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Abstract

Resolving sets are designed to locate an object in a network by measuring the distances to
the object. However, if there are more than one object present in the network, this can lead to
wrong conclusions. To overcome this problem, we introduce the concept of solid-resolving sets.
In this paper, we study the structure and constructions of solid-resolving sets. In particular,
we classify the forced vertices with respect to a solid-resolving set. We also give bounds on
the solid-metric dimension utilizing concepts like the Dilworth number, the boundary of a
graph, and locating-dominating sets. It is also shown that deciding whether there exists a
solid-resolving set with a certain number of elements is an NP-complete problem.

Keywords: resolving set, metric dimension, solid-metric dimension, detection of several
objects.

1 Introduction

The graphs considered in this paper are simple, undirected, and finite. Let G be such a graph.
We denote the vertex set of G by V (G) and the edge set by E(G) (or simply V and E if the graph
in question is clear from the context). The distance dG(v, u) between two vertices v and u is the
length of any shortest path between them. The diameter of the graph G is denoted by diam(G)
and defined as diam(G) = maxv,u∈V {dG(v, u)}. If dG(v, u) = 1, we say that v and u are adjacent,
and denote v ∼ u. The open neighbourhood of a vertex v is defined as NG(v) = {u ∈ V (G) | v ∼ u},
and the closed neighbourhood as NG[v] = NG(v) ∪ {v}. The degree degG(v) of a vertex v is the
cardinality of the open neighbourhood NG(v). We omit the subscripts if the graph in question is
clear from the context. A clique is a subset of vertices whose elements are all (pairwise) adjacent.
The path and the complete graph with n vertices are denoted by Pn and Kn, respectively.

The Cartesian product of G and H is denoted by G�H and defined as follows: the set of
vertices is V (G�H) = V (G)× V (H) = {au | a ∈ V (G), u ∈ V (H)} and there is an edge between
x = x1x2 ∈ V (G�H) and y = y1y2 ∈ V (G�H) if either 1) x1 = y1 and x2 ∼ y2, or 2) x1 ∼ y1
and x2 = y2. Notice that dG�H(au, bv) = dG(a, b) + dH(u, v).

Consider a graph G with the vertex set V . Let R = {r1, . . . , rk} ⊆ V . The distance array of
a vertex v with respect to R is defined as DR(v) = (d(r1, v), . . . , d(rk, v)). If each vertex has a
unique distance array, then the set R is called a resolving set of G. Resolving sets were introduced
independently by Slater [19] and Harary and Melter [10] in the 1970’s, and since then many new
variations have been presented. Resolving sets have applications, for example, in robot navigation
[14], chemistry [3], and network discovery and verification [1].

Let X be a nonempty set of vertices with unknown elements. If |X| = 1, we can determine the
elements of X with a resolving set. What happens when X has two or more elements? First of all,
we define the distance (see [15, 9]) from a vertex v to the set X as d(v,X) = minx∈X{d(v, x)}. The
distance array of the set X with respect to R is DR(X) = (d(r1, X), . . . , d(rk, X)). Furthermore,
we denote DR({v1, . . . , vn}) = DR(v1, . . . , vn). Let us consider the square grid P9�P7 in Figure 1
with the resolving set R = {r1, r2} (see [14]). For X = {x, y} we have DR(X) = (7, 5). However,
for the vertex u we also have DR(u) = (7, 5). Now the use of a resolving set leads us to thinking
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Figure 1: The square grid P9�P7. The vertices that are at the same distance as x from r1 or y
from r2 are outlined with the dashed lines.

that X = {u}, which is false. For these situations, we define a new class of resolving sets that can
differentiate one vertex from a set of vertices with two or more elements.

Definition 1.1. Let G be a graph with the vertex set V . A set S ⊆ V is a solid-resolving set of
G if for all vertices x ∈ V and nonempty subsets Y ⊆ V ,

DS(x) = DS(Y )

implies that Y = {x}. The minimum cardinality of a solid-resolving set is called the solid-metric
dimension of G, and it is denoted by βs(G).

It is clear that V (G) is a solid-resolving set of G. Indeed, to determine the elements of X we
only need to check which elements of DV (X) are zeros. Thus, every graph has a solid-resolving
set, and we can focus on finding the solid-metric dimension of the graph. It is easy to see from the
previous definition that a solid-resolving set is always a usual resolving set. Thus, a solid-resolving
set can determine one vertex accurately. If the distance array given by the solid-resolving set does
not fit any one vertex, then we know that there are at least two objects in the graph. Similar
questions have been studied for identifying codes [12] and locating-dominating sets [13].

We will find an easy characterisation for solid-resolving sets in Section 2. Moreover, we discuss
the vertices which are forced (if any) to be in a solid-resolving set. In Section 3, we consider
the relations between solid-resolving sets and other concepts such as locating-dominating sets,
the boundary of a graph, and other classes of resolving sets. We also consider the solid-metric
dimensions of trees and cycles. In Section 4, we study the solid-metric dimension of the n-
dimensional hypercube. We establish a connection of solid-resolving sets to the vicinal preorder and
the Dilworth number in Section 5. In Section 6, we prove bounds for the solid-metric dimensions
of Cartesian and strong product of graphs. Then, in Section 7, we give upper bounds for the
maximum degree and clique number of the graph when the solid-metric dimension is given. Finally,
in Section 8, we prove that deciding whether there exists a solid-resolving set of given size is an
NP-complete problem.

2 Basics

Before we begin to consider the solid-metric dimension or the connection to other concepts, we
make some observations on the structure of solid-resolving sets. In the following remark, we first
discuss the case where the considered graph is disconnected.

Remark 2.1. Let G be a disconnected graph with k connected components G1, . . . , Gk. Let S
be a solid-resolving set of G, and denote Si = S ∩V (Gi) for all i ∈ {1, . . . , k}. The set Si must be
nonempty for all i. Otherwise there is a vertex u ∈ Si such that d(s, u) =∞ for all s ∈ S and we
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have DS(x) = DS(x, u) for all x ∈ V \ {u}. Furthermore, each Si must be a solid-resolving set of
Gi.

By the previous remark, it suffices from here on to consider nontrivial connected graphs, that
is, connected graphs with at least two vertices. The next result gives us a useful characterisation
for solid-resolving sets.

Theorem 2.2. Let G be a nontrivial connected graph with the vertex set V . A set S ⊆ V is a
solid-resolving set of G if and only if for all distinct x, y ∈ V there is an element s ∈ S such that

d(s, x) < d(s, y). (1)

Proof. Assume that S ⊆ V satisfies (1). Let x ∈ V and let Y be a nonempty subset of V . Assume
that Y 6= {x}, i.e., there exists an element y ∈ Y such that y 6= x. Since S satisfies (1), there
is an element s ∈ S such that d(s, y) < d(s, x). Now d(s, Y ) < d(s, x), and clearly we have
DS(x) 6= DS(Y ). Thus, the set S is a solid-resolving set of G.

Let S be a solid-resolving set. Assume to the contrary that (1) does not hold. Then there
are two distinct vertices x, y ∈ V such that d(s, x) ≤ d(s, y) for all s ∈ S. Let Y = {x, y}. Now
d(s, x) = d(s, Y ) for all s ∈ S, and therefore DS(x) = DS(Y ), a contradiction.

Consider again the example in Figure 1. Clearly, we have d(r2, u) < d(r2, x). However, since
d(r1, u) = d(r1, x), there does not exist any ri ∈ R such that d(ri, x) < d(ri, u). Now (1) is not
satisfied and the set R is not a solid-resolving set of P9�P7 according to Theorem 2.2.

The following result is an immediate corollary of the previous characterisation.

Corollary 2.3. Let G be a nontrivial connected graph. Then βs(G) ≥ 2.

In light of Theorem 2.2, it is easy to see that a superset of a solid-resolving set is also a solid-
resolving set. Indeed, if we add elements to a solid-resolving set, the set still satisfies (1). The
structure of a graph may demand that a specific vertex must be included in any solid-resolving
set. Next we will define these vertices and study their properties.

