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ABSTRACT In this paper, an adaptable fuzzy control mechanism for an Unmanned Aerial Vehicle (UAV)
to manipulate its mechanical actuators is provided. The mission (landing) for the UAV is defined to track
(land on) an object that is detected by a deep learning object detection algorithm. The inputs of the controller
are the location and speed of the UAV that have been calculated based on the location of the detected
object. Two separate fuzzy controllers are proposed to control the UAV’s motor throttle and its roll and
pitch over the mission and landing time. Fuzzy logic controller (FLC) is an intelligent controller that can
be used to compensate for the non-linearity behaviour of the UAV by designing a specific fuzzy rule
base. These rules will be utilized to adjust the control parameters during the mission and landing period
in runtime. To add the effect of the ground for tuning the FLC membership function over the landing
operation, a computational flow dynamic (CFD) modeling has been investigated. The proposed techniques is
evaluated on MATLAB/Simulink simulation platform and real environment. Statistical analysis of the UAV
location reported during stabilization and landing process, on both simulation and real platform, show that
the proposed technique outperforms the similar state-of-art control techniques for both mission and landing
control.

15 INDEX TERMS Fuzzy control, fuzzy-PID, UAV, ground effect, stabilization and landing.

I. INTRODUCTION16

Recent stabilization and landing algorithms for UAVs have17

been utilizing the advancements in the field of deep learning18

and artificial intelligence [1], [2]. Even though development19

of systems with deep learning and control has been widely20

studied for UAVs, battery limitation of the UAV from one side21

and need of fast and accurate UAV’s reaction in different envi-22

ronmental noise and during the mission and landing period is23

still a challenge [3].24

For a smooth, fast, and reliable UAVmovement, regardless25

of the perceptual sensors that has been used to control it,26

such as GPS [4], optical flow [5], ultrasonic sensors [6]27

and laser range finder [7], the controller should manipulate28

the actuators in different environmental situations during the29

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhongyi Guo .

mission and landing periods. These environmental conditions 30

are accompanied by noise and in some cases, such as the 31

period of landing the UAV, affects the dynamics of the UAV 32

and must be considered in control design in runtime. On top 33

of this all the computing and mechanical process demand 34

onboard power resource that, in the case of UAVs, is the 35

mounted battery. Even though there exists several control 36

techniques for UAV controls, still there exists a unified light- 37

weigh control technique that can be adopted based on differ- 38

ent environmental conditions in runtime. 39

Another issue is the perceptual sensors to detect the suit- 40

able landing place that might be even mobile. Using GPS 41

data to detect the landing place removes significant portion of 42

onboard power consumption for object detection [4]; however 43

it is noisy and limits the operation of the UAV on to those 44

areas that GPS is available [8]. Infrared based-approach allow 45

to estimate the pose of a UAV by using infrared lamps and 46
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placing it in the landing area of the UAV [9]; nevertheless,47

