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ABSTRACT In this paper, an adaptable fuzzy control mechanism for an Unmanned Aerial Vehicle (UAV)
to manipulate its mechanical actuators is provided. The mission (landing) for the UAV is defined to track
(land on) an object that is detected by a deep learning object detection algorithm. The inputs of the controller
are the location and speed of the UAV that have been calculated based on the location of the detected
object. Two separate fuzzy controllers are proposed to control the UAV’s motor throttle and its roll and
pitch over the mission and landing time. Fuzzy logic controller (FLC) is an intelligent controller that can
be used to compensate for the non-linearity behaviour of the UAV by designing a specific fuzzy rule
base. These rules will be utilized to adjust the control parameters during the mission and landing period
in runtime. To add the effect of the ground for tuning the FLC membership function over the landing
operation, a computational flow dynamic (CFD) modeling has been investigated. The proposed techniques is
evaluated on MATLAB/Simulink simulation platform and real environment. Statistical analysis of the UAV
location reported during stabilization and landing process, on both simulation and real platform, show that
the proposed technique outperforms the similar state-of-art control techniques for both mission and landing

control.

INDEX TERMS Fuzzy control, fuzzy-PID, UAV, ground effect, stabilization and landing.

I. INTRODUCTION

Recent stabilization and landing algorithms for UAVs have
been utilizing the advancements in the field of deep learning
and artificial intelligence [1], [2]. Even though development
of systems with deep learning and control has been widely
studied for UAVs, battery limitation of the UAV from one side
and need of fast and accurate UAV’s reaction in different envi-
ronmental noise and during the mission and landing period is
still a challenge [3].

For a smooth, fast, and reliable UAV movement, regardless
of the perceptual sensors that has been used to control it,
such as GPS [4], optical flow [5], ultrasonic sensors [6]
and laser range finder [7], the controller should manipulate
the actuators in different environmental situations during the
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mission and landing periods. These environmental conditions
are accompanied by noise and in some cases, such as the
period of landing the UAYV, affects the dynamics of the UAV
and must be considered in control design in runtime. On top
of this all the computing and mechanical process demand
onboard power resource that, in the case of UAVs, is the
mounted battery. Even though there exists several control
techniques for UAV controls, still there exists a unified light-
weigh control technique that can be adopted based on differ-
ent environmental conditions in runtime.

Another issue is the perceptual sensors to detect the suit-
able landing place that might be even mobile. Using GPS
data to detect the landing place removes significant portion of
onboard power consumption for object detection [4]; however
it is noisy and limits the operation of the UAV on to those
areas that GPS is available [8]. Infrared based-approach allow
to estimate the pose of a UAV by using infrared lamps and
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placing it in the landing area of the UAV [9]; nevertheless,
this technique is limited to only this environment. Vision-
based control techniques uses onboard sensors, e.g., camera,
and utilize the information obtained from the sensor to fed
it to the feedback control algorithm, which is responsible
for stabilizing and landing the UAV. Such technique can be
executed onboard, and thus overcome the limitation of the
previous techniques.

During an autonomous application, landing is considered
the most critical part. To land a UAV safely, a ground effect
which exists near to the ground should be carefully con-
sidered. Generally, ground effect has a nonlinear property
which can’t be dealt with ordinary controllers. Therefore,
In this paper, an adaptable fuzzy control mechanism for the
UAV to manipulate its actuators is proposed, i.e., throttle
adjustment and its roll and pitch, during the mission and
landing period. FLC is an intelligent controller which can
effectively compensate for the nonlinear ground effect by
designing specific rule base. For this, two separate fuzzy
controller are proposed: 1) to adjust the UAV’s throttle based
on two inputs of speed and distance from the ground; and
2) to adjust the parameters of the PID controller based on two
observations of position of the UAV and speed. The former
controller is responsible to adjust the throttle of the UAV
to provide fast and smooth navigation movement while the
latter manipulates the roll and pitch of the UAV for efficient
stabilization in different environmental conditions. A well-
known Mamdani and Assilian [10] fuzzy inference system to
synthesize a set of linguistic control rules that is defined in
design time during the landing and normal operation of the
UAV is utilized. The membership functions of the landing
FLC set through comprehensive study of modeling the effect
of the ground on the propellers. The proposed technique
has been evaluated on both simulation and real environment
platform. For the simulation platform, MATLAB/Simulink
has been used, under the effect of random disturbances in
X, Y, and Z directions, and the statistical error values about
the three directions were obtained. For the real platform, the
proposed controller is implemented on an experimental UAV
and is compared to other controllers. Tests were performed
in real-time, and the statistical error values about the three
directions were obtained.

The main contributions of this work can be summarized as
follows:

« Developing a non-linear Fuzzy-PID controller, that is
responsible for the stabilization of the UAV during the
landing process.

« Developing a Fuzzy Logic Controller (FLC) that utilize
the position and speed of the UAV to ensure a smooth
landing especially near the ground to avoid the ground
effect phenomena.

« Adjusting the parameters of the controller based on com-
prehensive modeling the effect of environment on the
UAV by using computational flow dynamic modeling.
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« Development of both simulation and real platform to
evaluate the proposed idea and comparing the results
with state-of-the-art.

The remaining part of this paper is divided as follows:
Section II reviews the related work about the developed
control systems based on external environment and internal
environment. System overview is illustrated in III. Section IV
explains the algorithms used in the developed system in
detail. The experimental setup is covered in Section V.
Simulation and real platform results are demonstrated in VI
followed by the conclusion in Section VII.

Il. RELATED WORK AND MOTIVATION

Recent advancements in both fields of UAV control system
and artificial intelligence (AI) have made a certain realm
of vision-based autonomous applications possible [11], [12],
[13], [14]. The operation of a fully automated UAV system
can be divided into three working periods namely 1) take off
period 2) the mission period, i.e., tasks to be performed, and
2) the landing period. Among these three periods, efficient
and robust control techniques for UAV stabilization over the
mission and landing period is an important necessity, since
the UAV must full-fill several requirements such as smooth
path trajectory, high stability, and smooth and relax landing
to decrease the damage on both cargo, in the case of, e.g.,
delivery mission, and physical parts of the UAV [15].