Definition 2.4. A vertex u ∈ V is called a forced vertex of a solid-resolving set of G if it must
be included in any solid-resolving set of G.

Theorem 2.5. A vertex u ∈ V is a forced vertex of a solid-resolving set G if and only if there
exists a vertex v ∈ V \ {u} such that N(u) ⊆ N [v].

Proof. Consider distinct vertices u, v ∈ V such that N(u) ⊆ N [v]. We will show that S = V \ {u}
is not a solid-resolving set. Assume to the contrary that S is a solid-resolving set. According to
Theorem 2.2, there exists an element s ∈ S such that d(s, u) < d(s, v). Since s 6= u, a shortest
path from s to u must go through an element of N(u), say x. Now we have d(s, u) = d(s, x) + 1.
Since x ∈ N [v], we have d(s, v) ≤ d(s, x) + 1 = d(s, u) (a contradiction). Thus, the set S and all
its subsets are not solid-resolving sets according to Theorem 2.2.

Assume then that u is a vertex such that N(u) * N [v] for all v ∈ V \ {u}. We will show that
S = V \ {u} is a solid-resolving set by utilizing Theorem 2.2. Clearly, for any distinct v1, v2 ∈ S
we have d(v1, v1) < d(v1, v2) and d(v2, v2) < d(v2, v1). We need only to show that (1) holds for
u and any x ∈ S. It is clear that d(x, x) < d(x, u). Furthermore, for each x ∈ S there exists
y ∈ N(u) such that y /∈ N [x]. Now d(y, u) = 1 and d(y, x) ≥ 2, and thus d(y, u) < d(y, x). Now S
is a solid-resolving set according to Theorem 2.2.

Distinct vertices u and v are called true twins if N [u] = N [v], and false twins if N(u) = N(v).
According to Theorem 2.5 both true and false twins are forced vertices of a solid-resolving set.
However, as we have seen in the previous theorem, there also exist other kinds of forced vertices.
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(b) The graph G2. The gray vertices are the
boundary vertices of G2.

Figure 2: Examples for the k-metric dimension and the boundary of a graph.

3 Related concepts

In this section, we explore the connections between solid-resolving sets and some other types of
resolving sets. We also consider other similar concepts, namely, the boundary of a graph and
locating-dominating sets.

A vertex set R ⊆ V is a doubly resolving set of G if for any distinct v, u ∈ V we have
d(v, r) − d(u, r) 6= d(v, s) − d(u, s) for some r, s ∈ R. Doubly resolving sets were first introduced
and studied in [2]. According to Theorem 2.2, a solid-resolving set is also a doubly resolving set.
However, a doubly resolving set is not necessarily a solid-resolving set. Indeed, consider the graph
G1 in Figure 2(a). It is easy to see that the set K = {a, b, c, d} is a doubly resolving set of G.
These vertices are also forced vertices of a solid-resolving set. However, the vertex g is also a
forced vertex, and thus the set K cannot be a solid-resolving set.

The set R ⊆ V is a k-resolving set of G if for any distinct v, u ∈ V we have d(r, v) 6= d(r, u) for
at least k distinct r ∈ R (see [7, 6]). Again, by Theorem 2.2, it is clear that a solid resolving set is a
2-resolving set. However, when we consider the graph G1, we notice that the set K is a 2-resolving
set, but not a solid-resolving set. In general, if we have two vertices x and y with distance arrays,
say, DR(x) = (2, 2, 2) and DR(y) = (3, 3, 3), these distance arrays are acceptable for a 3-resolving
set. However, they do not satisfy (1), since for all r ∈ R we have d(r, y) > d(r, x). Thus, these
cannot be distance arrays given by a solid-resolving set. Furthermore, there are graphs for which
there does not exist any k-resolving set when k ≥ 3 (see [7, 6]). On the other hand, each graph G
has at least one solid-resolving set, namely V (G).

The set R ⊆ V is an {`}-resolving set of G, where 1 ≤ ` ≤ |V |, if for any nonempty subsets
X,Y ⊆ V such that |X| ≤ ` and |Y | ≤ ` we have DR(X) = DR(Y ) if and only if X = Y . The
smallest possible cardinality of an {`}-resolving set is called the {`}-metric dimension of G, and
it is denoted by β`(G). Notice that if ` = 1, then the definition of a {1}-resolving set is equivalent
to the definition of a resolving set. The {`}-metric dimension has been studied in [15, 9]. It
is clear by definition that a solid-resolving set is not an {`}-resolving set when ` ≥ 2. Indeed,
although a solid-resolving set can distinguish a vertex from a larger vertex set, it cannot necessarily
differentiate vertex sets with two elements from each other. However, an {`}-resolving set with
` ≥ 2 always satisfies (1). Otherwise, there exist two vertices x and y such that the sets {y} and
{x, y} have the same distance array. Therefore, an {`}-resolving set is a solid-resolving set when
` ≥ 2. Consequently, βs(G) ≤ β`(G) for all ` ≥ 2.

In the following theorem, we show that the metric dimension of a graph is always strictly
smaller than the solid-metric dimension.

Theorem 3.1. Let S be a solid-resolving set of G. The set S \ {s} is a resolving set of G for any
element s ∈ S. Thus, β1(G) ≤ βs(G)− 1.

Proof. According to Theorem 2.2, for each pair of distinct vertices u, v ∈ V there are two elements
s, t ∈ S such that d(s, u) < d(s, v) and d(t, u) > d(t, v). Since s 6= t, we can remove either one
of them, and still be able to distinguish between u and v as well as between any two distinct
vertices.
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3.1 The boundary of a graph

Definition 3.2. The boundary of a connected graph G is the set

∂(G) = {v ∈ V | ∃ u ∈ V, ∀ w ∈ N(v) : d(u,w) ≤ d(u, v)}.

The elements of the boundary are called boundary vertices.

Boundary vertices were first introduced in [4]. The vertex v is called an extreme vertex if the
induced subgraph G[N(v)] is a clique. Extreme vertices are not only boundary vertices but also
forced vertices of a solid-resolving set since for any u ∈ N(v) we have N(v) ⊆ N [u].

In the following theorem, we consider connections of a boundary and a solid-resolving set of a
graph.

Theorem 3.3. Let G be a finite nontrivial connected graph.

(i) The boundary of G is a solid-resolving set of G.

(ii) If v is a forced vertex of a solid-resolving set, then it is a boundary vertex.

(iii) There are graphs which have solid-resolving sets of minimum cardinality that are not subsets
of the boundary.

Proof. (i) We will show that ∂(G) satisfies (1). Consider distinct vertices v, u ∈ V . If v ∈ ∂(G),
then we have d(v, v) < d(v, u). Assume that v /∈ ∂(G). Then there is a vertex w ∈ N(v) such
that d(w, u) > d(v, u). Now d(w, u) = d(w, v) + d(v, u) and d(w, v) < d(w, u). If w ∈ ∂(G),
then we are done. However, if w /∈ ∂(G), then we repeat the same procedure for w. That
is, since w /∈ ∂(G), there is a vertex w′ ∈ N(w) such that d(u,w′) > d(u,w). The vertex
w′ cannot be v or one of its neighbours, since otherwise d(u,w′) ≤ d(u,w). Thus, we have
d(u,w′) = d(u,w)+d(w,w′) = d(u, v)+d(v, w′) and d(w′, v) < d(w′, u). Again, if w′ ∈ ∂(G), then
we are done. Otherwise, we continue in this fashion, and since G is finite, we will eventually find a
vertex x ∈ ∂(G) such that d(x, v) < d(x, u) since the boundary of the graph is always nonempty.
Indeed, if the vertices a, b ∈ V are such that d(a, b) = diam(G), then a, b ∈ ∂(G) and |∂(G)| ≥ 2.

