genuine pollen effect, we elaborated
only intervals for all countries without any lockdown. The mean
and median of the infection rates were found to differ between
low- and high-pollen sites by ∼0.1 (low population density) and
0.3 (high population density); that is, a more pronounced pollen
effect was observed for the high-population density sites. The
extreme values revealed an even stronger signal: Regardless of
the population density, near-zero infection rates were observed
only in regions with low pollen levels. Conversely, the absolute
maximum infection rate was reached in the high-population vs.
high-pollen case (P < 0.01).
On a longitudinal setup and focusing on the geographically

large or climatically diverse countries, which contain the vast
majority of regions under study, we investigated for spatial
anomalies of the infection rates, which were correlated country-
wise with spatial anomalies of pollen concentrations. To elimi-
nate low-level statistical noise, very low pollen concentrations
(<50 pollen/m3) and regions sparsely populated (<100 inhabi-
tants/m2) were not included in the analysis. Only the before or no
lockdown time intervals were included in the analyses. It was
found that the anomaly correlation coefficient was positive for
all countries and significantly positive in six out of eight (Fig. 5).
The regression slopes show that the infection rate’s sensitivity to
pollen, on average, is 0.04 per 100 pollen/m3 (range: 0.03 to 0.25)
for the countries with significant correlations. Depending on the
region (note the different x axes values in Fig. 5), this corre-
sponds to 6 to 15% of the exceedance of the rate over zero. The
R2 values shown in Fig. 5 (including also nonsignificant rela-
tionships) illustrate that 10% of variability in the infection rate is
explained by its sensitivity to pollen fluctuations.
The pollen effect was proven strong, sometimes regardless of

the population density. Switzerland, as one of the countries with
the highest pollen concentrations across the world during the
exponential phase of the pandemic, serves as a case study to
illustrate the relative importance of the pollen effect, by com-
paring three cities located close to each other and with compa-
rable climates and population densities, but with different pollen
exposure (SI Appendix, Fig. S1).
To test the influence of other cofactors, environmental but

also human interaction related, we performed a per-country
longitudinal analysis (Fig. 6). Complementing the analysis and
results in Fig. 5, ridge regressions were conducted for all 31
countries and 130 regions under investigation. For those coun-
tries in which no lockdown had been implemented, or the
lockdown had started almost in parallel with the onset of the
exponential infection phase (<5 d difference), we could not
possibly consider the lockdown variable in the analysis. Despite
the significant and negative effect of lockdown in the majority of
countries for which we included it as dummy variable (11 out of
14 countries, in the mixed design with no lockdown−lockdown
regime), environmental cofactors were still significantly corre-
lated with increases in daily infection rates in 12/14 of cases (P <
0.05) (Fig. 6). Regardless of the exposure conditions, either with
or without a lockdown regime (Fig. 6), of the three environ-
mental factors examined here, pollen was significant in 10/21
countries, air temperature in 14/23, and relative humidity in 10/
23. All significant correlations of infection rates with environ-
mental factors (pollen, temperature, humidity) were, by rule,
positive, and those with lockdown and weekend, by rule, nega-
tive. The average lag effect of airborne pollen on daily infection

Fig. 2. Visualization of pollen concentrations and infection rates during a
warm spell during 10 to 14 March 2020. SARS-CoV-2 infection exponential
phase (higher infection rates denoted with darker circle color) coincided
with higher airborne pollen concentrations (larger circle diameter).
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rates was 4 d (using backward stepwise removal of independent
variables), which is consistent with the cross-sectional analyses
described above. Under an early lockdown design (lockdown
before or <5 d after the onset of the exponential infection
phase), pollen concentrations were still significantly and posi-
tively correlated with daily infection rates in 6/14 countries, and,
in 5/14 pollen, was the primary factor. Under a mixed lockdown
design (full exposure ≥ 5 d, then lockdown), lockdown was sig-
nificantly and negatively correlated with daily infection rates in
11/14 of cases, in 9/14 as the primary factor. Strikingly, even
under an early lockdown, the synergy of environmental factors
could explain, on average, 44% of the infection rate variability in
9 out of 14 countries (Fig. 6). It is worth mentioning that, of the
remaining countries with no significant relationships with air-
borne pollen abundances (or with other environmental factors as
well), 7 countries exhibited very low pollen concentrations during
the examined period, explicitly less than 5% of the averaged total
pollen load of all countries. These countries, by rule in the
Southern Hemisphere or in colder and humid continental cli-
mates (Fig. 6), most frequently did not correlate with any
environmental parameter at all.
We further investigated the lockdown effect, longitudinally,