In [16], the authors proposed a control system for sta-
bilizing the UAV that is following a moving object under
various speeds. To do this, a Gain-Scheduled PID controller
(GPID) has been adopted that refines the system’s actuation
based on the received feedback. Here the actuation are the
motor thrust and the feedback is the location of the object
under track. However, in the proposed idea, due to linear
relationship of input feedback and output actuation values
of the GPID controller, the system is showing a non robust
behaviour while big disturbances in the input is experienced.

In [17], the authors proposed a feed-forward proportional
integral (PI) stabilizer for pUAV to solve the same problem,
thereby disturbance parameters directly affect the control
parameters in stabilization while tracking. However, since
calculating the control parameters demands heavy workload,
mainly such techniques require an offloading process through
which the heavy calculation of the parameters happens in
stationary resources. This highly affects the response time of
the controller and makes it infeasible for UAVs to operate in
areas without network connection.

The popular PX4 autopilot software which is employed in
UAV applications for stabilization and position control [18] is
based on two nested loops, i.e., a proportional gain, P, in the
outer loop, and PID in the inner loop. The outer is responsible
for controlling and stabilizing the UAV orientation angles
while the inner loop is responsible for controlling the angular
velocity of the UAV. However, because of the fixed gain of the
proportional gain of the inner and outer controller loops, the
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controller behaviour is not robust while encountering external
disturbances, e.g., wind, which will require continues change
in the PID gains.

In [19], the authors proposed a tracking technique based
on deep learning performing a multi-regularized correlation
filter-based track. Even though the proposed method can track
the target with high accuracy, executing the deep learning
algorithm requires continuous data transfer to a ground sta-
tion to perform the heavy deep learning process, making it
not suitable for a run-time applications.

Another approach to stabilize a UAV while tracking an
object or a path is by utilizing a FLC. Authors in [20] studied
the response of the FLC and a PID controller while tracking
a trajectory using MATLAB/Simulink, while authors in [21]
implemented the FLC on a physical system and tested its
performance inside a restricted area. Although the proposed
controller works well, it suffers from overshoot when the
UAV has to change its direction.

Two commonly used techniques for autonomous landing
in UAVs are altitude control techniques and a speed con-
trol techniques. In altitude control techniques, the altitude
reference, i.e., the envisioned Z axis location of the UAYV,
is smoothly decreased over time and the control technique
aims to provide a smooth reliance of the UAV location with
respect to the envisioned altitude reference. To get the altitude
information, a sonar sensor is usually used [22]. In speed
control approach such as what is used in ArduPilot [23] or
what is developed by the authors in [24] and [25], the goal
is to preserve a constant downhill speed for the UAV until
reaching the ground level.

Altitude control approach provides a secure landing, but
the landing procedure is slow which does lead to high power
consumption of the battery. On the other hand, the speed
control technique might lead to the crash of the UAV in case
the target speed is high or big disturbance, e.g., wind impulse,
happens. Therefore, it is required to combine both altitude
control and speed control techniques in order to achieve the
best results.

Authors in [26] proposed an auto-landing technique to
control the UAV based on estimation of future altitude and
speed of the UAV w.r.t the landing destination while using
Kalman Filter. Despite the fact that their technique is effec-
tive, Kalman Filter implementation is complex and requires
large computational effort, whereas in UAVs, time is critical
and the landing process should be fast to save battery life.

In [27], a landing technique based on Deep Neural Net-
works was developed. To test this landing technique, the
UAV should always be connected to their network, and such
methods are not suitable for real-time applications due to its
limited network coverage area and high latency caused by
data transfer, leading to a significant degrade in performance.

In conclusion, we can categorize the stabilization control
techniques into light weight simple linear, i.e., PID con-
troller, and non-linear computational heavy techniques that
are mainly based on learning from experimental data. Each of
the mentioned techniques has its own benefits and drawbacks.
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FIGURE 1. Block diagram of the overall hardware architecture system.

In light weight techniques, even though the computational
cost is low and the control system is energy efficient, the
non-linearity behaviour of the UAV functionality and the
environmental conditions, makes the control system non-
robust and untrustable, especially under the effect of high
disturbances. In contrast, in heavy learning techniques, even
though the non-linear behaviours of the system models is
considered, run-time data processing and transfer causes huge
computation and communication cost that affects the energy
efficiency and response time of the control unit. Another
important fact in designing such control techniques is the non-
probabilistic behaviour of the UAV physics and environment
that makes the possible stochastic methods practically impos-
sible leading to a fuzzy solution for such a modeling, i.e., not-
probabilistic.

Overall, in this paper a fuzzy technique is proposed to
control the UAV over the mission and landing period. Gener-
ally, the FLC requires enormous computation which increase
the computational burden of the system [28], [29] and to
overcome this, there are some developed methods to reduce
its execution time. Authors in [30] proposed a technique to
simplify the FLC rule base table for induction motor drives.
Their results show that the simplified rule base has similar
result to the standard rule base and is less computational.
Another approach to accelerate the FLC computation process
is using a lookup table. Authors in [31] generated a lookup
table using Octave simulation. Results show that the gener-
ated lookup table is 7 times faster than the ordinary FLC.
In our work, a lookup table based FLC is used to control
the UAV.

In this technique, a non-probabilistic, non-linear member-
ship function monitors the influential parameters over the
mission and landing period upon which adjusts the control
parameters at run-time. In this method, there exists different
modes of control each of which provides different parameters
for the control system to stabilize the X-Y location over
the mission period and X-Y-Z location of the UAV over
the landing period. Two fuzzy controllers for the mission
and landing period are proposed that are called stabiliza-
tion and landing controllers respectively. The stabilization
controller during the mission and landing period while the
landing controller only operates during the landing period.
The membership function for these two fuzzy controllers are
based on different behaviors the UAV shows over the mission
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FIGURE 2. Block diagram of the software architecture of the vision-based controller.

and landing period. These functions are designed based on
CFD simulation predictions of the ground effect strength for
the proposed propeller configuration at different flight alti-
tudes. Similar simulation methods have been utilized before
(see e.g., [32], [33]), with the recent advances focusing on
predicting propeller air flow near obstacles [34] and air flows
associated with realistic UAV flight patterns [35], [36]. For
UAV control system design, CFD methods have been utilized
for validating the propeller ceiling effect in bridge inspec-
tion [37]. In the present work, CFD predictions are utilized for
tuning the fuzzy membership functions for near-ground and
far-ground conditions, for efficient stabilization and landing.