(ii) Since v is a forced vertex, there exists a vertex u ∈ V \ {v} such that N(v) ⊆ N [u]. Now
d(u,w) ≤ 1 for all w ∈ N(v). However, d(u, v) ≥ 1 and thus d(u,w) ≤ d(u, v) for all w ∈ N(v)
and v is a boundary vertex.

(iii) Consider the graph G2 in Figure 2(b). Clearly, ∂(G2) = {a, b, c, f, g, h}. First we will
show that βs(G2) ≥ 4. The vertices a and h are forced vertices of a solid-resolving set, however,
it is easy to see that the set {a, h} is not a solid-resolving set. The set A = {a, b, h} is not a
solid-resolving set, since d(x, c) ≥ d(x, b) for all x ∈ A. Similarly, the set B = {a, d, h} is not a
solid-resolving set, since d(x, e) ≥ d(x, d) for all x ∈ B. All other vertex sets with a, h, and a
third element are isomorphic to either A or B. Thus, we have βs(G2) ≥ 4. It is easy to verify
that the set S = {a, d, e, h} is a solid-resolving set of G2. However, the set S2 is not a subset
of ∂(G2). Thus, a solid-resolving set (of minimum cardinality) is not necessarily a subset of the
boundary.

Remark 3.4. According to Theorem 3.3, we now have βs(G) ≤ |∂(G)|. It was shown in [11] that
the boundary of a graph is a resolving set, and consequently β1(G) ≤ |∂(G)|. However, we now
improve this to β1(G) ≤ |∂(G)| − 1 according to Theorem 3.1. This bound is attained for paths
and complete graphs; indeed, we have β1(Pn) = 1 = |∂(Pn)|−1 and β1(Kn) = n−1 = |∂(Kn)|−1.

We denote by G − v the graph we obtain by removing from G the vertex v and all edges
adjacent to it. A vertex v of a connected graph G is called a cut-vertex if the graph G − v is
disconnected.

Theorem 3.5. Let G be a nontrivial connected graph with a cut-vertex v. If S ⊆ V is a solid-
resolving set of G such that v ∈ S, then S \ {v} is also a solid-resolving set of G. Specifically, a
solid-resolving set of minimum cardinality does not contain any cut-vertices.
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Proof. We will show that we can satisfy (1) with S \ {v}. The subgraph G − v has at least two
connected components. Let G1 and G2 be any two such components. It is easy to see (as in
Remark 2.1) that if V (Gi) ∩ S = ∅, then (1) does not hold for S. Thus, we have V (G1) ∩ S 6= ∅
and V (G2)∩S 6= ∅. To show that S \ {v} satisfies (1) we first need to compare two vertices in the
same connected component as well as two vertices in different connected components of G − v.
Let s1 ∈ V (G1) ∩ S and s2 ∈ V (G2) ∩ S. In what follows, we consider pairs of vertices for which
v satisfies (1) for S. If u1, u2 ∈ V (G1) are such that d(u1, v) < d(u2, v), then

d(u1, s2) = d(u1, v) + d(v, s2) < d(u2, v) + d(v, s2) = d(u2, s2).

If for some u ∈ V (G1) and w ∈ V (G2) we have d(u, v) < d(w, v), then

d(u, s1) ≤ d(u, v) + d(v, s1) < d(w, v) + d(v, s1) = d(w, s1).

Now, we only need to check that (1) is satisfied for v. If u ∈ V (G1), then we have d(s2, v) < d(s2, u)
(and similarly for other connected components). Thus, S \ {v} is a solid-resolving set of G.

Next we will demonstrate how the previous results can be used to determine the solid-metric
dimension of trees.

Theorem 3.6. Let T be a tree with leaves L, i.e., L = {v ∈ V | deg(v) = 1}. The set L is the
unique minimal solid-resolving set of T . Furthermore, if G is a nontrivial connected graph, then
βs(G) = 2 if and only if G = Pn.

Proof. According to Theorem 2.5, a leaf is a forced vertex. If a vertex of T is not a leaf, then it is a
cut-vertex, and thus is not needed in any solid-resolving set according to Theorem 3.5. Therefore,
a set S ⊆ V is a solid-resolving set of T if and only if L ⊆ S and the first claim follows.

Consider then a nontrivial connected graph G. Clearly, if G is a path, then we have βs(G) = 2.
Conversely, if βs(G) = 2, then according to Theorem 3.1 we have β1(G) = 1. A well-known result
states that β1(G) = 1 if and only if G = Pn, see [14, 3]. Therefore, the graph G must be a
path.

It is clear that for a cycle Cn we have ∂(Cn) = V . However, as we will see next, the solid-metric
dimension of a cycle is very small. Thus, the difference between βs(G) and |∂(G)| can be very
large for some graphs.

Theorem 3.7. Let Cn be a cycle of n ≥ 3 vertices. Then

βs(Cn) =

{
4, when n = 4,
3, otherwise.

Proof. In [14], it was shown that β1(Cn) = 2 for all n ≥ 3. Thus, according to Theorem 3.1, we
have βs(Cn) ≥ 3 for all n ≥ 3. This is all we need for the case n = 3. Consider then the cycle
of four vertices. Let x, y ∈ V such that d(x, y) = 2. Since N(x) ⊆ N [y], x is a forced vertex
according to Theorem 2.5. Thus, we have βs(C4) = 4.

To complete our proof, we need to show that βs(Cn) ≤ 3 when n ≥ 5. We will prove this
by finding a solid-resolving set with three elements. Define S = {s1, s2, s3} in such a way that
its elements are spread evenly along the cycle. In other words, if we denote d(s1, s2) = d, then
without loss of generality we may assume that d ≤ d(s2, s3) ≤ d(s1, s3) ≤ d+ 1.

We will show that S is a solid-resolving set by considering pairs of vertices. Consider distinct
vertices x, y ∈ V . The proof now divides into the following cases depending on whether x and y
belong to S or not.

• If x, y ∈ S, then the vertices themselves satisfy (1).

• If x ∈ S and y /∈ S, then clearly d(x, x) < d(x, y). Denote S = {si, sj , x}. If d(si, y) ≥
d(si, x) and d(sj , y) ≥ d(sj , x), then y = x (since n ≥ 5). Thus, d(si, y) < d(si, x) or
d(sj , y) < d(sj , x).
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• If x, y /∈ S and they both are along the same shortest path from s to t for some s, t ∈ S,
then we have d(s, x) < d(s, y) and d(t, y) < d(t, x) (or d(t, x) < d(t, y) and d(s, y) < d(s, x)).
Assume that x, y /∈ S are such that they are not along the same shortest path from one
element of S to another. Denote S = {si, sj , sk}, and let x be along the path from si to sj
and y along the path from sj to sk. If d(si, x) ≥ d(si, y), then d(si, sk) ≤ d(si, sj)−2, which
is a contradiction. Now we have d(si, x) < d(si, y), and similarly d(sk, y) < d(sk, x).

Thus, S is a solid-resolving set of Cn according to Theorem 2.2.

3.2 Locating-dominating sets

Locating-dominating sets were first introduced by Slater in [20, 21, 17]. For more literature on
location-domination and related subjects we refer to [16]. Let C be a subset of V and denote
I(C;u) = N [u] ∩ C, where u ∈ V .

Definition 3.8. A set C ⊆ V is locating-dominating in G if for all distinct u, v ∈ V \ C we have
I(C;u) 6= ∅ and I(C;u) 6= I(C; v). The cardinality of an optimal locating-dominating set, i.e., a
locating-dominating set with the minimum size, is denoted by γLD(G).

The following definition of self-locating-dominating sets is due to [13].

Definition 3.9. A set C ⊆ V is self-locating-dominating in G if for all u ∈ V \ C we have
I(C;u) 6= ∅ and ⋂

c∈I(C;u)

N [c] = {u}.

The minimum cardinality of a self-locating-dominating set of G is denoted by γSLD(G).

Theorem 3.10. Let G be a nontrivial connected graph and C a subset of V .