among countries, and, cross-sectionally, in association with air-
borne pollen concentrations. Almost all countries had a lock-
down of some type, mostly a partial one. Only nine countries
adopted a strict lockdown from the beginning. Lockdown sig-
nificantly decreased the infection rates as compared to no
lockdown (P < 0.001) (Fig. 7A). A significant positive correlation
between daily infection rates and daily pollen concentrations was
observed under both lockdown and no-lockdown regimes (R2 =
0.02; P < 0.001). However, the magnitude of the lockdown effect
was such that, under comparable amounts of pollen, daily in-
fection rates were reduced to approximately half during lock-
down compared to full exposure: The association of infection
rates with pollen concentrations was still positive and significant
(note the different y axes in Fig. 7B).

Discussion
Our large-scale retrospective data analysis based on 80 individual
time series from 130 regions in 31 countries in all inhabited
continents across the globe (8,019 data points) enabled us to
reveal a robust and significant positive correlation between

SARS-CoV-2 infection rates and airborne pollen concentrations,
which was halved under lockdown. We managed to obtain pollen
data from the majority of all pollen monitoring stations world-
wide that were operative despite considerable spread of COVID-
19 infection rates already by that time, resulting in the most
comprehensive aerobiological dataset possible to conduct such
a study.
In the current pandemic situation, SARS-CoV-2 infection

spread is primarily and foremost dependent on person-to-person
interaction, which is mirrored by the observed, significant effect
of lockdown. The rapid kinetic of infection in the absence of
herd immunity is prone to mask any potential effect of envi-
ronmental cofactors that may exacerbate contact-dependent
mechanisms. The example of Switzerland shown in SI Appen-
dix, Fig. S1 highlights the major assumption made in the longi-
tudinal study: The cities should have similar weather conditions
and be similar from a sociodemographic standpoint. On the
opposite side of this case study, in the United States, these very
requirements were not upheld for the five sites tested (distance
between them exceeded 2,000 km, some were in maritime and
some in strongly continental climate, different states with dif-
ferent strategies regarding lockdown, mean income, and other
factors). This lack of homogenous conditions may easily explain
the strong scatter in the United States anomaly correlation chart.
The COVID-19 pandemic hit Europe and North America

during springtime, when rising air temperatures are associated
with increased social and outdoor activities, which, in turn,
means increased environmental exposure—to bioaerosols, pol-
lutants, or infected humans. Given the complexity of intertwined
environmental, social, and political cofactors, it is anticipated
that no clear signal may be observed unless it is tremendously
robust. Moreover, environmental exposures, whether climatic
factors, air pollutants, or pollen, often exert their effects at the
same time, and many of these factors are collinear, which com-
plicates the statistical analysis. Nonetheless, from all the coun-
tries that showed a significant correlation of the infection rate
with pollen, this correlation was always positive, which suggests
that the mechanism reported for pollen exposure on antiviral
immunity to rhinovirus (15) could also be influencing innate
immunity toward SARS-CoV-2. To verify this statement, we
conducted multiple tests to check for bias, including boot-
strapping and permutation tests. If, under this statistical noise,
we can still see such a signal, we may safely consider the results
robust enough, with our concerns being actually about whether
we potentially underestimate the magnitude of this effect.