Ill. SYSTEM OVERVIEW

Figure 1 shows the block diagram of the overall hardware
architecture of the proposed system. The architecture is
divided into two main parts, i.e., high-performance and low-
performance parts. The high performance part consists of a
high-performance processor, Jetson TX2 in our case, high-
volume data image sensor, and communication units. The
received image data from the camera is processed in the
Jetson TX2 for performing object detection. After detecting
the object, position of the detected object and the distance
of the UAV to the object are calculated and sent to the
flight controller in low-performance part to calculate the
best commands for stabilizing and landing. These commands
will be sent to the electronic speed controller (ESC) that is
responsible for controlling and regulating the speed of the
UAV’s brushless DC (BLDC) motors, i.e., propeller electric
motors.

The low-performance part consists of a small flight con-
troller, Pixhawk 2.4.8 in our case, and interface units. The
Radio Control (RC) receiver, receives signals from the trans-
mitter and send it to the flight controller, which puts this
information into action by controlling the UAV as indicated
by the original radio signals. This is used when the UAV is
controlled by a pilot. The Radio Frequency (RF) transmitter
is used to transmit the behaviour of the UAV to the ground
station, to aid in the validation of the proposed algorithm.

Figure 2 illustrates the software architecture of the vision-
based controller. The proposed system is divided into four
software algorithms, namely 1) Object detection, 2) Landing,
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3) stabilization, and 4) flight controller, thereof flight con-
troller is executing on the low-performance processor and
the others are executing on high-performance processor (it is
distinguished by different block colors in the figure).

Landing algorithm consists of distance estimation algo-
rithm and the landing controller part. The input of distance
estimation algorithm is the location of the detected object
in the image that is represented as an boundary box on the
image. This function first calculates the distance between
the UAV and the object, then it calculates the altitude of the
UAV based on this calculated distance. Using the 2D cam-
era gimbal the camera always points downward that makes
the distance estimation algorithm possible to calculate the
altitude, i.e., °Z’ of the UAV, needed for landing control.
The calculated altitude, i.e., ’Z’ value in Figure 2, will be
subtracted from the target altitude Z,,¢ to calculate the 'Z’
error to be corrected in the landing controller. The output of
the landing controller is the throttle adjustment that will be
passed to the flight controller unit.

Stabilization algorithm consists of object location calcula-
tor and a stabilization controller. The input of object location
calculator is the location of the detected object in the captured
image. Based on this location, the ’X” and ’ Y’ location of the
UAYV will be calculated. Then, these values will be subtracted
from the reference ’X,s’ and ’Y,.s’ preparing the error to be
corrected in stabilization control algorithm. The output of the
stabilization control algorithm are the roll/pitch angles that
will be passed to the flight controller.

In the following each control algorithm will be discussed
in more details.

IV. PROPOSED CONTROL ALGORITHMS

A. OBJECT DETECTION ALGORITHM

After receiving the captured image from the camera, a convo-
lutional neural network (CNN) algorithm is applied for object
detection. In this work, a MobileNet object detector is used
that is a modified version of Single Shot Multibox (SSD)
object detection algorithm [38].

MobileNet has been developed by [39] to work on mobile
and embedded platforms used for vision processing. The
MobileNet is based on a depthwise separable convolu-
tion. Basically, MobileNet is a class of lightweight deep
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FIGURE 4. 3D geometry for CFD simulations.

convolutional neural networks that are vastly smaller in size
and faster in performance than many other popular models.
Depth-wise separate convolutions first apply a single filter
on each input to filter the input data, followed by 1 x 1 con-
volutions which combine these filters into a set of output
features. These depth-wise separable layers almost mimic the
function of typical convolution layers but with much faster
speed and with a slight difference (typical convolution filters
and combines into output features both, but in depth-wise
separable convolution this is divided into two layers, one sep-
arate layer for filtering and one separate layer for combining).
This minimizes the model size and reduces computational
power demands. All layers are followed by a batchnorm
and ReLU nonlinearity except the final fully connected layer
which feeds into a softmax layer for classification having no
nonlinearity. In this paper we used 28 neural network layers
without Counting depth-wise and point-wise convolutions.
Figure 3 demonstrates the general architecture of MobileNet.

B. LANDING ALGORITHM

1) PREDICTION OF THE GROUND EFFECT BY CFD

At low altitudes, the downwash of air from the UAV rotors
hits the ground and slows down prior to turning sideways
along the ground profile. According to Bernoulli’s law,
this causes an increase in static pressure between the UAV
frame and the ground surface, which then contributes to the
UAV force balance as an additional lift term in near-ground
conditions.

For multicopter UAVs, the strength of the ground effect
not only depends on the altitude, but also on the pro-
pellers’ speeds of rotation, their size and shape, and
their relative placement: The flow fields induced by the
rotors are intertwined. Analytical models exist for single
rotors [40], and data-based empirical models have also been
devised for multi-rotor control [41]. In the present work,
CFD simulations were employed for predicting the upward
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TABLE 1. CFD model conditions.

Zone | Boundary or cell zone condition
Top | Pressure inlet (O Pa total)
Sides | Pressure outlet (0 Pa total, backflow)

Bottom | No-slip wall

Symmetry | Symmetry

Propellers | Moving reference frame (given frot)
Blades | Moving no-slip wall (given frot)

lift force at different altitudes, and tuning the controller
parameters.

CFD modeling was used for predicting the strength of
the ground effect at different UAV flight altitudes A [mm]
and propeller rotation speeds f,,; [rpm]. Figure 4 shows the
3D geometry model used in the CFD simulations. In the
rectangular computational domain, W = 15267 mm, D =
6000 mm and H varies according to the rotors’ midpoint alti-
tude A = 50, 100, 250, 1000 or 1500 mm, such that H —A =
4230 mm. Such a large fluid domain is necessary for ensuring
that the artificial boundaries do not affect the solution near
the rotors. However, to keep the model computationally suffi-
ciently simple, the UAV frame was excluded from the model
and only two of the four rotors were directly modeled; The
remaining two are resolved through a symmetry plane (the
front face in Figure 4). The distance from the two rotors to
the symmetry plane is 272.5 mm and 232.5 mm, respectively,
and they are 514.1 mm apart from each other. The rotor blades
were modeled in ANSYS SpaceClaim using measurements
from the UAV.