(i) If C is locating-dominating, then it is a resolving set of G.

(ii) If C is self-locating-dominating, then it is a solid-resolving set of G.

(iii) If diam(G) = 2 and S ⊆ V is a solid-resolving set of G, then S is also a self-locating-
dominating set in G. Consequently, βs(G) = γSLD(G) if diam(G) = 2.

Proof. (i) Let C be a locating-dominating set in G. Then for all distinct u, v ∈ V \ S we have
I(C;u) 6= I(C; v). Thus, there exists c ∈ C such that d(c, u) 6= d(c, v). Furthermore, if u ∈ C,
then clearly d(u, u) 6= d(u, v) for all v ∈ V \ {u}. Thus, C is a resolving set.

(ii) Let C be a self-locating-dominating set in G. Consider a vertex u ∈ V \C. If for some v ∈ V
we have d(c, u) ≥ d(c, v) for all c ∈ I(C;u), then d(c, v) ≤ 1 for all c ∈ I(C;u). Consequently, we
have

v ∈
⋂

c∈I(C;u)

N [c].

Since C is self-locating-dominating, this implies that v = u. Thus, if v 6= u, then for some
c ∈ I(C;u) we have d(c, u) < d(c, v) and the condition (1) holds. Furthermore, if u ∈ C, then (1)
is immediately satisfied. Now, the set C is a solid-resolving set of G according to Theorem 2.2.

(iii) Let G be a graph with diam(G) = 2 and S be a solid-resolving set of G. Consider distinct
vertices u ∈ V \ S and v ∈ V . Since S is a solid-resolving set, there exists a vertex s ∈ S such
that d(s, u) < d(s, v). Since u /∈ S and diam(G) = 2, we have d(s, u) = 1 and d(s, v) = 2. Now
u ∈ N [s] and v /∈ N [s]. Therefore, we have⋂

s∈I(S;u)

N [s] = {u},

and S is self-locating-dominating in G.
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By the previous theorem, for the graphs G with diam(G) = 2, we know that S is a solid-
resolving set of G if and only if S is self-locating-dominating in G. The analogous result for
locating-dominating and resolving sets also almost holds. However, if S is a resolving set of
G, then there might exist one vertex v such that DS(v) = (2, . . . , 2), i.e., I(S; v) = ∅. In
this case, S is not a locating-dominating set, but S ∪ {v} is. Thus, together with the previ-
ous theorem, we have γLD(G) − 1 ≤ β1(G) ≤ γLD(G), when diam(G) = 2. For the rook’s
graph Km�Kn we have diam(Km�Kn) = 2, and these bounds are achieved; for exact values of
β1(Km�Kn) and γLD(Km�Kn) see [2] and [13], respectively. According to Theorem 3.10, we
have βs(Km�Kn) = γSLD(Km�Kn). In [13], the authors determined γSLD(Km�Kn), and the
next result is immediate.

Corollary 3.11. For the rook’s graph Km�Kn we have

βs(Km�Kn) =


n, n ≥ 2m, or m = 1,
2m, 2m > n > m ≥ 2,
2m− 1, n = m > 2,
4, n = m = 2.

4 The solid-metric dimension of the hypercube

Let Fn2 = {0, 1}n. We define the n-dimensional hypercube Qn as a graph with V (Qn) = Fn2 , and
two vertices are adjacent if and only if they differ in exactly one coordinate place. The weight of
v ∈ V (Qn) is defined as the number of 1’s in v and it is denoted by w(v).

Theorem 4.1. For the hypercube Qn, with n ≥ 3, we have

(i) βs(Qn) ≤ n+ 1,

(ii) βs(Qn) ≤ 2 · β1(Qn),

(iii) 2 ≤ lim
n→∞

βs(Qn) log2 n

n
≤ 4.

Proof. (i) Let S = {v ∈ V | w(v) = 1 or w(v) = n}. We will show that (1) holds for S. Consider
distinct u, v ∈ V . Without loss of generality, we can assume that w(u) ≤ w(v).

If w(v) > w(u), then d(s, v) < d(s, u) for s ∈ S such that w(s) = n. If w(u) ≥ 1, then there
clearly exists a vertex s ∈ S such that w(s) = 1 and d(s, u) < d(s, v) (s has a common 1 with u).
Assume that w(u) = 0. If 1 ≤ w(v) ≤ 2, then there exists a vertex s ∈ S such that w(s) = 1 and
d(s, v) ≥ 2 (since n ≥ 3). Now we have d(s, u) < d(s, v). If w(v) ≥ 3, then d(s, u) < d(s, v) for all
s ∈ S such that w(s) = 1.

If 0 < w(u) = w(v) < n, then for some integer i the ith symbol of u is 1 and the ith symbol
of v is 0. Similarly, for some integer j the jth symbol of u is 0 and the jth symbol of v is 1. Let
s, t ∈ S such that w(s) = w(t) = 1 and the ith symbol of s is 1 and the jth symbol of t is 1. Now
d(s, u) < d(s, v) and d(t, v) < d(t, u). Thus, S is a solid-resolving set of Qn according to Theorem
2.2, and βs(Qn) ≤ |S| = n+ 1.

(ii) Let R be a resolving set of Qn. Let R′ consist of the unique vertices r′ ∈ V such that
d(r′, r) = diam(Qn) = n for some r ∈ R. We will show that the set S = R∪R′ is a solid-resolving
set of Qn.

Consider distinct u, v ∈ V . Since R is a resolving set, we have d(r, u) 6= d(r, v) for some
r ∈ R. Without loss of generality we can assume that d(r, u) < d(r, v). Let s ∈ R′ be such that
d(s, r) = n. Now

d(s, u) = n− d(r, u) > n− d(r, v) = d(s, v).

Thus, the set S satisfies (1) and is a solid-resolving set of Qn. Now we have βs(Qn) ≤ |S| ≤
2 · β1(Qn).
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(iii) In [18], it was shown (by an existence proof, not by a construction) that

lim
n→∞

β1(Qn) · log2 n

n
= 2.

Now the claim follows immediately from (ii).

5 Bounds from the vicinal preorder

A preorder is a binary relation, which is reflexive and transitive. In the set of vertices of a graph,
the relation

x 4 y if and only if N(x) ⊆ N [y]

gives a preorder. This is called the vicinal preorder, see [8]. A subset B ⊆ V is an antichain if
neither x 4 y nor y 4 x for any distinct x, y ∈ B. The maximal cardinality of an antichain in V
with respect to the vicinal preorder is the Dilworth number ∇(G) of a graph, see [5]. We denote
x ≺ y if x 4 y and not y 4 x. A vertex x ∈ V is maximal, if there does not exist an element
y ∈ V \ {x} such that x ≺ y. A finite graph has at least one maximal vertex.

Next we will give bounds on the solid-metric dimension utilizing the vicinal preorder.

Theorem 5.1. Let G be a nontrivial connected graph with n vertices. We have

(i) n−∇(G) ≤ βs(G),

(ii) βs(G) = n if and only if every maximal vertex has a true or false twin.

Proof. (i) Assume that S ⊆ V is a solid-resolving set of cardinality βs(G). Denote B = V \ S.
We claim that the set B is an antichain with respect to the vicinal preorder. Let x, y ∈ B and
x 6= y. Assume to the contrary that x 4 y. Consequently, N(x) ⊆ N [y] and x is a forced vertex
according to Theorem 2.5. This contradicts the fact that S is a solid-resolving set. Hence, B is
an antichain. Utilizing the Dilworth number, this yields that

n− βs(G) = |V \ S| ≤ ∇(G).