Fig. 3. Bag plot depicting the date of onset of SARS-CoV-2 exponential
infection phase. Date of onset of the exponential infection phase (x axis)
across all sites versus the average pollen concentration of the previous 4 d
(y axis).

Fig. 4. SARS-CoV-2 infection rates are positively correlated with airborne
pollen. Mean infection rate in the exponential phase for sites with low
(<1,000 inhabitants/km2) and high (≥1,000 inhabitants/km2) population
density and for low (<250 pollen/m3) and high (>250 pollen/m3) average
pollen concentration during the 2 wk of near-constant infection rate. Only
the regions and time intervals with no lockdown were selected.
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Infections with endemic coronaviruses (strains OC43, HKU1,
229E, and NL63), as well as other frequent respiratory viruses,
such as respiratory syncytial virus and influenza A, peak in winter
or early spring; a general negative trend of air temperature on
these infections has been evidenced (18). Therefore, it is likely
that parameters like air temperature act, in the long term, as
confounding factors for the short-term positive effect of pollen
on infection rates. Also, while the anomaly correlation between
airborne pollen and infection rates was significantly positive, the
effect size was small, indicating that pollen is only one of a
number of environmental factors influencing SARS-CoV-2 in-
fection. However, if one considers that the study was conducted
marginally in the start of the pollen season in most regions, this
statement may be under dispute. Extending this study deeper
into the 2020 pollen season would not offer clearer information,
as we would have an even wider variety of data, with ceased
lockdown measures and opening borders and tourist activities
taking place almost up to the end of 2020.
When checking for additional environmental cofactors, in-

cluding human interaction indicators, an average of 4 d of lag

effect was found in increases in pollen concentrations associated
with increases in infection rates. This was connected with the
temperature and/or humidity lag of the same or the previous day.
A 4-d lag effect of pollen is in agreement with the proposed
physiological mechanism of action, an interference of pollen with
the innate antiviral immune system. A study based on infection
data from Singapore and the Chinese provinces of Tianjin and
Hubei estimated an incubation time for COVID-19 of between 4
and 5 d (19, 20), which is much shorter than original estimates
(2) but close to our results. It is also in agreement with a hy-
pothesis of environmental exposure factors acting by reducing
the incubation period. Unfortunately, this assumption could not
be supported by similar pollen data from China, as aerobiolog-
ical monitoring there is not yet well established.
Respiratory and olfactory epithelium has been shown to ex-

press the viral entry receptors for SARS-CoV-2, ACE-2, and
TMPRSS2 (21, 22), which makes the nasal cavity a potential
early virus reservoir and stresses its importance in innate anti-
viral defense (23, 24). Since the upper airways are also the entry
site for pollen grains, the previously shown immunosuppressive

Fig. 5. SARS-CoV-2 infection rates are positively correlated with pollen concentrations in a longitudinal data analysis. Per site, anomalies of infection rates
are plotted against anomalies in pollen concentrations (blue dots). The slope of the regression line represents the magnitude of the sensitivity of infection
rates to pollen concentrations (infection rate per 100 pollen/m3). Note the different scales in the panels, both in x axes and y axes. Only the regions from the
geographically large or the bioclimatically diverse countries are analyzed here.
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effect of pollen on respiratory epithelia (15) could influence the
susceptibility to SARS-CoV-2 infection as well. Pollen grains act
on the very site of virus entry, the nasal epithelium, by inhibiting
antiviral λ-IFN responses (15). Early treatment with IFN-λ has
recently been discussed as a first-line therapeutic option to
prevent COVID-19−associated cytokine storm (25–27). This
highlights the conclusiveness of our primary hypothesis, which is
supported by the epidemiological results reported here.
The observed correlation of airborne pollen with infections

did not depend on the allergenic nature of the pollen types
present in the air during the study period. Although we analyzed
the entire biodiversity spectrum of pollen taxa (SI Appendix, Fig.
S2), when stratifying pollen by “allergenic” and “total” pollen,
both showed similar correlations with COVID-19 cases (SI Ap-
pendix, Fig. S3). This agrees with our previous findings on im-
mune modulatory effects of pollen, for example, inhibition of

