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Could coastal plants in western Amazonia be relicts of past

marine incursions?

Abstract

The rainforests of Amazonia comprise some of the most biologically
diverse ecosystems on Earth. Despite this high biodiversity, little is
known about how landscape changes that took place in deep his-
tory have affected the assembly of its species, and whether the im-
pact of such changes on biodiversity can still be observed. Here, we
present a hypothesis to explain our observation that plants typical
of Neotropical coastal habitats also occur in western Amazonia, in
some cases thousands of kilometres away from the coast. Evidence
on their current distribution, dispersal biology and divergence times
estimated from molecular phylogenies suggest that these plants may
be the legacy of the large marine-influenced embayment that domi-
nated the area for millions of years in the Neogene. We hypothesize
that coastal plants dispersed along the shores of this embayment
and persisted as inland relicts after the marine incursion(s) retreated,
probably with the aid of changes in soil conditions caused by the
deposition of marine sediments. This dispersal corridor may also have
facilitated the colonization of coastal environments by Amazonian
lineages. These scenarios could imply an unexpected coastal source
that has contributed to Amazonia's high floristic diversity and led to
disjunct distributions across the Neotropics. We highlight the need
for future studies and additional evidence to validate and shed fur-
ther light on this potentially important pattern.

1 | INTRODUCTION

An embayment of more than one million km? covered western
Amazonia in the Miocene, at least during intermittent periods be-
tween c. 23-10 Ma (Hoorn, 1993; Hoorn, Wesselingh, Hovikoski,
& Guerrero, 2010; Hoorn, Wesselingh, ter Steege, etal., 2010;
Hovikoski, Wesselingh, Rasanen, Gingras, & Vonhof, 2010; Hovikoski
et al., 2007; Linhares, de Souza Gaia, & Feijé Ramos, 2017; Vonhof
et al., 2003; Wesselingh, Guerrero, Rasidnen, Romero Pittman, &
Vonhof, 2006; Wesselingh et al., 2002). This embayment experi-
enced marine influence, which likely originated from a Caribbean
source (Boonstra, Ramos, Lammertsma, Antoine, & Hoorn, 2015;
Jaramillo etal., 2017; Salamanca et al., 2016). In part, the marine
influences are recognized in high frequency rhythmic sedimentary
pulses that are characteristic of tidal conditions (Hovikoski et al.,
2007, 2010). The relics of this immense wetland system now consti-
tute a fundamental part of the geological record of northern South
America. Today, this region hosts some of the most species-rich

ecosystems on Earth. If aquatic—and especially marine—settings
indeed dominated the region in the Miocene, this would have left
a relatively short amount of time for the development of the re-
gion's high biodiversity (Antonelli et al., 2018; Tuomisto, Zuquim, &
Cardenas, 2014).

The evidence for marine influence in Amazonia derives from
the fossil record of molluscs (Wesselingh et al., 2006), foraminifera,
dinoflagellates, ostracods (Boonstra et al., 2015; Gross, Ramos, &
Piller, 2015; Jaramillo et al., 2017; Wesselingh & Ramos, 2010), man-
grove pollen (Hoorn, 1993, 2006; Salamanca et al., 2016) as well
as geochemical, ichnological and sedimentological data (Hovikoski
et al., 2007; Jaramillo et al., 2017; Rasanen, Linna, Santos, & Negri,
1995; Vonhof etal., 2003). Amazonian lineages characteristic
of marine environments include dolphins, manatees, sharks and
stingrays (Bloom & Lovejoy, 2017; Jaramillo et al., 2017; Lovejoy,
Albert, & Crampton, 2006). The existence of marine environments
in Amazonia, and their influence on regional diversity, has been in-
ferred from biogeographic analyses of amphibians (e.g. Santos et al.,
2009), fish (e.g. Cooke, Chao, & Beheregaray, 2011) and plants (e.g.
Antonelli, Nylander, Persson, & Sanmartin, 2009; Bacon, Velasquez-
Puentes, Hoorn, & Antonelli, 2018; Freitas et al., 2016; Roncal, Kahn,
Millan, Couvreur, & Pintaud, 2013; Snak et al., 2016).