this technique is limited to only this environment. Vision-48

based control techniques uses onboard sensors, e.g., camera,49

and utilize the information obtained from the sensor to fed50

it to the feedback control algorithm, which is responsible51

for stabilizing and landing the UAV. Such technique can be52

executed onboard, and thus overcome the limitation of the53

previous techniques.54

During an autonomous application, landing is considered55

the most critical part. To land a UAV safely, a ground effect56

which exists near to the ground should be carefully con-57

sidered. Generally, ground effect has a nonlinear property58

which can’t be dealt with ordinary controllers. Therefore,59

In this paper, an adaptable fuzzy control mechanism for the60

UAV to manipulate its actuators is proposed, i.e., throttle61

adjustment and its roll and pitch, during the mission and62

landing period. FLC is an intelligent controller which can63

effectively compensate for the nonlinear ground effect by64

designing specific rule base. For this, two separate fuzzy65

controller are proposed: 1) to adjust the UAV’s throttle based66

on two inputs of speed and distance from the ground; and67

2) to adjust the parameters of the PID controller based on two68

observations of position of the UAV and speed. The former69

controller is responsible to adjust the throttle of the UAV70

to provide fast and smooth navigation movement while the71

latter manipulates the roll and pitch of the UAV for efficient72

stabilization in different environmental conditions. A well-73

known Mamdani and Assilian [10] fuzzy inference system to74

synthesize a set of linguistic control rules that is defined in75

design time during the landing and normal operation of the76

UAV is utilized. The membership functions of the landing77

FLC set through comprehensive study of modeling the effect78

of the ground on the propellers. The proposed technique79

has been evaluated on both simulation and real environment80

platform. For the simulation platform, MATLAB/Simulink81

has been used, under the effect of random disturbances in82

X , Y , and Z directions, and the statistical error values about83

the three directions were obtained. For the real platform, the84

proposed controller is implemented on an experimental UAV85

and is compared to other controllers. Tests were performed86

in real-time, and the statistical error values about the three87

directions were obtained.88

The main contributions of this work can be summarized as89

follows:90

• Developing a non-linear Fuzzy-PID controller, that is91

responsible for the stabilization of the UAV during the92

landing process.93

• Developing a Fuzzy Logic Controller (FLC) that utilize94

the position and speed of the UAV to ensure a smooth95

landing especially near the ground to avoid the ground96

effect phenomena.97

• Adjusting the parameters of the controller based on com-98

prehensive modeling the effect of environment on the99

UAV by using computational flow dynamic modeling.100

• Development of both simulation and real platform to 101

evaluate the proposed idea and comparing the results 102

with state-of-the-art. 103

The remaining part of this paper is divided as follows: 104

Section II reviews the related work about the developed 105

control systems based on external environment and internal 106

environment. System overview is illustrated in III. Section IV 107

explains the algorithms used in the developed system in 108

detail. The experimental setup is covered in Section V. 109

Simulation and real platform results are demonstrated in VI 110

followed by the conclusion in Section VII. 111

II. RELATED WORK AND MOTIVATION 112

Recent advancements in both fields of UAV control system 113

and artificial intelligence (AI) have made a certain realm 114

of vision-based autonomous applications possible [11], [12], 115

[13], [14]. The operation of a fully automated UAV system 116

can be divided into three working periods namely 1) take off 117

period 2) the mission period, i.e., tasks to be performed, and 118

2) the landing period. Among these three periods, efficient 119

and robust control techniques for UAV stabilization over the 120

mission and landing period is an important necessity, since 121

the UAV must full-fill several requirements such as smooth 122

path trajectory, high stability, and smooth and relax landing 123

to decrease the damage on both cargo, in the case of, e.g., 124

delivery mission, and physical parts of the UAV [15]. 125

In [16], the authors proposed a control system for sta- 126

bilizing the UAV that is following a moving object under 127

various speeds. To do this, a Gain-Scheduled PID controller 128

(GPID) has been adopted that refines the system’s actuation 129

based on the received feedback. Here the actuation are the 130

motor thrust and the feedback is the location of the object 131

under track. However, in the proposed idea, due to linear 132

relationship of input feedback and output actuation values 133

of the GPID controller, the system is showing a non robust 134

behaviour while big disturbances in the input is experienced. 135

In [17], the authors proposed a feed-forward proportional 136

integral (PI) stabilizer for pUAV to solve the same problem, 137

thereby disturbance parameters directly affect the control 138

parameters in stabilization while tracking. However, since 139

calculating the control parameters demands heavy workload, 140

mainly such techniques require an offloading process through 141

which the heavy calculation of the parameters happens in 142

stationary resources. This highly affects the response time of 143

the controller and makes it infeasible for UAVs to operate in 144

areas without network connection. 145

The popular PX4 autopilot software which is employed in 146

UAV applications for stabilization and position control [18] is 147

based on two nested loops, i.e., a proportional gain, P, in the 148

outer loop, and PID in the inner loop. The outer is responsible 149

for controlling and stabilizing the UAV orientation angles 150

while the inner loop is responsible for controlling the angular 151

velocity of the UAV. However, because of the fixed gain of the 152

proportional gain of the inner and outer controller loops, the 153
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controller behaviour is not robust while encountering external154

disturbances, e.g., wind, which will require continues change155

in the PID gains.156

In [19], the authors proposed a tracking technique based157

on deep learning performing a multi-regularized correlation158

filter-based track. Even though the proposedmethod can track159

the target with high accuracy, executing the deep learning160

algorithm requires continuous data transfer to a ground sta-161

tion to perform the heavy deep learning process, making it162

not suitable for a run-time applications.163

Another approach to stabilize a UAV while tracking an164

object or a path is by utilizing a FLC. Authors in [20] studied165

the response of the FLC and a PID controller while tracking166

a trajectory using MATLAB/Simulink, while authors in [21]167

implemented the FLC on a physical system and tested its168

performance inside a restricted area. Although the proposed169

controller works well, it suffers from overshoot when the170

UAV has to change its direction.171

Two commonly used techniques for autonomous landing172

in UAVs are altitude control techniques and a speed con-173

trol techniques. In altitude control techniques, the altitude174

reference, i.e., the envisioned Z axis location of the UAV,175

is smoothly decreased over time and the control technique176

aims to provide a smooth reliance of the UAV location with177

respect to the envisioned altitude reference. To get the altitude178

information, a sonar sensor is usually used [22]. In speed179

control approach such as what is used in ArduPilot [23] or180

what is developed by the authors in [24] and [25], the goal181

is to preserve a constant downhill speed for the UAV until182

reaching the ground level.183

Altitude control approach provides a secure landing, but184

the landing procedure is slow which does lead to high power185

consumption of the battery. On the other hand, the speed186

control technique might lead to the crash of the UAV in case187

the target speed is high or big disturbance, e.g., wind impulse,188

happens. Therefore, it is required to combine both altitude189

control and speed control techniques in order to achieve the190

best results.191

Authors in [26] proposed an auto-landing technique to192

control the UAV based on estimation of future altitude and193

speed of the UAV w.r.t the landing destination while using194

Kalman Filter. Despite the fact that their technique is effec-195

tive, Kalman Filter implementation is complex and requires196

large computational effort, whereas in UAVs, time is critical197

and the landing process should be fast to save battery life.198

In [27], a landing technique based on Deep Neural Net-199

works was developed. To test this landing technique, the200

UAV should always be connected to their network, and such201

methods are not suitable for real-time applications due to its202

limited network coverage area and high latency caused by203

data transfer, leading to a significant degrade in performance.204

In conclusion, we can categorize the stabilization control205

techniques into light weight simple linear, i.e., PID con-206

troller, and non-linear computational heavy techniques that207

are mainly based on learning from experimental data. Each of208

thementioned techniques has its own benefits and drawbacks.209

FIGURE 1. Block diagram of the overall hardware architecture system.

In light weight techniques, even though the computational 210

cost is low and the control system is energy efficient, the 211

non-linearity behaviour of the UAV functionality and the 212

environmental conditions, makes the control system non- 213

robust and untrustable, especially under the effect of high 214

disturbances. In contrast, in heavy learning techniques, even 215

though the non-linear behaviours of the system models is 216

considered, run-time data processing and transfer causes huge 217

computation and communication cost that affects the energy 218

efficiency and response time of the control unit. Another 219

important fact in designing such control techniques is the non- 220

probabilistic behaviour of the UAV physics and environment 221

that makes the possible stochastic methods practically impos- 222

sible leading to a fuzzy solution for such a modeling, i.e., not- 223

probabilistic. 224

Overall, in this paper a fuzzy technique is proposed to 225

control the UAV over the mission and landing period. Gener- 226

ally, the FLC requires enormous computation which increase 227

the computational burden of the system [28], [29] and to 228

overcome this, there are some developed methods to reduce 229

its execution time. Authors in [30] proposed a technique to 230

simplify the FLC rule base table for induction motor drives. 231

Their results show that the simplified rule base has similar 232

result to the standard rule base and is less computational. 233

Another approach to accelerate the FLC computation process 234

is using a lookup table. Authors in [31] generated a lookup 235

table using Octave simulation. Results show that the gener- 236

ated lookup table is 7 times faster than the ordinary FLC. 237

In our work, a lookup table based FLC is used to control 238

the UAV. 239

In this technique, a non-probabilistic, non-linear member- 240

ship function monitors the influential parameters over the 241

mission and landing period upon which adjusts the control 242

parameters at run-time. In this method, there exists different 243

modes of control each of which provides different parameters 244

for the control system to stabilize the X -Y location over 245

the mission period and X -Y -Z location of the UAV over 246

the landing period. Two fuzzy controllers for the mission 247

and landing period are proposed that are called stabiliza- 248

tion and landing controllers respectively. The stabilization 249

controller during the mission and landing period while the 250

landing controller only operates during the landing period. 251

The membership function for these two fuzzy controllers are 252

based on different behaviors the UAV shows over the mission 253
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FIGURE 2. Block diagram of the software architecture of the vision-based controller.