NF-κB (28), MyD88 (29), and antiviral IFNs (15), which do not
depend on pollen-derived allergens and are effective in sensi-
tized as well as in nonsensitized individuals (30, 31). Thus, al-
though we do not (and could not possibly, to our knowledge)
have any information on the allergy status of the COVID-19
cases on which our analysis was based, we assume that the pollen
effect is relevant for the entire population. It might, however, be
more pronounced in allergics, asthmatics, or chronic rhinosinu-
sitis patients, due to an intrinsically weaker antiviral immune
response (32–35).
Our results were not yet able to reveal the genuine magnitude

of the pollen effect, as the entire springtime pollen peak of the
Northern Hemisphere was not fully included, either in terms of
abundance or in its whole seasonality. The data acquisition was
stopped in early April due to lockdown restraints. An unavoid-
able major limitation of the longitudinal data analysis is, there-
fore, the shortness of some of the time series. During that time,
only a few studied sites were subjected to the substantially
varying pollen load similar to that shown for Switzerland; prac-
tically, we had to deal with two subsets of data, one with a mixed
design of lockdown−exposure effects and another design of early
enough lockdown to almost annihilate the pollen effect in some
occasions.
The sites located in the Southern Hemisphere were mostly out

of the pollen season during the study period, and most had not
reached the exponential infection phase yet. Whether this is in
support of our hypothesis cannot be conclusively answered at this
stage, but it should become evident by examining the Southern
Hemisphere’s pollen season in October 2020 and thereafter.
Another limitation is the spatial resolution of the COVID-19

cases, as, for some sites, local COVID-19 data (SI Appendix,
Table S1) were not yet available, data had gaps or were regis-
tered in a biased way, or the number of cases was too low. In such
occasions, we had to access the COVID-19 cases per country,
which might not be the best approximation and is reliant on
testing strategies within each country. At this early stage of the
pandemic, infection rates were based on documentation of
numbers of cases presenting to public hospital services and may
not have included mild or asymptomatic cases in the community.
To minimize bias of COVID-19 data due to registry lags and

errors, we regularly updated our database (last update: 10 May
2020). In most countries, COVID-19 databases were updated
within the time frame of a month and then did not change any
more. Therefore, we consider our COVID-19 database curated
up to 8 April as “reliable.” We were, however, unable, at this
stage, to correct for every possible confounder, such as under-
reporting or changes in testing strategy. In our cross-sectional
analysis, we controlled for population density, but we are aware
that, still, a comparison across all countries is problematic due to
the above limitations, and we attempted to overcome this by
doing longitudinal analyses per country, and by two different
approaches.
We specifically searched the data, per site and per country, for

weekly cycles that might arise from gaps in weekend recordings.
While recurrent accumulations of COVID-19 cases on some
weekdays, mainly on Wednesdays and Thursdays, can be most
likely attributed to weather events, we still included “weekend”
as a dummy variable in the ridge regression, where it turned out
to be less significant than the effects of lockdown and environ-
mental factors, with the exception of three countries.
In the light of the present pandemic situation, our findings

should be communicated with caution so as to avoid misunder-
standings and panic. It has to be made very clear that 1) the
demonstrated correlations suggest that pollen is a modulating
factor to the overall progression of the SARS-CoV-2 infection,
with the potential to add an extra 10 to 30% to the infection rate
(Fig. 5), 2) there is no evidence for airborne pollen grains