ANSYS Fluent 2019R3 was used for both creating the
spatial discretization (mesh) and for solving the Reynolds-
Averaged Navier-Stokes equations in the steady state. The
polyhedral mesh used in the solution consists of roughly
115000 volume cells, with an appropriate boundary layer
structure on the walls (cf. Figure 6). Air was treated as
incompressible turbulent gas, using the k —w SST turbulence
specification. The boundary and cell zone conditions used in
the CFD simulations are listed in Table 1.

The CFD simulation results consist of the air velocity com-
ponents and static pressure values at all points in the domain.
Figure 5 shows a comparison of the predicted flow velocity
magnitudes at propeller midsection planes for A = 50 mm
and A = 1500 mm. Here, f;,; = 4000 rpm, which is the max-
imum rated rotation speed for the propellers. Clearly the flow
fields induced by the rotors are intertwined in near-ground
conditions, whereas the rotors operate more independently
away from the ground.

The upward lift on the propellers, as predicted by CFD,
consists of pressure and viscous components. As expected,
the CFD results show that the maximum lift is seen in near-
ground conditions (A = 50 mm) and at the highest rotation
speed (f,y = 4000 rpm). Figure 7 displays the predicted
lift in relation to that maximum force, for several altitudes
and rotation speeds. It is clear that the ground effect prevails
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(a) A =50mm, frot = 4000 rpm

(b) A = 1500 mm, frot = 4000 rpm

FIGURE 5. Ground effect prediction by CFD simulations: Air velocity magnitude [?] at the propeller plane.

FIGURE 6. CFD mesh near a propeller.
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FIGURE 7. The relative lift at different altitudes and propeller speeds. The
black squares denote CFD simulation results.

approximately for A = 0...500 mm. At higher altitudes, the
lift is approximately 70% of the observed maximum value.

2) DISTANCE ESTIMATION

The pinhole camera model [42] describes the mathemati-
cal relation between the coordinates of a point in three-
dimensional space, its projection onto the image plane of
an ideal pinhole camera and the focal length of the camera.
Equation 1 and 2 describe the mathematical relation of the
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where f is the focal length of the camera, r radius of the
marker in the image plane, R radius of the marker in the object
plane, and d distance from camera to the object in (cm). From
the previous equations, d is calculated by using trigonometry
as demonstrated in Figure 8.

3) LANDING CONTROL ALGORITHM

After calculating the error between the Z and Z,.r, the error
value is fed to the landing control as shown in Figure 2 to
give out the suitable throttle adjustment value that is required
to land the UAV safely on the detected object.

To account for the ground effect that exists near the ground
while the UAV is descending, FLC is utilized to control the
UAV landing. In the present work, the UAV lifting force is
assumed to be divided into 1) UG (Under ground effect),
and 2) OG (Outside ground effect) conditions. Here, UG is
a condition where, due to the ground effect, less power is
required, and OG refers to conditions other than UG.

The definition of a fuzzy set permits one to assign values
to fuzzy variables as inputs and outputs. The input/output
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membership functions are shown in Figure 9 and the rule base
is given in Table 2. A Mamdani fuzzy inference system [10]
with triangular membership functions is used to apply our
set of linguistic control rules obtained from experiments and
CFD simulations. This is done by formulating the mapping
from the given inputs, i.e., distance and vertical speed, to the
output, throttle adjustment. In Figure 9(a), linguistic variables
indicate the position of the UAV, where the fuzzy linguistic
variables are defined as UG_NG (UG range Near Ground),
UG_FG (UG range Far Ground), OG_S (OG range Small),
OG_M (OG range Medium), OG_B (OG range Big) and
OG_VB (OG range Very Big) for the corresponding distance
input. The fuzzy membership functions UG-NG, UG-FG,
OG-S have been constructed based on CFD predictions in
Subsection IV-B1. Figure 9(b) specifies the speed of the
UAV and its direction, where the linguistic variables are
NB (Negative Big), NS (Negative Small), Normal, PS (Pos-
itive Small), PB(Positive Big). Figure 9(c), in turn, shows
the throttle adjustment that needs to be added or subtracted
from the actual throttle percentage in the flight controller
as given in Equation 3, where Trottlej,p,, is the throttle
value of flight controller, Trottley,. is the previous throttle
input, and Trottle,g; is the throttle adjustments values from
landing controller. The linguistic variables of the output are
NB, NM (Negative Medium), NS, Normal, PS, PM (Positive
Medium), and PB.

To tune a FLC, the ranges of its parameters can be either
adjusted manually or it can be multiplied by a gain value as
given in Equation 4, where the throttle adjustment Throttle q;
is the calculated output of the FLC as given, K is the tuning
gain, i is the input number, y; is the corresponding member-
ship value, u is the fuzzy input, and n is the total number
of inputs. The FLC uses MIN for t-norm operation, Max for
s-norm operation, MAX for aggregation, MIN for implication,
and Centroid for defuzzification.

Throttlejypu = Throttley,, & Throttleyq; 3)
n . .
Do MzM(U) @

Throttleqp = K < ST 1)
i=1

4) LANDING RULE BASE EXPLANATION

The FLC rule base is designed to continuously monitor the
inputs; UAV’s speed and its distance, and the UG range during
landing process, to provide an efficient and quick landing.
The control algorithms of the FLC which is used to run during
the landing process is as follow:
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TABLE 2. Fuzzy logic rule base for safe landing.