and landing period. These functions are designed based on254

CFD simulation predictions of the ground effect strength for255

the proposed propeller configuration at different flight alti-256

tudes. Similar simulation methods have been utilized before257

(see e.g., [32], [33]), with the recent advances focusing on258

predicting propeller air flow near obstacles [34] and air flows259

associated with realistic UAV flight patterns [35], [36]. For260

UAV control system design, CFDmethods have been utilized261

for validating the propeller ceiling effect in bridge inspec-262

tion [37]. In the present work, CFD predictions are utilized for263

tuning the fuzzy membership functions for near-ground and264

far-ground conditions, for efficient stabilization and landing.265

III. SYSTEM OVERVIEW266

Figure 1 shows the block diagram of the overall hardware267

architecture of the proposed system. The architecture is268

divided into two main parts, i.e., high-performance and low-269

performance parts. The high performance part consists of a270

high-performance processor, Jetson TX2 in our case, high-271

volume data image sensor, and communication units. The272

received image data from the camera is processed in the273

Jetson TX2 for performing object detection. After detecting274

the object, position of the detected object and the distance275

of the UAV to the object are calculated and sent to the276

flight controller in low-performance part to calculate the277

best commands for stabilizing and landing. These commands278

will be sent to the electronic speed controller (ESC) that is279

responsible for controlling and regulating the speed of the280

UAV’s brushless DC (BLDC) motors, i.e., propeller electric281

motors.282

The low-performance part consists of a small flight con-283

troller, Pixhawk 2.4.8 in our case, and interface units. The284

Radio Control (RC) receiver, receives signals from the trans-285

mitter and send it to the flight controller, which puts this286

information into action by controlling the UAV as indicated287

by the original radio signals. This is used when the UAV is288

controlled by a pilot. The Radio Frequency (RF) transmitter289

is used to transmit the behaviour of the UAV to the ground290

station, to aid in the validation of the proposed algorithm.291

Figure 2 illustrates the software architecture of the vision-292

based controller. The proposed system is divided into four293

software algorithms, namely 1) Object detection, 2) Landing,294

3) stabilization, and 4) flight controller, thereof flight con- 295

troller is executing on the low-performance processor and 296

the others are executing on high-performance processor (it is 297

distinguished by different block colors in the figure). 298

Landing algorithm consists of distance estimation algo- 299

rithm and the landing controller part. The input of distance 300

estimation algorithm is the location of the detected object 301

in the image that is represented as an boundary box on the 302

image. This function first calculates the distance between 303

the UAV and the object, then it calculates the altitude of the 304

UAV based on this calculated distance. Using the 2D cam- 305

era gimbal the camera always points downward that makes 306

the distance estimation algorithm possible to calculate the 307

altitude, i.e., ’Z ’ of the UAV, needed for landing control. 308

The calculated altitude, i.e., ’Z ’ value in Figure 2, will be 309

subtracted from the target altitude Zref to calculate the ’Z ’ 310

error to be corrected in the landing controller. The output of 311

the landing controller is the throttle adjustment that will be 312

passed to the flight controller unit. 313

Stabilization algorithm consists of object location calcula- 314

tor and a stabilization controller. The input of object location 315

calculator is the location of the detected object in the captured 316

image. Based on this location, the ’X ’ and ’Y ’ location of the 317

UAVwill be calculated. Then, these values will be subtracted 318

from the reference ’Xref ’ and ’Yref ’ preparing the error to be 319

corrected in stabilization control algorithm. The output of the 320

stabilization control algorithm are the roll/pitch angles that 321

will be passed to the flight controller. 322

In the following each control algorithm will be discussed 323

in more details. 324

IV. PROPOSED CONTROL ALGORITHMS 325

A. OBJECT DETECTION ALGORITHM 326

After receiving the captured image from the camera, a convo- 327

lutional neural network (CNN) algorithm is applied for object 328

detection. In this work, a MobileNet object detector is used 329

that is a modified version of Single Shot Multibox (SSD) 330

object detection algorithm [38]. 331

MobileNet has been developed by [39] to work on mobile 332

and embedded platforms used for vision processing. The 333

MobileNet is based on a depthwise separable convolu- 334

tion. Basically, MobileNet is a class of lightweight deep 335

101112 VOLUME 10, 2022



M. Rabah et al.: AI-in-Loop Fuzzy-Control Technique for UAV’s Stabilization and Landing

FIGURE 3. MobileNet architecture.

FIGURE 4. 3D geometry for CFD simulations.

convolutional neural networks that are vastly smaller in size336

and faster in performance than many other popular models.337

Depth-wise separate convolutions first apply a single filter338

on each input to filter the input data, followed by 1× 1 con-339

volutions which combine these filters into a set of output340

features. These depth-wise separable layers almost mimic the341

function of typical convolution layers but with much faster342

speed and with a slight difference (typical convolution filters343

and combines into output features both, but in depth-wise344

separable convolution this is divided into two layers, one sep-345

arate layer for filtering and one separate layer for combining).346

This minimizes the model size and reduces computational347

power demands. All layers are followed by a batchnorm348

and ReLU nonlinearity except the final fully connected layer349

which feeds into a softmax layer for classification having no350

nonlinearity. In this paper we used 28 neural network layers351

without Counting depth-wise and point-wise convolutions.352

Figure 3 demonstrates the general architecture of MobileNet.353

B. LANDING ALGORITHM354

1) PREDICTION OF THE GROUND EFFECT BY CFD355

At low altitudes, the downwash of air from the UAV rotors356

hits the ground and slows down prior to turning sideways357

along the ground profile. According to Bernoulli’s law,358

this causes an increase in static pressure between the UAV359

frame and the ground surface, which then contributes to the360

UAV force balance as an additional lift term in near-ground361

conditions.362

For multicopter UAVs, the strength of the ground effect363

not only depends on the altitude, but also on the pro-364

pellers’ speeds of rotation, their size and shape, and365

their relative placement: The flow fields induced by the366

rotors are intertwined. Analytical models exist for single367

rotors [40], and data-based empirical models have also been368

devised for multi-rotor control [41]. In the present work,369

CFD simulations were employed for predicting the upward370

TABLE 1. CFD model conditions.