Fig. 6. Heatmap of environmental factors and social contact indicators
significantly correlating to SARS-CoV-2 infection rates in a longitudinal data
analysis. The color reflects the ranking of the variable based on the stepwise
removal procedure (ridge regression). Pollen, daily pollen concentration
(pollen per cubic meter); Temperature, diurnal temperature range (DTR);
Humidity, diurnal humidity range (DHR); Three lockdown regimes are ex-
amined: no lockdown at all (green color); mixed, firstly with no lockdown
and under lockdown later (blue color); and almost exclusively under lock-
down (light blue color). All relationships of infection rates were, by rule,
positive with pollen, temperature, and relative humidity, and negative with
the weekend and lockdown effects); n.a.,: lockdown not included as variable
in the ridge regression; #, total pollen during the study period per region <
5% of the averaged total pollen of all examined regions.
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themselves being carriers of virus particles (36), and 3) without
contact, there is no risk of infection.
Of note is that the effect of pollen on reported infection rates

was shown to be less pronounced under lockdown regimes. It is
also possible that high temperatures in summer would counteract
infections to some extent, provided, of course, that social dis-
tancing will still be kept. Therefore, the infection-promoting
effect of pollen could become evident only during spring, when
air temperatures are not high enough yet to limit viral spread,
but high concentrations of tree pollen occur. To avoid future
waves of high virus transmission under “favorable” combinations
of air temperature, humidity, and pollen, we recommend taking
stricter protection measures, for example, wearing particle fil-
tering masks during springtime higher pollen concentrations.
The installation of reliable, real-time bioaerosol measurement
networks and the use of pollen information and forecasting
systems should be encouraged.
Looking to the future, it is yet unknown whether other air

particles, like fungal spores, or complex interactions with pollen,
other meteorological variables, and air pollutants may also play a
role. Even though there is published evidence on the effects of
various environmental parameters, like nitrogen dioxide (NO2),
particulate matter (PM2.5), and ultraviolet radiation (37–41),

these usually refer to preliminary results and investigation of
only a single factor. If one takes into account the huge effect of
ongoing climate change and urbanization on the long-term
trends in airborne pollen levels (42, 43), as well as emerging
viral infections, it is of utmost importance to forecast the asso-
ciated risk for human health in future pandemics and take ap-
propriate measures to reduce it as much as possible. Coexposure
is certainly not the exception but the rule under natural condi-
tions, and, hence, we strongly suggest that modeling and fore-
casting of ongoing and future pandemics ought to consider the
whole “soup” of exposome.

Materials and Methods
Following the strictest publishing recommendations during the COVID-19
pandemic, we followed the STROBE (Strengthening the Reporting of Ob-
servational Studies in Epidemiology) protocol, as follows.

Experimental Design. To test our primary hypothesis that coexposure to air-
borne pollen enhances the susceptibility to infection with SARS-CoV-2, we
performed a large-scale retrospective, cross-sectional and longitudinal data
analysis on daily SARS-CoV-2 infection rates and the environmental cofactors
of airborne pollen concentrations, air temperature, and relative humidity.
Apart from environmental cofactors, estimates of human-to-human inter-
action were also considered, that is, population density, lockdown dates,

Fig. 7. Effect of lockdown on the relationship between pollen concentrations and SARS-CoV-2 infection rates. (A) Factorial ANOVA of daily infection rates
between lockdown effect and different countries. (B) Linear regression of daily infection rates (note the different y axes, double in the no-lockdown regime
[Left]) against pollen concentrations, grouped by lockdown. Only the exponential infection phase and only sites with the lockdown having started not too
early (>5 d after the onset of the exponential phase) were included (18 regions, i.e., 26% of the Northern Hemisphere sites).
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and lockdown strictness. The entire study period was from 1 January to 8
April 2020. Longitudinal data analysis was restricted to the exponential in-
fection phase as determined per site, ranging, on average, from start/middle
of March to 8 April 2020 (median = 22 d).

Data Sources. Airborne pollen concentrations were obtained via monitoring
stations across the globe. So as to have representative sites from different
climatic regions, we collected data from a total of 248 aerobiological mon-
itoring stations across the world (Fig. 1), mostly operating Hirst-type volu-
metric traps, following the standard operating guidelines (44).