(ii) Recall that in the proof of Theorem 2.5 we saw that if a vertex v is not a forced vertex,
then V \ {v} is a solid-resolving set. Thus, if βs(G) = n, then every vertex is a forced vertex of a
solid-resolving set. Due to Theorem 2.5, this implies that for any x ∈ V there exists y ∈ V \ {x}
such that N(x) ⊆ N [y], i.e., x 4 y. This is true also for a maximal vertex x and, thus, x has a
true or false twin y. Assume next that each maximal vertex has a true or false twin. Let x ∈ V .
If x is not maximal, then there exists a vertex y such that x 4 y. Due to the assumption, this
holds also when x is maximal. Consequently, N(x) ⊆ N [y] and x is a forced vertex. Therefore,
βs(G) = n.

The bounds in the previous theorem can be attained as will be seen next. A threshold graph
is a graph which is constructed by starting with a single vertex and using repeatedly one of the
following two operations: either 1) add an isolated vertex to the graph, or 2) add a vertex which
is adjacent to all of the previous vertices, i.e., a dominating vertex. Denote by Xn a threshold
graph and by Vn = {v1, v2, . . . , vn} its set of vertices where the vertices have been added in the
given order. Since the threshold graph with at most one edge has clearly βs(Xn) = n (recall
Remark 2.1), we assume that there is at least two edges in Xn.

Corollary 5.2. Let Xn be a (possibly disconnected) threshold graph with at least two edges and
denote by k′ the maximum k ∈ {1, . . . , n} such that vk was added as a dominating vertex. If vk′−1
was not added as a dominating vertex, we have βs(Xn) = n − 1, and otherwise, βs(Xn) = n. In
particular, βs(Kn) = n.
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Proof. It is well known that the Dilworth number of a threshold graph satisfies ∇(Xn) = 1. Hence,
Theorem 5.1(i) states that βs(Xn) ≥ n − 1. Next we show that βs(Xn) = n − 1 if vk′−1 was not
added as a dominating vertex. To that end, we verify that S = V \ {vk′} is a solid-resolving set
of Xn. Since vk′−1 was not added as a dominating vertex, the vertex vk′ is a cut-vertex. Now the
set S is a solid-resolving set of Xn according to Theorem 3.5, and thus βs(Xn) = n− 1. Assume
then that vk′−1 was added as a dominating vertex. Now vk′ and vk′−1 (and all dominating vertices
added directly before these) are the only maximal vertices and also true twins. By Theorem 5.1(ii),
we have βs(Xn) = n.

6 The solid-metric dimension of graph products

We consider two widely studied graph products; the Cartesian product and the strong product. We
give upper and lower bounds for the solid-metric dimensions and characterise the forced vertices
in both products. If the subscript is omitted (e.g. N [ab]), we mean the product graph.

6.1 The Cartesian product

We consider first the forced vertices of the Cartesian product.

Theorem 6.1. Let G and H be nontrivial connected graphs. A vertex v = v1v2 ∈ V (G�H) is a
forced vertex of a solid-resolving set of G�H if and only if degG(v1) = 1 and degH(v2) = 1.

Proof. Assume first that degG(v1) = 1 and degH(v2) = 1. Let NG(v1) = {u1} and NH(v2) = {u2}.
Now N(v1v2) = {v1u2, u1v2} ⊆ N [u1u2] and v is a forced vertex.

Assume then that degG(v1) ≥ 2 (the case where degH(v2) ≥ 2 goes similarly). Now NG(v1)
contains at least two distinct vertices a1 and a2. Let b be a vertex in NH(v2) (indeed, such a
vertex exists as H is a nontrivial connected graph). Then {v1b, a1v2, a2v2} ⊆ N(v). Assume that
there exists a vertex u = u1u2 ∈ V (G�H) such that u 6= v and N(v) ⊆ N [u].

• If u1 = v1, then a1v2 ∈ N [u] implies that u2 = v2, and thus u = v.

• If u2 = v2, then v1b ∈ N [u] implies that u1 = v1, and thus u = v.

• If u1 6= v1 and u2 6= v2, then a1v2 ∈ N [u] and a2v2 ∈ N [u] together imply that u1 = a1 = a2.

Thus, v is not a forced vertex.

In the next theorem, we give bounds for the solid-metric dimension of a Cartesian product of
graphs. The projection of a set U ⊆ V (G�H) onto G consists of vertices u ∈ V (G) such that
uv ∈ U for some v ∈ V (H).

Theorem 6.2. Let G and H be nontrivial connected graphs.

(i) Let S be a solid-resolving set of G�H. Then the projection of S onto G is a solid-resolving
set of G. Similarly, the projection of S onto H is a solid-resolving set of H.

(ii) Let T and U be solid-resolving sets of G and H, respectively. Then the set S = T × U is a
solid-resolving set of G�H.

(iii) We have max{βs(G), βs(H)} ≤ βs(G�H) ≤ βs(G) · βs(H).

Proof. (i) We will prove the claim for the projection onto G, the latter part of the claim follows
from the isomorphicity of G�H and H�G. Consider distinct vertices av, bv ∈ V (G�H). Since S
satisfies (1), there exists a vertex st ∈ S such that d(st, av) < d(st, bv) ⇔ dG(s, a) + dH(t, v) <
dG(s, b) + dH(t, v)⇔ dG(s, a) < dG(s, b). Thus, the projection of S onto G is a solid-resolving set
of G.

(ii) Consider vertices a, b ∈ V (G) and v, w ∈ V (H) such that a 6= b and v 6= w. Since T is a
solid-resolving set of G, there exists a vertex t ∈ T such that dG(a, t) < dG(b, t). Similarly, since
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U is a solid-resolving set of H, there exists a vertex u ∈ U such that dH(v, u) < dH(w, u). Since
d(av, tu) = dG(a, t) + dH(v, u), we have

d(av, tu) < dG(b, t) + dH(v, u) = d(bv, tu),

d(av, tu) < dG(a, t) + dH(w, u) = d(aw, tu),

d(av, tu) < dG(b, t) + dH(w, u) = d(bw, tu).

This shows that S is a solid-resolving set of G�H according to Theorem 2.2.
(iii) The bounds follow immediately from (i) and (ii).

In Section 4, we saw that βs(Q3) ≤ 4 (see Theorem 4.1). Since we can define the 3-dimensional
hypercube as the Cartesian product Q3 = C4�P2, we have max{βs(C4), βs(P2)} ≤ βs(Q3). Now,
βs(Q3) = 4, according to Theorem 3.7, and the lower bound in Theorem 6.2 (iii) is obtained. The
upper bound can be attained with trees as explained in the following corollary.

Corollary 6.3. Let T1 and T2 be trees. Then βs(T1�T2) = βs(T1) · βs(T2). In particular,
βs(Pm�Pn) = 4.

Proof. By the proof of Theorem 3.6, we immediately know that the leaves of the trees are the
forced vertices of T1 and T2. Moreover, the leaves of a tree always form a solid-resolving set.
Therefore, by Theorem 6.1, there are βs(T1) · βs(T2) forced vertices in T1�T2. Thus, the claim
follows due to Theorem 6.2.

6.2 The strong product

The strong product of G and H is denoted by G � H. The set of vertices is V (G � H) =
V (G) × V (H) = {au | a ∈ V (G), u ∈ V (H)}. There is an edge between x = x1x2 ∈ V (G �H)
and y = y1y2 ∈ V (G �H) if we have either 1) x1 = y1 and x2 ∼ y2, or 2) x1 ∼ y1 and x2 = y2,
or 3) x1 ∼ y1 and x2 ∼ y2. Notice that d(au, bv) = max{dG(a, b), dH(u, v)}. It is clear by the
definition that NG�H [av] = NG[a]×NH [v].

Theorem 6.4. Let G and H be nontrivial connected graphs.

(i) Let S be a solid-resolving set of G�H. Then the projection of S onto G is a solid-resolving
set of G. Similarly, the projection of S onto H is a solid-resolving set of H.

(ii) Let T and U be solid-resolving sets of G and H, respectively. Then the set S = {tu ∈
V (G�H) | t ∈ T or u ∈ U} is a solid-resolving set of G�H.