lift force at different altitudes, and tuning the controller 371

parameters. 372

CFD modeling was used for predicting the strength of 373

the ground effect at different UAV flight altitudes A [mm] 374

and propeller rotation speeds frot [rpm]. Figure 4 shows the 375

3D geometry model used in the CFD simulations. In the 376

rectangular computational domain, W = 15267 mm, D = 377

6000 mm and H varies according to the rotors’ midpoint alti- 378

tude A = 50, 100, 250, 1000 or 1500 mm, such that H −A = 379

4230 mm. Such a large fluid domain is necessary for ensuring 380

that the artificial boundaries do not affect the solution near 381

the rotors. However, to keep the model computationally suffi- 382

ciently simple, the UAV frame was excluded from the model 383

and only two of the four rotors were directly modeled; The 384

remaining two are resolved through a symmetry plane (the 385

front face in Figure 4). The distance from the two rotors to 386

the symmetry plane is 272.5 mm and 232.5 mm, respectively, 387

and they are 514.1mm apart from each other. The rotor blades 388

were modeled in ANSYS SpaceClaim using measurements 389

from the UAV. 390

ANSYS Fluent 2019R3 was used for both creating the 391

spatial discretization (mesh) and for solving the Reynolds- 392

Averaged Navier-Stokes equations in the steady state. The 393

polyhedral mesh used in the solution consists of roughly 394

115000 volume cells, with an appropriate boundary layer 395

structure on the walls (cf. Figure 6). Air was treated as 396

incompressible turbulent gas, using the k−ω SST turbulence 397

specification. The boundary and cell zone conditions used in 398

the CFD simulations are listed in Table 1. 399

The CFD simulation results consist of the air velocity com- 400

ponents and static pressure values at all points in the domain. 401

Figure 5 shows a comparison of the predicted flow velocity 402

magnitudes at propeller midsection planes for A = 50 mm 403

and A = 1500 mm. Here, frot = 4000 rpm, which is the max- 404

imum rated rotation speed for the propellers. Clearly the flow 405

fields induced by the rotors are intertwined in near-ground 406

conditions, whereas the rotors operate more independently 407

away from the ground. 408

The upward lift on the propellers, as predicted by CFD, 409

consists of pressure and viscous components. As expected, 410

the CFD results show that the maximum lift is seen in near- 411

ground conditions (A = 50 mm) and at the highest rotation 412

speed (frot = 4000 rpm). Figure 7 displays the predicted 413

lift in relation to that maximum force, for several altitudes 414

and rotation speeds. It is clear that the ground effect prevails 415
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FIGURE 5. Ground effect prediction by CFD simulations: Air velocity magnitude [ m
s ] at the propeller plane.

FIGURE 6. CFD mesh near a propeller.

FIGURE 7. The relative lift at different altitudes and propeller speeds. The
black squares denote CFD simulation results.

approximately for A = 0 . . . 500 mm. At higher altitudes, the416

lift is approximately 70% of the observed maximum value.417

2) DISTANCE ESTIMATION418

The pinhole camera model [42] describes the mathemati-419

cal relation between the coordinates of a point in three-420

dimensional space, its projection onto the image plane of421

an ideal pinhole camera and the focal length of the camera.422

Equation 1 and 2 describe the mathematical relation of the423

FIGURE 8. The geometry of a pinhole camera.

pinhole camera. 424

f
d
=

r
R

(1) 425

d = f ×
R
r

(2) 426

where f is the focal length of the camera, r radius of the 427

marker in the image plane,R radius of themarker in the object 428

plane, and d distance from camera to the object in (cm). From 429

the previous equations, d is calculated by using trigonometry 430

as demonstrated in Figure 8. 431

3) LANDING CONTROL ALGORITHM 432

After calculating the error between the Z and Zref , the error 433

value is fed to the landing control as shown in Figure 2 to 434

give out the suitable throttle adjustment value that is required 435

to land the UAV safely on the detected object. 436

To account for the ground effect that exists near the ground 437

while the UAV is descending, FLC is utilized to control the 438

UAV landing. In the present work, the UAV lifting force is 439

assumed to be divided into 1) UG (Under ground effect), 440

and 2) OG (Outside ground effect) conditions. Here, UG is 441

a condition where, due to the ground effect, less power is 442

required, and OG refers to conditions other than UG. 443

The definition of a fuzzy set permits one to assign values 444

to fuzzy variables as inputs and outputs. The input/output 445
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FIGURE 9. Fuzzy logic input/output membership function.

membership functions are shown in Figure 9 and the rule base446

is given in Table 2. A Mamdani fuzzy inference system [10]447

with triangular membership functions is used to apply our448

set of linguistic control rules obtained from experiments and449

CFD simulations. This is done by formulating the mapping450

from the given inputs, i.e., distance and vertical speed, to the451

output, throttle adjustment. In Figure 9(a), linguistic variables452

indicate the position of the UAV, where the fuzzy linguistic453

variables are defined as UG_NG (UG range Near Ground),454

UG_FG (UG range Far Ground), OG_S (OG range Small),455

OG_M (OG range Medium), OG_B (OG range Big) and456

OG_VB (OG range Very Big) for the corresponding distance457

input. The fuzzy membership functions UG-NG, UG-FG,458

OG-S have been constructed based on CFD predictions in459

Subsection IV-B1. Figure 9(b) specifies the speed of the460

UAV and its direction, where the linguistic variables are461

NB (Negative Big), NS (Negative Small), Normal, PS (Pos-462

itive Small), PB(Positive Big). Figure 9(c), in turn, shows463

the throttle adjustment that needs to be added or subtracted464

from the actual throttle percentage in the flight controller465

as given in Equation 3, where Trottleinput is the throttle466

value of flight controller, Trottlepre is the previous throttle467

input, and Trottleadj is the throttle adjustments values from468

landing controller. The linguistic variables of the output are469

NB, NM (Negative Medium), NS, Normal, PS, PM (Positive470

Medium), and PB.471

To tune a FLC, the ranges of its parameters can be either472

adjusted manually or it can be multiplied by a gain value as473

given in Equation 4, where the throttle adjustment Throttleadj474

is the calculated output of the FLC as given, K is the tuning475

gain, i is the input number, µi is the corresponding member-476

ship value, µ is the fuzzy input, and n is the total number477

of inputs. The FLC uses MIN for t-norm operation, Max for478

s-norm operation,MAX for aggregation,MIN for implication,479

and Centroid for defuzzification.480

Throttleinput = Throttlepre ± Throttleadj (3)481

Throttleadj = K
(∑n

i=1 µiµ(i)∑n
i=1 µ(i)