The climatic classification of participating countries was performed using
the Köppen−Geiger classification (45). Daily COVID-19 cases were retrieved
for a total of 80 regions (compiled from 130 sites) in 31 countries and on five
continents as reported by the local governmental authorities. Whenever
available, we chose the finest possible spatial resolution of COVID-19 data,
that is, on the level of state, county, or metropolitan region, to best match
the pollen data (SI Appendix, Table S1). Last data access was on 10 May 2020.

Air temperature and relative humidity values were obtained from the
open-access European Centre for Medium-Range Weather Forecasts Re-
analysis 5 meteorological reanalysis. Data were processed per grid point,
with the regional average being extracted by point (pixel) or polygon
(shapefile). Data on population density was retrieved from the Demographic
Yearbook of the United Nations Statistics Division (UNSD) (https://unstats.un.
org/unsd/demographic-social/sconcerns/popsize/). For some metropolitan
regions that were not listed by the UNSD, we searched Wikipedia.org. Dates
of major national and regional lockdown measures were retrieved by ex-
tensive internet searches, starting from Wikipedia.org and following the
sources cited therein, such as official announcements made by the local
governments.

Data Preprocessing. Of the data initially acquired from the 248 pollen
monitoring stations across the globe, we further analyzed data from 130
regions, from different climatic regions, from humid subtropical to arid
Mediterranean, temperate, oceanic, and continental climates (SI Appendix,
Table S1). The selection of the sites was based on data availability of COVID-
19 cases by that time. From the pollen concentrations (pollen grains per
cubic meter of air) per plant taxon and station, we calculated daily pollen
total concentrations by summing up all pollen on that specific day, but ex-
cluding fungal spores. So as to ensure harmonized data across all monitoring
stations, when acquiring the pollen data, we clearly and necessarily
instructed pollen data providers to provide their data only if they genuinely
classify the whole spectrum of the biodiversity in each site. In locations that
this was not the case, we did not consider them in the final analysis. So,
practically, what we analyzed in this design is truly the whole spectrum of
pollen taxa, which, in many sites, accounted for a total number of more than
20 taxa already by 8 April 2020 (depicted in SI Appendix, Fig. S2).

Regarding COVID-19 cases, so as to harmonize the registered cases (es-
pecially for the cross-sectional analysis), we used daily exponential infection
rates (46), calculated from daily COVID-19 cases as follows:

DIR( ) = ln ∑n

k
∑n−1

k
( ), [1]

where DIR is the change in infection rate on day n,∑
n

k
is the sum of confirmed

COVID-19 cases from the calendar day k of the first case until calendar day n,

∑
n−1

k
is the sum of confirmed COVID-19 cases from the calendar day k of the

first case until the calendar day n-1, and k is the calendar day of the first
coronavirus case per region.

From extracted raw data of temperature and relative humidity, we cal-
culated diurnal temperature ranges (DTR = Tmax – Tmin) and diurnal humidity
ranges (DHR = RHmax – RHmin). By use of DTR and DHR, we attempted to take
into account circadian patterns in pollen production and dispersion and,
simultaneously, reduce the number of independent variables and lower
multicollinearity.

The date of onset of exponential infection phase was defined per site as
per all the following criteria: 1) to avoid nonlocal transmission, adequate
number of confirmed coronavirus total cases by this date with a minimum of
100; 2) to avoid registration errors, beyond the above threshold, higher than
linear increase for at least three successive days; 3) to avoid artificial “jumps”
because of improved registration efficiency and so as to avoid the artificial
first high peak of infection rates (as per the kinetics of Eq. 1), selection of the
second of the above three successive days with higher than linear increase.