(iii) Let Λ(G,H) = βs(G) · |V (H)|+ βs(H) · |V (G)| − βs(G) · βs(H). Then we have

max{βs(G), βs(H)} ≤ βs(G�H) ≤ Λ(G,H).

Proof. (i) It is enough to consider the projection onto G. Consider distinct vertices av, bv ∈
V (G�H). Since (1) holds for S, there exists a vertex st ∈ S such that

d(st, av) < d(st, bv)⇔ max{dG(s, a), dH(t, v)} < max{dG(s, b), dH(t, v)}.

Now if d(st, av) = dG(s, a), then dH(t, v) ≤ dG(s, a) < d(st, bv) = dG(s, b). Similarly, if d(st, av) =
dH(t, v), then dG(s, a) ≤ dH(t, v) < d(st, bv) = dG(s, b). Thus, we have dG(s, a) < dG(s, b), and
the projection of S onto G is a solid-resolving set of G.

(ii) Consider vertices a, b ∈ V (G) and v, w ∈ V (H) such that a 6= b and v 6= w. Since T is a
solid-resolving set of G, there exists a vertex t ∈ T such that dG(a, t) < dG(b, t). Similarly, since
U is a solid-resolving set of H, there exists a vertex u ∈ U such that dH(v, u) < dH(w, u). Now
we have

d(av, tv) = dG(a, t) < dG(b, t) = d(bv, tv),

d(av, au) = dH(v, u) < dH(w, u) = d(aw, au),

d(av, tu) = max{dG(a, t), dH(v, u)} < max{dG(b, t), dH(w, u)} = d(bw, tu).
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Since tv, au, tu ∈ S, the set S is a solid-resolving set of G�H according to Theorem 2.2.
(iii) The lower bound follows immediately from (i). If we choose T and U in (ii) to be minimal

solid-resolving sets, then we have |S| = Λ(G,H), and the upper bound follows.

To attain the upper bound we consider the forced vertices of G �H. We will show that if G
or H has a forced vertex of a specific type, then every instance of that vertex produces a forced
vertex into the product graph. Notice the difference between the next theorem and Theorem 2.5.

Theorem 6.5. Let G and H be nontrivial connected graphs. A vertex av ∈ V (G�H) is a forced
vertex of a solid-resolving set of G�H if and only if NG[a] ⊆ NG[b] for some b ∈ V (G) \ {a} or
NH [v] ⊆ NH [u] for some u ∈ V (H) \ {v}.

Proof. Let a, b ∈ V (G) such that a 6= b and NG[a] ⊆ NG[b]. We have

N [av] = NG[a]×NH [v] ⊆ NG[b]×NH [v] = N [bv].

Thus, av is a forced vertex for any v ∈ V (H). Similarly, if NH [v] ⊆ NH [u] for some distinct
v, u ∈ V (H), then av is a forced vertex for any a ∈ V (G).

Consider then vertices a ∈ V (G) and v ∈ V (H) such that NG[a] * NG[b] for all b ∈ V (G)\{a}
and NH [v] * NH [u] for all u ∈ V (H) \ {v}. Assume that the vertex av is a forced vertex. Then,
by Theorem 2.5, N(av) ⊆ N [st] for some vertex st ∈ V (G�H) such that s 6= a or t 6= v. If s 6= a,
then there is a vertex a′ ∈ NG[a] such that a′ /∈ NG[s]. Let v′ ∈ NH(v). Now a′v′ ∈ N(av) and
a′v′ /∈ NG[s] × NH [t] = N [st]. Thus, N(av) * N [st]. Similarly, if t 6= v, then N(av) * N [st].
Therefore, av is not a forced vertex.

Now we can reach the upper bound of Theorem 6.4(iii) as follows. If G and H are graphs
with minimum solid-resolving sets consisting of the special types of forced vertices described in
the previous theorem, then we have βs(G �H) = Λ(G,H). For example, if T1 and T2 are trees,
then by (the proof of) Theorem 3.6 the trees T1 and T2 meet the previous requirements and we
have βs(T1 � T2) = Λ(T1, T2).

7 Maximum degree and clique number

We denote by ∆(G) the maximum degree of the graph G, that is, ∆(G) = maxv∈V {deg(v)}. The
clique number ω(G) of G is the cardinality of the largest clique in G. A vertex set is independent
if no two elements are adjacent. An independent set is maximal if it does not have a proper
independent superset. The independence number α(G) of G is the cardinality of any largest
possible maximal independent set of G. A maximum independent set is an independent set of
cardinality α(G).

Our aim is to determine how large ∆(G) and ω(G) can be when we know βs(G). To that end,
we fix a vertex u and compare the distance arrays of u and its neighbours. Assume that βs(G) = k
and let S = {s1, . . . , sk} be a solid-resolving set of G. We denote Du(v) = DS(v) − DS(u) and
Du(X) = {Du(x) | x ∈ X}. If v ∈ N(u) and d(si, v) = d(si, u) for some i ∈ {1, . . . , k}, then the
ith element of Du(v) is 0. Otherwise, either d(si, v) = d(si, u)+1 or d(si, v) = d(si, u)−1, and the
ith element of Du(v) is 1 or −1, respectively. When we use the notation {−1, 0, 1} = {−, 0,+},
we have Du(N [u]) ⊆ {−, 0,+}k.

We define the relation C on {−, 0,+}k as follows:

• when a, b ∈ {−, 0,+}, we have aC b if a = b or (a, b) ∈ {(−, 0), (0,+), (−,+)},

• when a, b ∈ {−, 0,+}k, where k ≥ 2, a = a1 . . . ak, and b = b1 . . . bk, we have aC b if ai C bi
for all i = 1, . . . , k.

This relation is a coordinatewise partial order on {−, 0,+}k. Consider distinct x, y ∈ N [u]. If
Du(x) C Du(y), then d(s, x) ≤ d(s, y) for all s ∈ S, and (1) is not satisfied. Thus, the set
Du(N [u]) must be an antichain with respect to this relation. Since Du(u) = 0 . . . 0 ∈ Du(N [u]),
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−− −0 −+

0− 00 0+

+− +0 ++

(a) K2
3

−− −0 −+

0− 00 0+

+− +0 ++

(b) N2 − E(K2
3 )

Figure 3: The graph N2.

the maximum cardinality of an antichain that contains 0 . . . 0 gives us an upper bound for |N [u]|
and consequently for ∆(G).

We define a graph Nk whose vertices correspond to the elements of {−, 0,+}k, and distinct
vertices x and y are adjacent if and only if xC y or yC x. Now, finding the largest antichain with
0 . . . 0 is the same as finding the maximum independent set containing 0 . . . 0.

The exact structure of Nk is rather complicated. Therefore, we focus on its substructures that
are easier to handle. We denote by Gn the Cartesian product of n copies of G.

Lemma 7.1. The graph Kk
3 is (isomorphic to) a spanning subgraph of Nk.

Proof. Let V (K3) = {−, 0,+}. Obviously, we have K3 = N1. By the definition of the Cartesian
product, we have V (Kk

3 ) = {−, 0,+}k = V (Nk), and distinct vertices x = x1 . . . xk and y =
y1 . . . yk are adjacent in Kk

3 if and only if xi ∼ yi for exactly one i ∈ {1, . . . , k} and xj = yj for all
j 6= i. Consequently, either xC y or y C x. Thus, Kk

3 is a spanning subgraph of Nk.

Notice that if H is a spanning subgraph of G, then α(G) ≤ α(H). It is easy to see that Nk

consists of three copies of Nk−1 (by considering the last coordinate). Furthermore, N2 and N3 are
induced subgraphs of any Nk, where k ≥ 3.

Theorem 7.2. If βs(G) = 2, then ∆(G) ≤ 2. If βs(G) = k ≥ 3, then ∆(G) ≤ 7 · 3k−3 − 1.