)
(4)482

4) LANDING RULE BASE EXPLANATION483

The FLC rule base is designed to continuously monitor the484

inputs; UAV’s speed and its distance, and theUG range during485

landing process, to provide an efficient and quick landing.486

The control algorithms of the FLCwhich is used to run during487

the landing process is as follow:488

TABLE 2. Fuzzy logic rule base for safe landing.

• If the UAV is in the OG range, a normal landing algo- 489

rithm will be applied to maintain a fixed speed while 490

landing (−0.125m/s). 491

• When the UAV reaches the UG region, a special speed 492

control algorithm based on the position of the UAV will 493

be triggered to overcome the effect of the ground effect 494

while landing. 495

• The FLC checks the moving direction of the UAV, 496

in which it will send a high negative throttle adjustment 497

values if it was moving upwards in order to change its 498

direction. 499

• If landing speed increases or decreases, the FLCwill use 500

the throttle adjustment to make it constant. 501

The rule base shown in Table 2, works in two different 502

modes based on the UAV distance,Mode A andMode B. 503

Mode A is the normal operationmode of the UAVwhen it is 504

outside the UG region, i.e., the movement is mainly horizon- 505

tal and the view shouldn’t be focused in one specific object. 506

Moreover in this mode there is not any effect of the ground, 507

as an external environmental effect, on the controller system. 508

In this mode, the throttle adjustment values work between NS 509

to PS to keep a constant landing speed of −0.125m/s, until 510

any sudden change in speed or direction of the UAV occurs 511

where it will generate a throttle adjustment corresponding to 512

this change (NM to PM). 513

Mode B is the second scenario where the UAV is within the 514

UG range. Through this situation, the internal and external 515

state changes and the environmental information is mainly 516

high, due to focus on specific area, and the speed is low. 517

In this region, the throttle adjustment output is shifted to 518

higher gains values according to the UAV position whether 519

it’s very close to the ground (UG_NG) or far from ground 520

(UG_FG). In the UG_FG, the throttle adjustment is shifted 521

from (NS-PS) to (NM-PM) to overcome the ground effect 522

and constrain the landing speed of -0.125m/s. In the UG_NG, 523

the ground effect gets more effective which will lead to the 524

decrease of landing velocity until the UAV keeps hovering 525
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above the ground without being able to land. To overcome526

this problem, the throttle adjustment is shifted again to higher527

values (NB-PB) to be able to land safely. The transition region528

between Mode A and Mode B needs to be smooth to avoid529

any kind of abrupt speed change. This transition response530

depends on the overlap region between UG_FG and OG_S531

fuzzy linguistic variables.532

C. STABILIZATION ALGORITHM533

1) OBJECT LOCATION CALCULATOR534

The output of the object detection algorithm is represented535

as an boundary box on the image. From this box, the cur-536

rent location of the object x, y and its width and height are537

extracted. The location of the detected object is represented538

in pixel coordinates (x, y). These coordinates are changed so539

that the center coordinates are converted from (width2 ,
height

2 )540

to (0, 0) by using Equation 5 and Equation 6, where X and541

Y are the new position in pixels, width and height are the542

resolution of the input image [43]. These values are fed to the543

stabilization control algorithm.544

X = x −
width
2

(5)545

Y = y−
height

2
(6)546

2) STABILIZATION CONTROL ALGORITHM547

In Figure 2, once the object is detected, its position is given to548

the object stabilization block to start the stabilization process.549

In this work, a Fuzzy-PID controller is utilized to overcome550

the instability of the UAV, especially under environmental551

disturbances such as wind. Two inputs are given to the Fuzzy-552

PID, position (pos) and change of position (4pos), and three553

outputs are acquired, Kpf , Kif and Kdf which are determined554

by a set of fuzzy rules that are used to adapt the Kp, Ki and555

Kd gains of the PID controller as in Equation 7-9, where G is556

a gain value that can be used to for tuning the output of the557

Fuzzy-PID, P is the sum of the proportional gain Kp and the558

Kpf gain, I is the sum of the integral gain Ki and the Kif gain,559

and D is the sum of the derivative gain Kd and the Kdf gain.560

The output of the Fuzzy-PID is described in Equation 10,561

where the error e(t) = pos and y(t) is the output of the system,562

which in this system represents the Roll/Pitch angles of the563

UAV. Figure 10 depicts the basic structure of the Fuzzy-PID564

controller.565

P = (G× Kpf )+ Kp (7)566

I = (G× Kif )+ Ki (8)567

D = (G× Kdf )+ Kd (9)568

y(t) = (P× e(t))+ (I ×

t∫
0

e(τ )d(τ ))+ (D×
de(t)
dt

) (10)569

Figure 11 shows the inputs and outputs membership func-570

tion of the Fuzzy-PID, where Figure 11(a) indicates the571

position of detected object in pixels for x position and572

y position. Moreover, it displays the (4pos) which ranges573

FIGURE 10. Fuzzy-PID basic structure.