D/‘Ssg‘;‘fc‘ge Mode B Mode A
UG_NG [ UG_FG | OGS | OG.M | OG_B | OG_VB
NB PB PB PM PM PM M
NS PB PM PS PS Ps Ps
ZE 7E 7E 7E 7E 7E 7E
PS NB NM NS NS NS NS
PB NB NB NM NM NM NM

o If the UAV is in the OG range, a normal landing algo-
rithm will be applied to maintain a fixed speed while
landing (—0.125m/s).

o When the UAV reaches the UG region, a special speed
control algorithm based on the position of the UAV will
be triggered to overcome the effect of the ground effect
while landing.

o The FLC checks the moving direction of the UAYV,
in which it will send a high negative throttle adjustment
values if it was moving upwards in order to change its
direction.

« Iflanding speed increases or decreases, the FLC will use
the throttle adjustment to make it constant.

The rule base shown in Table 2, works in two different
modes based on the UAV distance, Mode A and Mode B.

Mode A is the normal operation mode of the UAV when it is
outside the UG region, i.e., the movement is mainly horizon-
tal and the view shouldn’t be focused in one specific object.
Moreover in this mode there is not any effect of the ground,
as an external environmental effect, on the controller system.
In this mode, the throttle adjustment values work between NS
to PS to keep a constant landing speed of —0.125m/s, until
any sudden change in speed or direction of the UAV occurs
where it will generate a throttle adjustment corresponding to
this change (NM to PM).

Mode B is the second scenario where the UAV is within the
UG range. Through this situation, the internal and external
state changes and the environmental information is mainly
high, due to focus on specific area, and the speed is low.
In this region, the throttle adjustment output is shifted to
higher gains values according to the UAV position whether
it’s very close to the ground (UG_NG) or far from ground
(UG_FQG). In the UG_FG, the throttle adjustment is shifted
from (NS-PS) to (NM-PM) to overcome the ground effect
and constrain the landing speed of -0.125m/s. In the UG_NG,
the ground effect gets more effective which will lead to the
decrease of landing velocity until the UAV keeps hovering
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above the ground without being able to land. To overcome
this problem, the throttle adjustment is shifted again to higher
values (NB-PB) to be able to land safely. The transition region
between Mode A and Mode B needs to be smooth to avoid
any kind of abrupt speed change. This transition response
depends on the overlap region between UG_FG and OG_S
fuzzy linguistic variables.

C. STABILIZATION ALGORITHM

1) OBJECT LOCATION CALCULATOR

The output of the object detection algorithm is represented
as an boundary box on the image. From this box, the cur-
rent location of the object x, y and its width and height are
extracted. The location of the detected object is represented
in pixel coordinates (x, y). These coordinates are changed so
that the center coordinates are converted from (%dth, he%’ht)
to (0, 0) by using Equation 5 and Equation 6, where X and
Y are the new position in pixels, width and height are the
resolution of the input image [43]. These values are fed to the
stabilization control algorithm.

idth
x=x-2“ )
height
Y=y- > (6)

2) STABILIZATION CONTROL ALGORITHM

In Figure 2, once the object is detected, its position is given to
the object stabilization block to start the stabilization process.
In this work, a Fuzzy-PID controller is utilized to overcome
the instability of the UAV, especially under environmental
disturbances such as wind. Two inputs are given to the Fuzzy-
PID, position (pos) and change of position (Apos), and three
outputs are acquired, K,r, Kir and K4 which are determined
by a set of fuzzy rules that are used to adapt the K, K; and
K, gains of the PID controller as in Equation 7-9, where G is
a gain value that can be used to for tuning the output of the
Fuzzy-PID, P is the sum of the proportional gain K}, and the
Ky gain, I is the sum of the integral gain K; and the Ky gain,
and D is the sum of the derivative gain K; and the Ky gain.
The output of the Fuzzy-PID is described in Equation 10,
where the error e(t) = pos and y(¢) is the output of the system,
which in this system represents the Roll/Pitch angles of the
UAV. Figure 10 depicts the basic structure of the Fuzzy-PID
controller.

P=(GxKy)+K, (7)
I=(GxKy)+K ®)
D= (G x Ky)+ Ky 9
t
y(@) = (P xe(t) + U x /e(f)d(f))Jr(D X ?) (10)
0

Figure 11 shows the inputs and outputs membership func-
tion of the Fuzzy-PID, where Figure 11(a) indicates the
position of detected object in pixels for x position and
y position. Moreover, it displays the (Apos) which ranges
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FIGURE 10. Fuzzy-PID basic structure.
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FIGURE 11. Fuzzy-PID input/output membership function.

from —20 to 20. The fuzzy linguistic variables of the inputs
are defined as NB, NS, ZE (Zero), PS, and PB. Figure 11(b)
specifies the output of Fuzzy-PID (K, Kir and Kgr) that is
added or subtracted to the fixed gains Kj,, K; and Ky, as illus-
trated in Equations 7-9, and its linguistic variables are defined
as NB, NS, ZE (Zero), PS, and PB. K, K; and K values are
obtained from studying the effect of these parameters on the
simulation model that is covered in Section V.B.2, and was
further explained in our previous work [20]. The G value is
by default ‘1°, however for the sake of simplicity in tuning
the Fuzzy-PID without the need to modify its membership
functions, the G value can be modified to tune different
systems.

3) STABILIZATION RULE BASE EXPLANATION
Designing the rule-base for the Fuzzy-PID is the most crucial
part because the whole function of this controller depends
on it. For this, several experiments were conducted in addition
to experience to design it. Table 3-5 show the rule base that is
used to utilize the P, I and D gains of the PID controller for
the UAV stabilization.

The principles of constructing the Fuzzy-PID rule base are
as follow:

o When pos is NB/PB (UAV is far from the center of the
detected object) and the UAV is moving away from the
detected object (e.g., pos is NB and Apos is also NB),
Ky should be big to increase the P gain of the PID to
push the UAV towards the center of the detected object.
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On the other hand, K4 and Kjr ought to be NB, so that
I and D become very small for better following perfor-
mance and to avoid any oscillation.

o When pos is NB/PB and the UAV moves towards the
center of the detected object (e.g., pos is NB and Apos
is PS/PB), Ky is slightly increased when Apos is PS
to slightly increase its speed. On contrast, if Apos is
PB, which means it moves fast towards the center of the
detected object, a small negative value (NS) is given to
slightly decrease the P gain in order to reduce the UAV
speed to be able to keep up with the center of the detected
object. In both cases, Kjr is either ZE or NS to avoid any
integral saturation or overshoot.

o When pos is NS/PS (UAV is close to the center of the
detected object) and Apos is NB/PB, this indicates that
the UAV is moving in high speed away from the object.
For this, Ky, Kir and K are treated as the first principle
to avoid losing the detected object.

e« When pos is NS/PS, and UAV moves towards the
detected object, P gain is decreased by a small value and
D gain is slightly increased for steady.

o When pos is ZE, only K;r and K4 will affect the PID
controller and the values of I and D gains are increased
to keep a minimum speed to stabilize the UAV above the
center of the detected object.