Coastal plants are adapted to varying levels of salinity, strong
currents and storm surges, exposure to sunlight and wind, high soil
drainage capacity (sand) and/or low oxygen levels in the muddy and
sandy soils that often associate with these environments (Lacerda
et al., 1993; Wassilieff, 2012). Even if species grow further inland,
they can be exposed to fluctuating conditions driven by intermit-
tent exposure and rare events such as high cyclic tides and tropical
storms. Typical elements in Neotropical estuarine systems include
plant genera such as Acrostichum, Dalbergia and Montrichardia
(Huber & Alarcén, 1988). Plants that are not salt tolerant but are
commonly associated with estuaries include Manicaria saccifera,
Pachira aquatica, Phenakospermum guyannense, Pterocarpus officina-
lis, Symphonia globulifera and Virola surinamensis (Behling, Cohen, &
Lara, 2001; Dransfield et al., 2008; Huber & Alarcén, 1988; Urrego,
Bernal, & Polania, 2009).

Here, we propose the hypothesis that the legacy of Miocene ma-
rine incursions in the region explains the present-day occurrence, in
western Amazonia, of plant species found in coastal and/or estua-
rine zones. We explore several independent lines of evidence that
appears to support our hypothesis, as discussed below. First, the

distributions of these species within Amazonia largely fall within the
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geographic extent of the Miocene wetland. Second, time-calibrated
molecular phylogenies of key species show that divergence between
inland and coastal populations started only after the drainage of
the wetland because dispersal is no longer possible between them.
Third, the plant taxa investigated are distantly related and have dif-
ferent biogeographic histories, growth forms and dispersal abilities,
thus raising the likelihood of shared historical factors underlying
their current similar distributions.

Extant plants with a disjunct coastal and inland distribution and
different ecologies (coastal, estuarine or both) may provide a previ-
ously unexplored data source to address the influence of historical
landscape changes on the assembly of current ecosystems. Here,
we assess multiple sources of data related to marine incursions that
enable the development of a holistic understanding of the evolu-
tionary history, and resulting distribution, of species in western

Amazonia.

2 | CANDIDATE SPECIES

We chose an initial set of species by exploring lists of sea-drifted
seeds and fruits that are Neotropical species from deltaic and/or
estuarine environments (Armstrong, 2009; Burnham, 1990). We
then excluded those species that have continental-wide distribu-
tions, resulting in 28 species which we refer to as ‘candidate spe-
cies’ (Table 1). Candidate species are suggestive of deltaic and/
or estuarine environments in the Neotropics, and that also occur
disjunctly in western Amazonia. In coastal environments, these
species are not strictly haline, but most of them grow at the upper
end of the tidal belt (Seeliger, 1992). Candidate species belong
to several distantly related lineages and have a variety of growth
forms, including herbs, shrubs, trees and vines (Figure 1, Table 1).
These are primarily water dispersed and one is also dispersed by
fish, although a few others use additional dispersal agents not as-
sociated with water, such as birds, mammals or wind. Diaspores
of several of the candidate species are commonly found among
sea drift (Armstrong, 2009; Burnham, 1990). These characteris-
tics make the candidate species particularly suitable as subjects to
explore a possible link between current species distributions and

past sea incursions.

3 | SPECIES DISTRIBUTIONS

Distribution records for the candidate species were sourced
from public databases and herbaria (GBIF, INCT, COAH, INPA;
downloaded on 17 December 2014) as well as from the literature
(Database S1). Duplicate or erroneous records were removed as well
as records with doubtful identifications or representing cultivated
plants (Allamanda cathartica and Chrysobalanus icaco). The final num-
ber of South American occurrence records for subsequent analyses
was 4,816, including 2,534 records of inland localities (External
Database).

1751
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Species distribution maps were created in qcis 2.6 (www.
qgis.org) for Figure S1 and Diva-GIS 7.5 (www.diva-gis.org) for
Figure 2. In Figure 2, candidate species richness was measured in
one-degree grid cells. In Figure S1, we plotted the occurrence re-
cords for each species onto an environmental raster layer for the
average value from all soil categories of total exchangeable bases
(TEB) in cmol kg'1 (shown in green shading). Total exchangeable
bases stand for the sum of exchangeable cations in soil (sodium
[Na], calcium [Ca], magnesium [Mg] and potassium [K] in cmol kg'i).
Raster layers for soil environmental variables were created using
the Harmonized World Soil Database (HWSD; http://webarchive.
iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/;
downloaded on February 18, 2015), using SQL, R and ArcGis. The
method is fully described at https://wiki.biovel.eu/display/doc/
BioVelL+Wiki.