FIGURE 11. Fuzzy-PID input/output membership function.

from −20 to 20. The fuzzy linguistic variables of the inputs 574

are defined as NB, NS, ZE (Zero), PS, and PB. Figure 11(b) 575

specifies the output of Fuzzy-PID (Kpf ,Kif and Kdf ) that is 576

added or subtracted to the fixed gains Kp,Ki and Kd , as illus- 577

trated in Equations 7-9, and its linguistic variables are defined 578

as NB, NS, ZE (Zero), PS, and PB. Kp,Ki and Kd values are 579

obtained from studying the effect of these parameters on the 580

simulation model that is covered in Section V.B.2, and was 581

further explained in our previous work [20]. The G value is 582

by default ‘1’, however for the sake of simplicity in tuning 583

the Fuzzy-PID without the need to modify its membership 584

functions, the G value can be modified to tune different 585

systems. 586

3) STABILIZATION RULE BASE EXPLANATION 587

Designing the rule-base for the Fuzzy-PID is the most crucial 588

part because the whole function of this controller depends 589

on it. For this, several experiments were conducted in addition 590

to experience to design it. Table 3-5 show the rule base that is 591

used to utilize the P, I and D gains of the PID controller for 592

the UAV stabilization. 593

The principles of constructing the Fuzzy-PID rule base are 594

as follow: 595

• When pos is NB/PB (UAV is far from the center of the 596

detected object) and the UAV is moving away from the 597

detected object (e.g., pos is NB and 4pos is also NB), 598

Kpf should be big to increase the P gain of the PID to 599

push the UAV towards the center of the detected object. 600
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On the other hand, Kdf and Kif ought to be NB, so that601

I and D become very small for better following perfor-602

mance and to avoid any oscillation.603

• When pos is NB/PB and the UAV moves towards the604

center of the detected object (e.g., pos is NB and 4pos605

is PS/PB), Kpf is slightly increased when 4pos is PS606

to slightly increase its speed. On contrast, if 4pos is607

PB, which means it moves fast towards the center of the608

detected object, a small negative value (NS) is given to609

slightly decrease the P gain in order to reduce the UAV610

speed to be able to keep upwith the center of the detected611

object. In both cases, Kif is either ZE or NS to avoid any612

integral saturation or overshoot.613

• When pos is NS/PS (UAV is close to the center of the614

detected object) and 4pos is NB/PB, this indicates that615

the UAV is moving in high speed away from the object.616

For this,Kpf ,Kif andKdf are treated as the first principle617

to avoid losing the detected object.618

• When pos is NS/PS, and UAV moves towards the619

detected object, P gain is decreased by a small value and620

D gain is slightly increased for steady.621

• When pos is ZE, only Kif and Kdf will affect the PID622

controller and the values of I and D gains are increased623

to keep a minimum speed to stabilize the UAV above the624

center of the detected object.625

TABLE 3. Fuzzy-PID rule base for Kpf gain.

TABLE 4. Fuzzy-PID rule base for Kif gain.

TABLE 5. Fuzzy-PID rule base for Kdf gain.

V. EXPERIMENTAL SETUP626

A. UAV PHYSICAL SYSTEM627

In this work, a UAV multicopter system is demonstrated628

as shown in Figure 12. The multicopter consists of629

FIGURE 12. UAV multicopter practical system.

FIGURE 13. Output of the object detection algorithm.

a high-performance CPU, Jetson TX2, installed on a J120 630

carrier board, powered with a 3S 11.1V LiPo battery that 631

weights 120g and is connected to an ultra HD Logitech 632

webcam throughUSB. The camera is attached to a 2D-gimbal 633

that is used to make toe camera face the ground while the 634

multicopter is landing. The proposed system also consist of 635

a low-performance CPU, Pixhawk 2.4.8 flight controller, that 636

is based on a 180MHz ARM R© Cortex R©M4, and is equipped 637

with a 10DoF IMU, eight PWM outputs, four UART and 638

other different connections. The flight controller is build on 639

an open source program ‘‘ArduPilot’’, which is codded in 640

C++. Furthermore, it can be easily monitored or config- 641

ured from a ground control station using an RF transmit- 642

ter/receiver. The low-performance CPU is connected to the 643

high-performance CPU using a UART communication. 644

B. OBJECT DETECTION 645

The CNNwas trained to detect two classes, a rectangle object 646

‘‘in’’ and a circle object ‘‘out’’. A custom image dataset that 647

contains 10000 images of the required images on different 648

backgrounds has been used for training. The images have 649

been captured by the camera installed on the multicopter 650

and have been manually labeled. The images are divided 651

into two parts, training and test dataset. 20% of the images 652

are used to test the network, while the other 80% are used 653

to train the dataset. The network training parameters values 654

are based on [39], and is trained for 100,000 iteration until 655

the error does not significantly decrease, with a learning 656

rate of 0.004 and decay factor 0.95. The root mean square 657

propagation (RMSprop) optimization algorithm is used for 658

optimizing the loss functions. The training is conducted on 659

a desktop with the following specification: AMD Ryzen 7 660

2700X 3.70 GHz CPU, 16 GB RAM, and a NVIDIA RTX 661
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FIGURE 14. Simulink model of the Multicopter simulation platform.

FIGURE 15. Performance comparison of the FLC and PID during landing process.

2080TI GPU. The trained CNN achieved an accuracy of 84%662

with average fps of 25.1.663

The CNN algorithm used for detecting the objects is a664

SSD_mobilenet_v1 which is optimized to run on embed-665

ded platforms in real-time. The SSD_mobilenet_v1 is666

implemented on the Jetson TX2 and coded using python667

programming language. The object detector is trained to668

detect two objects, a circle object and a rectangle object as669

shown in Figure 13. As illustrated in this Figure, the average670

fps achieved by SSD_mobilenet_v1 is 25fps which make it671

suitable for real-time applications.672

To perform object detection and landing, the USB camera673

keeps on taking continuous snapshots on 640 × 480 pixels.674

Once the objects are detected and distance between the mul-675

ticopter and the objects is estimated, landing and stabilization676

processes are triggered to work simultaneously to ensure the677

a smooth and safe landing of the multicopter over the center678

of the detected object.679

VI. RESULTS 680

A. SIMULATION RESULTS 681

For evaluating the proposed technique, MATLAB/Simulink 682

simulation environment has been used [44]. Figure 14 shows 683

the Simulink models of the multicopter platform. Within 684

this simulation, multicopter parameters, e.g., initial location, 685

weight, size, etc., can be changed. The location error is calcu- 686

lated by taking the difference between the multicopter current 687

position (X , Y , and Z ) and the reference position (Xref , Yref , 688

and Zref ). Afterwards, the error is passed to the proposed 689

stabilization and landing control blocks thereafter the attitude 690

commands (Roll/Pitch/Throttle) will be passed to the attitude 691

controller block and the multicopter control mixing block, 692

which are responsible to convert the attitude commands to 693

actuation signals to the motors. The multicopter dynamics 694

consists of mathematical equations about the dynamics of 695

different parts of the multicopter. More details about these 696

equations can be found in [45]. 697
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FIGURE 16. (X , Y , Z ) location of the multicopter during the simulation period.