TABLE 3. Fuzzy-PID rule base for Ky gain.

pos/Apos | NB | NS | ZE | PS | PB
NB PB PB ZE | NB | NS
NS PB PS ZE NS PS
ZE PS ZE ZE ZE PS
PS PS NS ZE PS PB
PB NS NB ZE PB PB

TABLE 4. Fuzzy-PID rule base for K¢ gain.

pos/Apos | NB | NS | ZE | PS | PB
NB NB | NB PS ZE ZE
NS NB NS PS ZE NS
ZE NS | NS | ZE | NS | NS
PS NS ZE PS NS NB
PB ZE ZE PS NB | NB

TABLE 5. Fuzzy-PID rule base for K4 gain.

pos/{Apos | NB | NS | ZE | PS | PB
NB NB | NS | PB PB PS
NS NS | ZE PS PS ZE
7ZE ZE | ZE | ZE | ZE | ZE
PS ZE PS PS ZE | NS
PB PS PB PB | NS | NB

V. EXPERIMENTAL SETUP
A. UAV PHYSICAL SYSTEM
In this work, a UAV multicopter system is demonstrated
as shown in Figure 12. The multicopter consists of
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FIGURE 12. UAV multicopter practical system.
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FIGURE 13. Output of the object detection algorithm.

a high-performance CPU, Jetson TX2, installed on a J120
carrier board, powered with a 3S 11.1V LiPo battery that
weights 120g and is connected to an ultra HD Logitech
webcam through USB. The camera is attached to a 2D-gimbal
that is used to make toe camera face the ground while the
multicopter is landing. The proposed system also consist of
a low-performance CPU, Pixhawk 2.4.8 flight controller, that
is based on a 180 MHz ARM® Cortex® M4, and is equipped
with a 10DoF IMU, eight PWM outputs, four UART and
other different connections. The flight controller is build on
an open source program ‘“‘ArduPilot”, which is codded in
C++. Furthermore, it can be easily monitored or config-
ured from a ground control station using an RF transmit-
ter/receiver. The low-performance CPU is connected to the
high-performance CPU using a UART communication.

B. OBJECT DETECTION

The CNN was trained to detect two classes, a rectangle object
“in” and a circle object “out”. A custom image dataset that
contains 10000 images of the required images on different
backgrounds has been used for training. The images have
been captured by the camera installed on the multicopter
and have been manually labeled. The images are divided
into two parts, training and test dataset. 20% of the images
are used to test the network, while the other 80% are used
to train the dataset. The network training parameters values
are based on [39], and is trained for 100,000 iteration until
the error does not significantly decrease, with a learning
rate of 0.004 and decay factor 0.95. The root mean square
propagation (RMSprop) optimization algorithm is used for
optimizing the loss functions. The training is conducted on
a desktop with the following specification: AMD Ryzen 7
2700X 3.70 GHz CPU, 16 GB RAM, and a NVIDIA RTX
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FIGURE 15. Performance comparison of the FLC and PID during landing process.
2080TI GPU. The trained CNN achieved an accuracy of 84% VI. RESULTS

with average fps of 25.1.

The CNN algorithm used for detecting the objects is a
SSD_mobilenet_v1 which is optimized to run on embed-
ded platforms in real-time. The SSD_mobilenet vl is
implemented on the Jetson TX2 and coded using python
programming language. The object detector is trained to
detect two objects, a circle object and a rectangle object as
shown in Figure 13. As illustrated in this Figure, the average
fps achieved by SSD_mobilenet_v1 is 25fps which make it
suitable for real-time applications.

To perform object detection and landing, the USB camera
keeps on taking continuous snapshots on 640 x 480 pixels.
Once the objects are detected and distance between the mul-
ticopter and the objects is estimated, landing and stabilization
processes are triggered to work simultaneously to ensure the
a smooth and safe landing of the multicopter over the center
of the detected object.
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A. SIMULATION RESULTS

For evaluating the proposed technique, MATLAB/Simulink
simulation environment has been used [44]. Figure 14 shows
the Simulink models of the multicopter platform. Within
this simulation, multicopter parameters, e.g., initial location,
weight, size, etc., can be changed. The location error is calcu-
lated by taking the difference between the multicopter current
position (X, Y, and Z) and the reference position (Xyef, Yrer,
and Z,,r). Afterwards, the error is passed to the proposed
stabilization and landing control blocks thereafter the attitude
commands (Roll/Pitch/Throttle) will be passed to the attitude
controller block and the multicopter control mixing block,
which are responsible to convert the attitude commands to
actuation signals to the motors. The multicopter dynamics
consists of mathematical equations about the dynamics of
different parts of the multicopter. More details about these
equations can be found in [45].
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FIGURE 16. (X, Y, Z) location of the multicopter during the simulation period.
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FIGURE 17. Location of the multicopter in 3D spatial domain during the simulation period.
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FIGURE 18. Statistical analysis of (X, Y, Z) location of the multicopter during the simulation period.

1) FUZZY LOGIC BASED LANDING CONTROL
To show the performance of the proposed FLC controller,
a PID controller is first implemented and tested to obtain the
proper gain parameters. Afterward, FLC is implemented and
tested for the same Simulink model as shown in Figure 14(c).
Figure 15(a) shows the response of PID with different tun-
ing parameters. From this figure, the landing speed changes
by different PID gains. The “green line” in this figure has
the fastest landing speed, however, it suffers from oscillation
when reaching the ground, which will lead to the damage

BOL-PID [24] + S-GPID [16) /0 L-PID [24] + S-FLC [20] 0 L-PID [24] + S-ours
00 L-ours +S-GPID [16] M0 L-ours + S-FLC[20] U0 L-ours + S-ours

Time (min)
S = N W

Landing operation

FIGURE 19. Controllers landing time during simulation phase.

of the multicopter. Other responses are much safer but they
suffer from lower landing speed especially near the ground
due to the ground effect.