Proof. Consider first the case where βs(G) = 2. We will show that α(N2) = 3 by using Lemma
7.1. Consider the subgraph K2

3 , see Figure 3(a). Each row or column of vertices can contain at
most one element of an independent set. Thus, we have α(N2) ≤ 3. The set N = {+−, 00,−+}
is an independent set of K2

3 . From Figure 3(b), we can see that N is also an independent set of
N2−E(K2

3 ). Thus, the set N is an independent set of N2 containing 00, and we have α(N2) = 3.
Now, we have |Du(N [u])| ≤ |N | for every u ∈ V (G), and thus ∆(G) ≤ 2.

Assume then that βs(G) = k ≥ 3. The vertices of Nk can be partitioned into 3k−3 sets, each
of which induces a copy of N3. Each copy of N3 can be partitioned further into three vertex sets,
each of which induces a copy of N2. From Figure 3, it is easy to see that the set N is the unique
maximum independent set of N2. If in one copy of N3 there are two copies of N2 that have the
same ”pattern” N , the set is not independent. Thus, we can choose at most seven vertices from
one copy of N3, and we have ∆(G) ≤ 7 · 3k−3 − 1.

The upper bound in Theorem 7.2 is attained for the graph in Figure 4. If the induced subgraph
G[N [u]] is a clique, then each coordinate of the elements of Du(N [u]) can contain either 0 and +
or 0 and −. Indeed, if u has neighbours v and w such that the ith symbol of Du(v) is + and the ith
symbol of Du(w) is −, then we must have v � w. If we permute the coordinates of the elements of
Du(N [u]), the partial ordering C is preserved and so is the structure of Nk. Thus, we can assume
that Du(N [u]) is a subset of {+, 0}p × {−, 0}k−p for some 0 ≤ p ≤ k. Let Mk,p be the induced
subgraph of Nk with the vertex set V (Mk,p) = {+, 0}p×{−, 0}k−p where 0 ≤ p ≤ k. If Du(N [u])
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Figure 4: A graph for which the upper bounds in Theorems 7.2 and 7.4 are sharp. The black
vertices form a minimum solid-resolving set of the graph.

is not independent in Mk,p, then (1) does not hold. Now, finding the maximum independent set
containing 0 . . . 0 in Mk,p gives us an upper bound for ω(G).

Lemma 7.3. The graph Kk
2 is (isomorphic to) a spanning subgraph of Mk,p.

Proof. Denote by K+ the complete graph with the vertex set {0,+} and by K− the complete
graph with the vertex set {0,−}. Consider the Cartesian product

G = K+� . . .�K+︸ ︷︷ ︸
p times

�K−� . . .�K−︸ ︷︷ ︸
k−p times

,

where the parameters p and k are the same as for the graphMk,p. Now, we have V (G) = V (Mk,p)
and G is isomorphic to Kk

2 . Consider distinct vertices x = x1 . . . xk and y = y1 . . . yk of G. By the
definition, x and y are adjacent if and only if xi ∼ yi for exactly one i ∈ {1, . . . , k} and xj = yj
for all j 6= i. Now either xC y or y C x and G is a spanning subgraph of Mk,p.

Theorem 7.4. If βs(G) = 2, then ω(G) ≤ 2. If βs(G) = k ≥ 3, then ω(G) ≤ 3 · 2k−3.

Proof. Denote βs(G) = k and z = 0 . . . 0 ∈ V (Mk,p). If p = 0 or p = k, then we have z ∼ v for all
v ∈ V (Mk,p), v 6= z. Thus, we have 1 ≤ p ≤ k − 1.

Assume first that k = 2. Then we have p = 1 and V (M2,1) = {00,+0, 0−,+−}. Clearly, the
maximum independent set containing 00 is {00,+−}, and thus we have ω(G) ≤ 2.

Assume then that k ≥ 3 and 1 ≤ p ≤ k − 2. Now we can permute the labels of the vertices of
Mk,p such that the first coordinate contains only 0 or + and the next two 0 or −. Utilizing Lemma
7.3, we can partition the vertices of Mk,p into 2k−3 sets, each of which induces a copy of M3,1

(see Figure 5(a)). It is clear that for K3
2 we have α(K3

2 ) = 4, and all the maximum independent
sets are {+ − 0,+0−, 0 − −, 000} and {+ − −,+00, 0 − 0, 00−}. However, neither of these is an
independent set of M3,1. Indeed, from Figures 5(a) and 5(b) we notice that the vertices 0 − −
and +00 are adjacent to all other vertices of M3,1. Thus, the maximal independent sets of M3,1

containing either of these are {0 − −} and {+00}. Therefore, we have α(M3,1) ≤ 3. Now, each
copy of M3,1 can contain at most three elements of the maximum independent set of Mk,p, and
we have ω(G) ≤ 3 · 2k−3.

If p = k − 1, then we can switch all pluses into minuses and vice versa, and consider the same
case as above.

Again, the upper bound in Theorem 7.4 can be attained for the graph in Figure 4. Our next
result shows how we can construct graphs with very large cliques.

Theorem 7.5. There exists a graph G such that βs(G) = k and

ω(G) =

(
k

bk/2c

)
.

14



0−−

+−−
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0− 0

+− 0

000

+00

(a) K3
2

000 0−− 0− 0 00−

+− 0 +0− +00 +−−

(b)M3,1 − E(K3
2 )

Figure 5: The graph M3,1.

Proof. Let p = bk/2c. We construct a set X ⊆ {0,+}p × {0,−}k−p by combining a prefix from
{0,+}p with i pluses with a suffix from {0,−}k−p with i minuses. We have

|X| =
p∑

i=0

(
p

i

)(
k − p
i

)
=

(
p+ k − p

p

)
=

(
k

bk/2c

)
.

We will show that the set X is (i) an antichain with respect to the partial order C and (ii)
realisable as a graph.

(i) Assume to the contrary that for some distinct x, y ∈ X we have xC y. Denote by x+ and
y+ the prefixes and by x− and y− the suffixes of x and y. Since x C y, we have x+ C y+ and
x− C y−. Thus, if y+ has i pluses and y− has i minuses, then x+ has at most i pluses and x− has
at least i minuses. Since x+ has the same amount of pluses as x− has minuses (by the definition
of X), x+ has exactly i pluses and x− has exactly i minuses. Now x+ C y+ and x− C y− if and
only if x+ = y+ and x− = y− (a contradiction).

(ii) We construct the graph G as follows:

• V (G) = X ∪ S, where S = {s1, . . . , sk},

• for all distinct x, y ∈ X we have x ∼ y,

• for all distinct si, sj ∈ S we have si � sj ,

• when i ≤ p, x ∈ X, and si ∈ S, we have x ∼ si if and only if the ith coordinate of x is 0,

• when i > p, x ∈ X, and si ∈ S, we have x ∼ si if and only if the ith coordinate of x is −.

The induced subgraph G[X] is a clique. Since N(si) ⊆ N [x] for all si ∈ S and x ∈ X, all
elements of S are forced vertices (of a solid-resolving set) according to Theorem 2.5. Thus, we
have βs(G) ≥ k. To conclude our proof, we will show that S is a solid-resolving set of G by
Theorem 2.2. For all distinct x, y ∈ X the condition (1) holds, since otherwise we have x C y or
y C x, which contradicts (i). We then compare an element of X and an element of S. If k = 2 or
k = 3, each element of X is adjacent to exactly one element of S and vice versa. Thus, d(s, x) ≤ 2
for all s ∈ S and x ∈ X, and d(si, sj) = 3 for all distinct si, sj ∈ S. Therefore, d(si, x) < d(si, sj)
for all distinct si, sj ∈ S and x ∈ X. If k ≥ 4, each element of X is adjacent to at least two
elements of S. Indeed, the prefixes and suffixes are now long enough that either the prefix has
at least two zeros, the suffix has at least two minuses, or the prefix has exactly one zero and the
suffix has exactly one minus. Now, if x ∈ X and s, t ∈ S such that s, t ∈ N(x), then we have
d(s, x) < d(s, t) and d(t, x) < d(t, s). Thus, the set S satisfies (1) and is a solid-resolving set of
G.
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bi

b′i

c′i

ci

Ti Fi

(a) Variable gadget of xi

T1 F1 T2 F2 T3 F3

ej e′j

dj

(b) Clause gadget of Cj = x1 ∨ x2 ∨ x3

Figure 6: The gadgets of the graph G′ illustrated.