FIGURE 17. Location of the multicopter in 3D spatial domain during the simulation period.

FIGURE 18. Statistical analysis of (X , Y , Z ) location of the multicopter during the simulation period.

1) FUZZY LOGIC BASED LANDING CONTROL698

To show the performance of the proposed FLC controller,699

a PID controller is first implemented and tested to obtain the700

proper gain parameters. Afterward, FLC is implemented and701

tested for the same Simulink model as shown in Figure 14(c).702

Figure 15(a) shows the response of PID with different tun-703

ing parameters. From this figure, the landing speed changes704

by different PID gains. The ‘‘green line’’ in this figure has705

the fastest landing speed, however, it suffers from oscillation706

when reaching the ground, which will lead to the damage707

of the multicopter. Other responses are much safer but they708

suffer from lower landing speed especially near the ground709

due to the ground effect.710

As mentioned in Section IV.B.3, a gain value K can be711

multiplied by the FLC output for better tuning. Figure 15(b)712

shows the output of FLC with different gains. The higher713

FIGURE 19. Controllers landing time during simulation phase.

the K , the faster the landing speed. However, when K is very 714

high, it will cause bumping leading to the damage of the 715

multicopter. Therefore, a proper K should be selected. 716

A landing comparison between the proper selected param- 717

eters of PID and FLC is shown in Figure 15(c). The total time 718

for landing using the PID controller is 60 sec, while FLC 719
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TABLE 6. Average error of the designed techniques during simulation period.

takes 40 sec. Due to the ground effect, the PID has slower720

response while approaching the ground (UG range) due to its721

fixed gains. On contrast, the FLC shows better response when722

landing due to its rule base which combines both speed and723

distance, that will ensure a smooth and safe landing process.724

2) STABILIZATION AND LANDING PROCESS725

In our scenario, the multicopter starts to ascend up to726

3 meters above the ground surface and will hold its posi-727

tion for 15 seconds. After that it decides to land on a pre-728

specified target that has been defined on the ground by the729

object. We inserted random disturbance in different X , Y ,730

and Z directions to model an uncertain environment for the731

multicopter.732

To show the efficiency of the proposed technique with the733

state-of-the-art, we implemented different control algorithms734

for both stabilization and landing parts. For the landing part735

we implemented the pure PID control algorithm for UAVs736

in [24] and [25], called as L-PID in this paper, and for the sta-737

bilization algorithm we implemented a Gain-scheduled PID738

proposed in [16] and a fuzzy control proposed in [20] (called739

S-GPID and S-FLC respectively). Our proposed control algo-740

rithm in the comparison is shown by S-ours and L-ours for741

stabilization and landing respectively. This comparison setup742

forms 6 different configurations for the UAV control tech-743

niques based on two different landing controls, i.e., L-PID744

and L-Ours, and three stabilization control techniques, i.e.,745

S-GPID, S-FLC, and S-ours. We discuss the results obtained746

from these 6 configurations in the rest of the results section.747

Figures 16(a-c) show the X , Y , and Z positions of the748

multicopter while using different control techniques respec-749

tively. It can be seen that S-ours achieved better stability and750

settling time compared to other techniques in X -Y plane.751

Figure 18 shows the corresponding statistical values about the752

occurred error in X , Y , and Z axes, i.e., the standard deviation753

(STD), average/mean error (AVG), maximum error (MAX),754

which is responsible for returning the maximum error in our755

dataset, and Table 6 shows the average statistical values of756

the designed techniques during the landing and stabilization757

process. Equation 11 and Equation 12 show the mathematical758

formulas for calculating the corresponding statistical values759

shown in Figure 18, where ni is a value in the data set that760

corresponds to the position of the multicopter in X , Y , and Z ,761

and N is the total number of data points.762

STD =

√∑
|ni − AVG|2

N
(11)763

AVG =

∑
ni

N
(12)764

The average error for X and Y are approximately zero for 765

all the control configurations. This is because of the random 766

disturbances that have been injected in different direction on 767

X -Y plane. However, the MAX and STD values show that the 768

proposed technique can significantly reduce the disturbance 769

error in X and Y dimensions. This can be noticed for both 770

configurations with our proposed stabilization, i.e., L-PID + 771

S-ours and L-ours + S-ours. In Z dimension, the landing 772

algorithm shows its robustness by reducing the MAX and 773

STD values of the error comparing to the other techniques. 774

It can be seen that the stabilization part improves the 775

MAX and STD of error while working with the proposed 776

landing controls, i.e., L-ours+ S-ours, comparing to L-PID+ 777

S-ours and L-ours + S-GPID, and L-ours + S-FLC. This 778

shows that the proposed landing and stabilization algorithm 779

give the best outcome when both techniques are working 780

together as shown in Figure 17. This is due to the fact that 781

the command signals to the propellers are the ensemble of 782

both controller commands that are merged and tuned together 783

to manipulate the mechanical parts of the multicopter, such 784

as propellers and other mechanical parts. Any change or 785

disturbance of the multicopter location in any axes affects its 786

location in other axes since the multicopter control mixing 787

unit converts the required attitude corrections into throttle 788

percentages for each motor. The higher the attitude correc- 789

tions values, the more throttle given to each motor, which 790

in return will lead to more disturbances of the multicopter 791

during landing. 792

Figure 19 shows the landing time of the 6 different 793

controllers. Using the full-fledged approach, i.e., L-ours + 794

S-ours, will reduces the operation time by 6%, 8%, 51%, 795

59%, and 65% comparing to (L-ours + S-FLC, L-ours + 796

S-GPID, L-PID + S-ours, L-PID + S-FLC, and L-PID + 797

S-GPID) respectively. The reason is that by reducing the 798

amount of disturbances and providing more stability, the 799

multicopter can reach the target in a faster and smoother way 800

comparing to the other techniques. 801

B. RESULTS ON THE REAL PLATFORM 802

Figures 20(a-c) show the X , Y , and Z positions of the 803

multicopter while using different control techniques in our 804

experiment on a real environment. Figure 22 shows the cor- 805

responding statistical values about the occurred error in X , Y , 806

and Z axes, i.e., the standard deviation (STD),maximum error 807

(MAX), and average error (AVG), while Table 7 shows the 808

average statistical values of the designed techniques during 809

the landing and stabilization process throughout the experi- 810

mental period. As it can be seen, opposite to the simulation 811

results the average disturbance in X and Y direction is not 812
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FIGURE 20. (X , Y , Z ) location of the multicopter during the experimental period.