Cross-Sectional Data Analysis. Combining data from all sites, we used general
linear models (GLMs) and one-way and factorial ANOVAs and simple linear
regressions, to test for overall correlations between SARS-CoV-2 infection
rates and airborne pollen, controlling for 1) population density or 2) lock-
down effect. To select for appropriate lag effects, especially of pollen, we
ran autoregressive models and assessed the cross-correlations of the above-
mentioned variables, as in ref. 15. To additionally check for the linearity of
the relationships, generalized nonlinear models were also tested, in exactly
the same context. The selection of the GLMs in the final analysis was based
on the residual analysis per region, which determined whether each re-
gional dataset followed the normal distribution assumption. For the visu-
alization of results, box−whisker plots were used for the extremes of pollen
concentrations vs. infection rates, grouped by high vs. low population
density. Moreover, we applied bag plots using the Tukey median depth (47)
(onset date of the exponential phase of the pandemic per region correlated
with pollen concentrations of the previous 4 d), paralleled with one-way
ANOVA and Pearson correlation to validate the relationship. Last, we used
scatterplots with linear regression fits with the respective CIs to express
significant slopes and quantify the pollen and lockdown effects.

Longitudinal Analysis. Per country, we included only the time period for which
the infection phase and airborne pollen peak overlapped (median: 22 d). The
analyses were restricted to the level of country, as lower resolution included
microclimatic variability, which increased the statistical noise and made any
signal very weak to detect. However, for each country, all possible data points
were included from different regions, when more than one of the sites were
involved. GLMs and autoregressive models with multiple independent vari-
ables were run per country to test for multiple effects on infection rates. In all
cases, a backward stepwise removal of independent variables was applied.
Significance levels at the 95% interval, as well as the coefficient of deter-
mination and residual analysis, determined the robustness of the results
obtained. Furthermore, for geographically larger countries, anomaly corre-
lations were employed, as in similar analytical designs with high spatial
statistical noise (48), to make a sensitivity analysis of pollen alone on its
impact on infection rates. Finally, ridge regressions were conducted per
country, using a backward stepwise removal of independent variables, to
test for relationships of infection rates with 1) lockdown, 2) weekend reg-
istration underestimation errors, and 3) environmental factors (DTR, DHR,
and pollen concentrations), including lag effects of 0 to −5 for all continuous
variables. Ridge regression are well known for dealing with multicollinearity
issues, and partial correlations aid in identifying the most significant pa-
rameters and their lag effects and synergistic effects among independent
variables, as well as confounding factors (49). The dummy variable of
“lockdown” was only included for all countries that had at least 5 d of “no
lockdown” prior to the lockdown during the exponential phase, so as to
have enough data points for the analysis. As, on several occasions, the
reporting of COVID-19 daily cases was biased toward lower numbers during
the weekends, we inserted a dummy variable for the weekend effect, to
control for such artificially reduced registries in some countries. For the vi-
sualization, a heatmap was generated to identify the associated effects of
various cofactors on infection rates. Maps were created per occasion using
QGIS 2.4.0 (https://qgis.org/en/site).

All analyses were performed by use of either the software Statistica 13.3
(TIBCO Software Inc.) or R scripts (see below).

Methods against Bias. To minimize bias across all levels of the study, we
elaborated on the following.
Selection bias.

Airborne pollen data. The sites originally selected practically corresponded to
all active pollen monitoring stations in the world, as many do not operate at
all in wintermonths. Also, data acquired initially were screened for large data
gaps (more than three successive days within the exponential phase of the
pandemic spread) and for including the whole spectrum of pollen taxa
expected in an average site (harmonization of pollen measurements). The
spanning period had to be from as early as possible in 2020 (most frequently,
on 1 January 2020) and mostly up to 8 April 2020. Pollen data beyond that
date were not acquired, as 1) Hirst-type (or Rotorod-type) measurements are
based on manual and laborious methods, and, hence, data are delivered
often with a delay of at least 8 d; and 2) because of the lockdown restrictions
across the world, often strict, many of the monitoring stations suspended
their operation. Obtaining data only from a few would eliminate the har-
monization of data and minimize the globality of the study design as well as
the possibility to investigate climatic variability. Those sites that did not
satisfy any of the above prerequisites were excluded completely. The first
screening accounted for a sum of 248 sites. In each one of these sites, we
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summed up all different pollen types each day to obtain the daily pollen
load that could affect the spread of the viral infections. To avoid microcli-
matic spatial variability and potentially obtain clear signals, when many
pollen monitoring sites existed per country, we averaged the data over the
region (state, province, canton, or county). This depended also on the data
availability of daily COVID-19 cases at this scale. The overview of analyzed
datasets is shown in SI Appendix, Table S1.