As mentioned in Section IV.B.3, a gain value K can be
multiplied by the FLC output for better tuning. Figure 15(b)
shows the output of FLC with different gains. The higher
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the K, the faster the landing speed. However, when K is very
high, it will cause bumping leading to the damage of the
multicopter. Therefore, a proper K should be selected.

A landing comparison between the proper selected param-
eters of PID and FLC is shown in Figure 15(c). The total time
for landing using the PID controller is 60 sec, while FLC
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TABLE 6. Average error of the designed techniques during simulation period.

Error(m)/Technique | L-PID [24] + S-GPID [16] | L-PID [24] + S-FLC [20] | L-PID [24] + S-ours | L-ours + S-GPID [16] | L-ours + S-FLC [20] | L-ours + S-ours
STD 0.091 0.076 0.053 0.078 0.047 0.014
AVG 0.105 0.093 0.071 0.068 0.031 0.022
MAX 0.288 0.213 0.133 0.215 0.125 0.075

takes 40 sec. Due to the ground effect, the PID has slower
response while approaching the ground (UG range) due to its
fixed gains. On contrast, the FLC shows better response when
landing due to its rule base which combines both speed and
distance, that will ensure a smooth and safe landing process.

2) STABILIZATION AND LANDING PROCESS

In our scenario, the multicopter starts to ascend up to
3 meters above the ground surface and will hold its posi-
tion for 15 seconds. After that it decides to land on a pre-
specified target that has been defined on the ground by the
object. We inserted random disturbance in different X, Y,
and Z directions to model an uncertain environment for the
multicopter.

To show the efficiency of the proposed technique with the
state-of-the-art, we implemented different control algorithms
for both stabilization and landing parts. For the landing part
we implemented the pure PID control algorithm for UAVs
in [24] and [25], called as L-PID in this paper, and for the sta-
bilization algorithm we implemented a Gain-scheduled PID
proposed in [16] and a fuzzy control proposed in [20] (called
S-GPID and S-FLC respectively). Our proposed control algo-
rithm in the comparison is shown by S-ours and L-ours for
stabilization and landing respectively. This comparison setup
forms 6 different configurations for the UAV control tech-
niques based on two different landing controls, i.e., L-PID
and L-Ours, and three stabilization control techniques, i.e.,
S-GPID, S-FLC, and S-ours. We discuss the results obtained
from these 6 configurations in the rest of the results section.

Figures 16(a-c) show the X, Y, and Z positions of the
multicopter while using different control techniques respec-
tively. It can be seen that S-ours achieved better stability and
settling time compared to other techniques in X-Y plane.
Figure 18 shows the corresponding statistical values about the
occurred errorin X, Y, and Z axes, i.e., the standard deviation
(STD), average/mean error (AVG), maximum error (MAX),
which is responsible for returning the maximum error in our
dataset, and Table 6 shows the average statistical values of
the designed techniques during the landing and stabilization
process. Equation 11 and Equation 12 show the mathematical
formulas for calculating the corresponding statistical values
shown in Figure 18, where n; is a value in the data set that
corresponds to the position of the multicopterin X, Y, and Z,
and N is the total number of data points.

. 2
STD —= M (11)
N
AVG = % (12)
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The average error for X and Y are approximately zero for
all the control configurations. This is because of the random
disturbances that have been injected in different direction on
X-Y plane. However, the MAX and STD values show that the
proposed technique can significantly reduce the disturbance
error in X and Y dimensions. This can be noticed for both
configurations with our proposed stabilization, i.e., L-PID +
S-ours and L-ours + S-ours. In Z dimension, the landing
algorithm shows its robustness by reducing the MAX and
STD values of the error comparing to the other techniques.

It can be seen that the stabilization part improves the
MAX and STD of error while working with the proposed
landing controls, i.e., L-ours + S-ours, comparing to L-PID +
S-ours and L-ours + S-GPID, and L-ours + S-FLC. This
shows that the proposed landing and stabilization algorithm
give the best outcome when both techniques are working
together as shown in Figure 17. This is due to the fact that
the command signals to the propellers are the ensemble of
both controller commands that are merged and tuned together
to manipulate the mechanical parts of the multicopter, such
as propellers and other mechanical parts. Any change or
disturbance of the multicopter location in any axes affects its
location in other axes since the multicopter control mixing
unit converts the required attitude corrections into throttle
percentages for each motor. The higher the attitude correc-
tions values, the more throttle given to each motor, which
in return will lead to more disturbances of the multicopter
during landing.

Figure 19 shows the landing time of the 6 different
controllers. Using the full-fledged approach, i.e., L-ours +
S-ours, will reduces the operation time by 6%, 8%, 51%,
59%, and 65% comparing to (L-ours + S-FLC, L-ours +
S-GPID, L-PID + S-ours, L-PID + S-FLC, and L-PID +
S-GPID) respectively. The reason is that by reducing the
amount of disturbances and providing more stability, the
multicopter can reach the target in a faster and smoother way
comparing to the other techniques.

B. RESULTS ON THE REAL PLATFORM

Figures 20(a-c) show the X, Y, and Z positions of the
multicopter while using different control techniques in our
experiment on a real environment. Figure 22 shows the cor-
responding statistical values about the occurred errorin X, Y,
and Z axes, i.e., the standard deviation (STD), maximum error
(MAX), and average error (AVG), while Table 7 shows the
average statistical values of the designed techniques during
the landing and stabilization process throughout the experi-
mental period. As it can be seen, opposite to the simulation
results the average disturbance in X and Y direction is not
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FIGURE 22. Statistical analysis of (X, Y, Z) location of the multicopter during the experimental period.

TABLE 7. Average error of the designed techniques during experimental phase.