FIGURE 21. Location of the multicopter in 3D spatial domain during the experimental period.

FIGURE 22. Statistical analysis of (X , Y , Z ) location of the multicopter during the experimental period.

TABLE 7. Average error of the designed techniques during experimental phase.

zero, showing the environmental condition is not always813

following a uniform random pattern. Consequently, the mul-814

ticopter shows much unstable behaviour with respect to envi-815

ronmental and control stimuli. It can be seen that the proposed816

technique can significantly reduce this unexpected/unwanted817

disturbance.818

L-PID + S-GPID shows the poorest response among all819

the tested techniques. Although the S-GPID is easy to imple-820

ment, entailing a fast way to control the system, it will821

fail to control the multicopter in case of high disturbances,822

especially when combined with L-PID because of its linear- 823

ity which will require continuous change of the PID gains. 824

On the other hand, S-FLC have better outcome compared 825

to S-GPID because this controller considers both the error 826

value and its derivative as the inputs targeting to minimize 827

the error between the reference and the actual output. Since 828

the proposed Fuzzy-PID controller S-ours auto-tunes the PID 829

gains, according to its two inputs 1) position and 2) change 830

of the position of the multicopter, it can rapidly reduce 831

the error between the multicopter and center of target with 832
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TABLE 8. Computational timing comparison of the designed techniques.

FIGURE 23. Controllers landing time and energy consumption during
experimental period.

a better stability. Thus, the Fuzzy-PID controller combines833

the pros of both a PID controller and a FLC; resulting in the834

best outcome in contrast with the other techniques.835

Figure 23 shows the overall landing time that is taken836

while using different techniques. In general the proposed837

technique outperforms the average error values by 20%, 45%,838

18%, 51%, and 78% and the overall landing time by 11%,839

19%, 38%, 43%, and 47% compared to (L-ours + S-FLC,840

L-ours + S-GPID, L-PID + S-ours, L-PID + S-FLC, and841

L-PID + S-GPID) respectively. One main reason to achieve842

such a considerable improvement for the overall landing time843

in comparison with the similar results over the simulation844

phase, shown in Figure 19, is that the high disturbance that845

the multicopter has been experienced in real platform is846

much higher than the simulation. Lower disturbance mainly847

provides better opportunity for the vision camera and object848

detection to follow the object that decrease the amount849

of object detection time and error in loop summing and850

vice versa.851

Figure 23 also compares the energy consumption of the852

proposed technique with the other techniques. The proposed853

technique can reduce the overall energy consumption of the854

multicopter by 15%, 21%, 28%, 36%, and 42% comparing855

to (L-ours + S-FLC, L-ours + S-GPID, L-PID + S-ours,856

L-PID + S-FLC, and L-PID + S-GPID) respectively. The857

reason is that removing the disturbances can help to reduce858

the energy from both computational and mechanical energy859

consumption. Less disturbances provide more stable image860

that makes the image denoising and object detection faster861

and, consequently, more energy efficient. Also, any unwanted862

disturbance from both environment and control actuation, can863

cause a reaction from the controller with energy consumption864

in mechanical part. Therefor reducing the disturbance can865

reduce the energy consumption of the mechanical part.866

In general, the FLC is a complicated controller that requires867

a long computation time. In this work, the Jetson TX2 is868

responsible for performing three different tasks, where two869

of them are executed simultaneously as shown in figure 2. 870

The object detection part takes a large execution time due 871

to its huge data size, and implementing two other algo- 872

rithms, e.g., FLC and Fuzzy-PID controllers, in parallel with 873

the object detection will cause processing delay. For this, 874

MATLAB/Simulink is used to generate a lookup table that 875

calculates the output of the FLC and Fuzzy-PID controllers 876

corresponding to different input values instead of the real- 877

time FLC. Table 8 shows the average time for executing 878

the three algorithms; object detection, landing, and stabiliza- 879

tion, of the designed controllers. As can be seen in Table 8, 880

due to the usage of lookup table, the computation time to 881

execute a FLC and a Fuzzy-PID is slightly larger than a 882

Gain-Scheduled PID controller in the stabilization algorithm 883

(average 0.35 msec and 2.35 msec respectively), and the 884

difference between a FLC and a PID controller is 0.96 msec 885

on average in the landing process. Combining both timing, 886

in addition to the object detection algorithm and calculating 887

the total time of each designed technique, our proposed con- 888

troller L − ours+ S − ours execution time is slightly higher 889

and can be neglected in comparison to other techniques. 890

Furthermore, having a better stability, settling time, and more 891

energy efficient compared to the other approaches, makes the 892

proposed technique more suitable for such application. 893

VII. CONCLUSION 894

In this paper, two fuzzy control techniques for stabilization 895

and landing are proposed that considers manipulating the 896

multicopter’s roll and pitch. The mission (landing) for the 897

UAV is defined to track (land on) an object that is detected 898

by a deep learning object detection algorithm. The inputs of 899

the controller are the location and speed of the UAV that has 900

been calculated based on the location of the detected object. 901

Two fuzzy control techniques are proposed to control the sta- 902

bilization of the UAV during the mission and to overcome the 903

ground effect during the landing period. Several experiments 904

are performed, and statistical analysis of the UAV location 905

are acquired. The obtained results show that the proposed 906

technique has low computation time, better performance, and 907

less energy consumption for both two operational modes of 908

mission and landing in comparison with other technique. 909

Future studies could improve the current work by studying 910

the effect of using a reinforcement learning technique to auto- 911

tune the PID controllers. Furthermore, using an adaptive FLC 912

for landing process with a simplified rule base technique to 913

overcome the ground effect is also considered to improve 914

this work. 915
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