COVID-19 cases. Given the spatial and temporal availability of the airborne
pollen data and taking into account the availability of COVID-19 infection
data, we obtained daily COVID-19 cases per city or metropolitan region,
whenever possible, especially considering the frequent clustering of COVID-
19 cases in large urban areas. When the per-region choice was not feasible,
we switched to per country COVID-19 data, for example, for smaller coun-
tries or when regional COVID-19 numbers were too low in comparison to
nationwide numbers. Vice versa, in very large countries, we necessarily
broke down the COVID-19 cases into metropolitan regions, provinces, or
states, so as to reduce the variability in microclimatic and sociological factors.
This was the case in the countries of France, Germany, Italy, Spain, Swit-
zerland, and the United States, along with Australia and South Africa in the
Southern Hemisphere. The detailed data availability and level of processing
are given in SI Appendix, Table S1.
Confirmation bias. The data analysis was independently performed by three
different groups of data analysts, from different countries, all with different
approaches, who compared their findings at regular intervals.
Outliers. To ensure that no “redness” of statistical noise exists (50), which, if
categorized as outliers, may reduce the signal (underfitting), box plots were
used to identify outliers and extreme values, particularly bag plots, to ad-
ditionally interpret medians and averages of observations, their distribution,
and symmetry (47). Remaining outliers were attempted to be interpreted
with additional cofactors, when appropriate. Moreover, intentional outliers
were created in the form of dummy variables for contact indicators, like
population density and lockdown effects, which could bias the results. Be-
cause of registration errors in COVID-19 cases and lack of harmonization
across the regions and countries in the study, an additional dummy variable
was created, highlighting the effect of the weekend. Variability within each
week was thoroughly checked among the weekdays to confirm whether the
obtained variability could be a recording error or a potential signal. As, in
most sites of the Northern Hemisphere, we found out that the signal was
consistent regardless of the country or region examined (i.e., more cases on
Wednesdays and Thursdays) and as this could not be further confirmed with
local authorities as per the registration accuracy, we preferred to consider
that the largest proportion of this variation would be an environmental
signal, and we did not further manipulate this.
Overfitting. As a sensitivity analysis, we ran bootstrapping with 1,500 itera-
tions, using the R package {boot}. Bootstrapping was run with different
combinations of datasets: 1) the entire dataset, that is, daily infection rates vs.
daily pollen concentrations, DTR, and DHR, each including 0- to 5-d lag ef-
fects; and 2) daily infection rates and daily pollen concentrations alone (0- to
5-d lags) without the DTR and DHR data. In addition, to test the significance
of obtained correlations, we performed permutation tests on the data for

the longitudinal analysis using the R package {lmPerm}. To test potential
overfitting of the acquired models, ridge regressions were employed, and
the backward stepwise technique and the partial correlations of all factors
and the significant lag effects of continuous variables were taken into ac-
count. For ensuring the robustness and lack of bias in the results, we checked
the lambda (λ) values of the regularization (51), from 0.1 to 10−6, and the
error values did not change, but only to a magnitude of the third decimal.
We selected a value of λ = 0.1 so as to ensure a higher strictness in
the analysis.
Cofactors and confounding factors. To test for significant cofactors and con-
founding factors, we conducted ridge regression with a stepwise backward
elimination procedure of the independent variables, and we checked the
partial correlations to eliminate multicollinearity and select only the genu-
inely significant variables, especially in the longitudinal analysis.

Data Availability. Daily data of 1) pollen concentrations, 2) SARS-CoV-2 in-
fection rates, 3) air temperature, 4) relative humidity, 5) population density,
and 6) lockdown dates have been deposited in Mendeley (DOI: 10.17632/
6f8y8d9cgw.1) (52).
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