8 Algorithmic complexity

In this section, we consider the algorithmic complexity of determining the solid-metric dimension of
a graph. As we have seen earlier in the paper, this problem is algorithmically easy, i.e., there exists
a polynomial (or even linear) time algorithm for solving the problem, in various graph families such
as paths, cycles, trees, rook’s graphs, complete graphs and threshold graphs. However, in what
follows, we show that in general graphs the problem is NP-complete as is the case of determining
the (regular) metric dimension of a graph (see [14]). More precisely, we prove that deciding
whether the solid-metric dimension of a graph is at most k ∈ N is NP-complete by showing that
a polynomial time algorithm solving the decision problem would also provide an efficient solution
to the 3-satisfiability (3-SAT) problem, which is well known to be NP-complete.

Theorem 8.1. If G is a graph and k is an integer, then deciding whether the solid-metric dimen-
sion βs(G) ≤ k is an NP-complete problem.

Proof. It is immediate by Theorem 2.2 that the problem of deciding whether βs(G) ≤ k belongs
to NP. In what follows, we prove that the problem is also NP-complete by a polynomial time
reduction of the 3-satisfiability (3-SAT) problem to the decision problem regarding the solid-metric
dimension of a graph.

For the 3-SAT problem, denote the set of variables by X = {x1, . . . , xn} and the set of literals
by U = {x1, . . . , xn, x1, . . . , xn}, where xi denotes the negation of the variable xi. Let F be an
instance of the 3-SAT problem; more precisely, let F be a formula F = C1 ∧ . . . ∧ Cm, where each
clause Cj contains exactly three literals, i.e., each clause is of the form Cj = uj,1 ∨ uj,2 ∨ uj,3
(uj,1, uj,2, uj,3 ∈ U). Based on the given formula F , we form a graph G′ = (V ′, E′) as follows:

• For each variable xi ∈ X, we construct a variable gadget of xi with vertices ai, a
′
i, bi, b

′
i, ci,

c′i, Ti and Fi and edges as described in Figure 6(a).

• For each clause Cj = uj,1 ∨ uj,2 ∨ uj,3, we construct a clause gadget Cj with vertices dj , ej
and e′j and edges djej , dje

′
j and eje

′
j . Moreover, if uj,1 = xi, then dj is adjacent to Ti, else

uj,1 = xi and dj is adjacent to Fi. Analogous edges are also added with respect to the other
literals uj,2 and uj,3 (the clause gadget is illustrated in Figure 6(b)).

• Finally, we add a universal vertex u which is adjacent to the vertices ai, a
′
i, bi, b

′
i, ci and c′i

for every i in the variable gadgets and to the vertices dj , ej and e′j for every j in the clause
gadgets.

It is immediate that the graph G′ can be constructed in polynomial time.
Let S be a solid-resolving set of the graph G′. Let us first present some useful observations

concerning S:
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• The vertices ai and a′i are forced vertices of S (by Theorem 2.5) since N(ai) = {u, ci, c′i, Ti} =
N(a′i). Analogously, bi and b′i also belong to S. Similarly, the vertices ci and c′i as well as ej
and e′j are forced since N(ci) = {u, ai, a′i, bi, b′i, Ti, Fi} = N(c′i) and N [ej ] = {u, dj , ej , e′j} =
N [e′j ], respectively.

• At least one of the vertices Ti and Fi in the variable gadget of xi belongs to S since otherwise
for any vertex s ∈ S the distance d(s, u) is less than or equal to the distance between s and
Ti or Fi. (However, notice that Ti or Fi are not forced vertices in the sense of Definition 2.4
although at least one of them belongs to S.)

By the previous observations, we immediately obtain that any solid-resolving set contains at least
7n + 2m vertices. In what follows, we show that the solid-metric dimension of G′ is 7n + 2m if
and only if the formula F is satisfiable.

Let us first show that if the formula F is satisfiable, then βs(G′) = 7n + 2m. Let A be a
satisfiable truth assignment of F . Construct then a set C as follows: C consists of all the forced
vertices and if the assignment of xi is true in A, then Ti belongs to C, and otherwise Fi is in C.
By the previous observations, we immediately notice that C contains exactly 7n + 2m vertices.
Notice that the only vertices that do not belong to C are u, dj , and either Ti or Fi depending on
the assignment of xi in A. In what follows, we show that for any distinct x, y ∈ V there exists a
vertex c ∈ C such that d(c, x) < d(c, y):

• Suppose first that either x = Ti or x = Fi. Without loss of generality, we may assume that
x = Ti. Recall that now N(Ti) ∩ C = {u, ai, a′i, ci, c′i, Fi}. Hence, it is straightforward to
verify that there exists no vertex v ∈ V such that N(Ti)∩C ⊆ N [v]. Therefore, there always
exists a vertex c ∈ C such that 1 = d(c, x) < d(c, y).

• Suppose then that x = dj . Recall that at least one of the three vertices adjacent to dj in
the variable gadgets belongs to C; denote that vertex by w. Hence, we have {w, ej , e′j} ⊆
N(dj) ∩ C. It is straightforward to verify that there exists no vertex v ∈ V such that
N(dj) ∩ C ⊆ N [v]. Therefore, there always exists a vertex c ∈ C such that 1 = d(c, x) <
d(c, y).

• Finally, suppose that x = u. Recall that by the construction of G′ the universal vertex is
adjacent to the vertices ai, a

′
i, bi, b

′
i, ci and c′i of C in the variable gadgets and to ej ∈ C

and e′j ∈ C in the clause gadgets. Hence, analogously to the previous cases, there always
exists a vertex c ∈ C such that 1 = d(c, x) < d(c, y).

Thus, by Theorem 2.2, C is a solid-resolving set of G′ with 7n + 2m vertices, and we have
βs(G′) = 7n+ 2m.

Let us then show that if the solid-metric dimension of G′ is 7n + 2m, then the formula F
is satisfiable. Let C be a solid-resolving set in G′ with 7n + 2m vertices. Due to the previous
observations, we know that for each i exactly one of the vertices Ti and Fi belongs to C. Form
then a truth assignment A of F as follows: if Ti ∈ C, then set the variable xi to be true, else set
xi = false. In what follows, we show that the truth assignment A satisfies the formula F . Suppose
to the contrary that a clause Cj is not satisfied by A. This implies that the vertex dj in the clause
gadget is not adjacent to any vertices of C in the variable gadgets. Hence, it is straightforward to
verify that d(c, u) ≤ d(c, dj) for any c ∈ C. However, this contradicts with the characterisation of
Theorem 2.2. Thus, the truth assignment A satisfies the formula F .

In conclusion, we have shown that the solid-metric dimension of G′ is 7n + 2m if and only
if the formula F is satisfiable. Thus, as the graph G′ can be constructed in polynomial time
and the 3-SAT problem is NP-complete, the problem of deciding whether βs(G) ≤ k is also
NP-complete.
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9 Conclusions

In this paper, we introduced a new class of resolving sets called solid-resolving sets. We gave a very
useful characterisation for solid-resolving sets and showed that (depending on the graph) there are
vertices that must be included in any solid-resolving set. We considered the connection between
solid-resolving sets and other resolving sets, the boundary of a graph and locating-dominating
sets. We proved bounds on the solid-metric dimension of a graph utilizing the Dilworth number,
maximum degree and clique number. Finally, we showed that deciding whether the solid-metric
dimension of a graph is at most a given number is an NP-complete problem.

Acknowledgements: The authors would like to thank Maŕıa Luz Puertas for fruitful discussions
on the subject and the referees for their valuable suggestions.
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