Error(m)/Technique | L-PID [23] + S-GPID [16] | L-PID [23] + S-FLC [21] | L-PID [23] + S-ours | L-ours+ S-GPID [16] | L-ours + S-FLC[21] | L-ours + S-ours
STD 0.538 0.422 0.331 0.324 0.265 0.197
AVG 0.641 0.463 0.289 0.405 0.214 0.164
MAX 0.273 0.234 0.142 0.227 0.178 0.099

zero, showing the environmental condition is not always
following a uniform random pattern. Consequently, the mul-
ticopter shows much unstable behaviour with respect to envi-
ronmental and control stimuli. It can be seen that the proposed
technique can significantly reduce this unexpected/unwanted
disturbance.

L-PID + S-GPID shows the poorest response among all
the tested techniques. Although the S-GPID is easy to imple-
ment, entailing a fast way to control the system, it will
fail to control the multicopter in case of high disturbances,
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especially when combined with L-PID because of its linear-
ity which will require continuous change of the PID gains.
On the other hand, S-FLC have better outcome compared
to S-GPID because this controller considers both the error
value and its derivative as the inputs targeting to minimize
the error between the reference and the actual output. Since
the proposed Fuzzy-PID controller S-ours auto-tunes the PID
gains, according to its two inputs 1) position and 2) change
of the position of the multicopter, it can rapidly reduce
the error between the multicopter and center of target with
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TABLE 8. Computational timing comparison of the designed techniques.

Task (msec)/Technique | L-PID [23] + S-GPID [16] | L-PID [23] + S-FLC [21] | L-PID [23] + S-ours | L-ours + S-GPID [16] | L-ours + S-FLC [21] | L-ours + S-ours
Object detection 29.3 29.1 28.8 29.4 29.1 28.4
Stabilization 2.9 33 4.1 3.1 34 43
landing 1.6 1.5 1.6 2.5 2.4 2.7
Total time 33.8 339 34.5 35.1 349 354

I8L-PID [23] + S-GPID [16] 00 L-PID [23] + S-FLC [21]100 L-PID [23] + S-ours
00 L-ours+S-GPID[16] W0 L-ours+S-FLC[211 B0 L-ours + S-ours

I I

Landing operation

Time (min)
O = N W o

Energy (kJ)

Energy consumption

FIGURE 23. Controllers landing time and energy consumption during
experimental period.

a better stability. Thus, the Fuzzy-PID controller combines
the pros of both a PID controller and a FLC; resulting in the
best outcome in contrast with the other techniques.

Figure 23 shows the overall landing time that is taken
while using different techniques. In general the proposed
technique outperforms the average error values by 20%, 45%,
18%, 51%, and 78% and the overall landing time by 11%,
19%, 38%, 43%, and 47% compared to (L-ours + S-FLC,
L-ours + S-GPID, L-PID + S-ours, L-PID + S-FLC, and
L-PID + S-GPID) respectively. One main reason to achieve
such a considerable improvement for the overall landing time
in comparison with the similar results over the simulation
phase, shown in Figure 19, is that the high disturbance that
the multicopter has been experienced in real platform is
much higher than the simulation. Lower disturbance mainly
provides better opportunity for the vision camera and object
detection to follow the object that decrease the amount
of object detection time and error in loop summing and
vice versa.

Figure 23 also compares the energy consumption of the
proposed technique with the other techniques. The proposed
technique can reduce the overall energy consumption of the
multicopter by 15%, 21%, 28%, 36%, and 42% comparing
to (L-ours + S-FLC, L-ours + S-GPID, L-PID + S-ours,
L-PID + S-FLC, and L-PID + S-GPID) respectively. The
reason is that removing the disturbances can help to reduce
the energy from both computational and mechanical energy
consumption. Less disturbances provide more stable image
that makes the image denoising and object detection faster
and, consequently, more energy efficient. Also, any unwanted
disturbance from both environment and control actuation, can
cause a reaction from the controller with energy consumption
in mechanical part. Therefor reducing the disturbance can
reduce the energy consumption of the mechanical part.

In general, the FLC is a complicated controller that requires
a long computation time. In this work, the Jetson TX2 is
responsible for performing three different tasks, where two
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of them are executed simultaneously as shown in figure 2.
The object detection part takes a large execution time due
to its huge data size, and implementing two other algo-
rithms, e.g., FLC and Fuzzy-PID controllers, in parallel with
the object detection will cause processing delay. For this,
MATLAB/Simulink is used to generate a lookup table that
calculates the output of the FLC and Fuzzy-PID controllers
corresponding to different input values instead of the real-
time FLC. Table 8 shows the average time for executing
the three algorithms; object detection, landing, and stabiliza-
tion, of the designed controllers. As can be seen in Table 8§,
due to the usage of lookup table, the computation time to
execute a FLC and a Fuzzy-PID is slightly larger than a
Gain-Scheduled PID controller in the stabilization algorithm
(average 0.35 msec and 2.35 msec respectively), and the
difference between a FLC and a PID controller is 0.96 msec
on average in the landing process. Combining both timing,
in addition to the object detection algorithm and calculating
the total time of each designed technique, our proposed con-
troller L — ours 4+ S — ours execution time is slightly higher
and can be neglected in comparison to other techniques.
Furthermore, having a better stability, settling time, and more
energy efficient compared to the other approaches, makes the
proposed technique more suitable for such application.

VII. CONCLUSION
In this paper, two fuzzy control techniques for stabilization
and landing are proposed that considers manipulating the
multicopter’s roll and pitch. The mission (landing) for the
UAV is defined to track (land on) an object that is detected
by a deep learning object detection algorithm. The inputs of
the controller are the location and speed of the UAV that has
been calculated based on the location of the detected object.
Two fuzzy control techniques are proposed to control the sta-
bilization of the UAV during the mission and to overcome the
ground effect during the landing period. Several experiments
are performed, and statistical analysis of the UAV location
are acquired. The obtained results show that the proposed
technique has low computation time, better performance, and
less energy consumption for both two operational modes of
mission and landing in comparison with other technique.
Future studies could improve the current work by studying
the effect of using a reinforcement learning technique to auto-
tune the PID controllers. Furthermore, using an adaptive FLC
for landing process with a simplified rule base technique to
overcome the ground effect is also considered to improve
this work.
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