The highest concentration of candidate species (Figure 2) is
found in the central part of western Amazonia, between Iquitos
in Peru and Leticia in Colombia, where 23 species occur (Table 1).
Farther north, near the Guiana Shield, an assemblage of 20 candi-
date species reaches the base of the Guianan escarpments, whereas
16 species occur along the middle and upper Essequibo River basin.
There is a concentration of 13 candidate species in the border zone
of Peru, Bolivia and Brazil, with up to nine species per square de-
gree. Species in this zone include the water-dispersed Pachira aquat-
ica and Dalbergia monetaria, and the pantropical seawater-dispersed
Dalbergia ecastaphyllum, Guilandina bonduc and Pterocarpus offici-
nalis. A high concentration of candidate species also occurs in the
upper Napo River in eastern Ecuador, where 16 species occur, with
up to 10 species per square degree.

The current distribution of the candidate species complements
palaeogeographic reconstructions of the marine incursions in the
periphery of the Guiana Shield (Hoorn, 2006; Hoorn, Wesselingh,
ter Steege, et al., 2010; Hovikoski et al., 2007, 2010). This is indi-
cated by the occurrence of 20 candidate species, some of which
reach as far north as the upper Caura River in the Venezuelan Guiana
(Figure 2; Table 1). Those that are exclusively water dispersed (e.g.
Pachira aquatica and Dalbergia ecastaphyllum) provide the strongest
indication for this interpretation.

An additional avenue for marine incursion along the Essequibo
River (Hovikoski et al., 2010) (Figure 2) is also supported by the dis-
tribution of extant plants, as the candidate species reach far beyond
the highest level of today's tides, c. 100 km upstream from its mouth
(Worts, 1958). Although some of the species (Hieronyma alchorneoi-
des, Symphonia globulifera, Virola surinamensis) have complementary
dispersal agents such as mammals or birds, or an explosive discharge
of the seeds from the fruit (Pentaclethra macroloba), occurrence of
the seawater-dispersed Dalbergia monetaria and Pterocarpus officina-
lis (the latter of African origin and with pantropical estuarine distri-
bution [Muller, Voccia, Ba, & Bouvet, 2009]) may indicate a marine
incursion. However, the debated Essequibo-Rio Branco marine cor-
ridor (Hovikoski et al., 2010; Wesselingh & Hoorn, 2011) is not sup-
ported by the distribution of the candidate species, as represented
by available herbarium collections.
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The occurrence of 13 candidate species in the Madre de Dios
and Acre basins, five of which are exclusively water dispersed, also
suggests past marine influence in the region (e.g. the pantropical
seawater-dispersed Dalbergia ecastaphyllum, Guilandina bonduc and
Pterocarpus officinalis). During the late Miocene (c. 11.3-7 Ma), this
area consisted of fluvial, deltaic and estuarine channel complexes
(Hovikoski, 2006; Hovikoski et al., 2007; Rasanen et al., 1995), simi-
lar to the environments on the north-eastern coast of South America
where these species are common today. A marine connection along
the present-day Amazon River (e.g. Webb, 1995) is not supported
by our data, as there is conspicuously low diversity of candidate
plants along the Amazon east of its confluence with the Rio Negro
(Figure 2; Table 1).

Can the observed distribution pattern of plants in Amazonia be
an artefact caused by a geographic bias of collecting efforts? There
are indeed large areas of Amazonia that have been poorly explored
(Schulman, Toivonen, & Ruokolainen, 2007). However, the c. 5 million
georeferenced plant occurrence records that we were able to access
for this study through the Global Biodiversity Information Facility for
the region (GBIF; Figure S2) show large, comparatively well-explored
areas outside the proposed marine incursion area with low richness of
candidate species, mostly 0-2 species per square degree of latitude-
longitude. These areas include the middle Madeira, the lower Amazon,
the Rio Branco and the Rio Negro. The few candidate species occurring
in these areas are the trees Carapa guianensis, Symphonia globulifera or
Virola surinamensis, which are both water- and mammal-dispersed.

Overall, the areas with the highest candidate species richness
largely fit within the reconstruction of the Miocene incursioninferred
from independent geological evidence (Figures 2, S1), although un-
equal sampling effort may occur amongst sites. In addition, these past
marine incursion areas correspond approximately to where the high-
est soil cation concentrations are found today (Figure S1). Exceptions
are seen where the marine sediments are covered by more recent,
less cation-rich material, or where the recent sediments are equally
or more cation-rich than those derived from the Pebas system due
to, for example, the deposition of volcanic material by rivers (Higgins
et al., 2011). A past marine connection between western Amazonia,
the Guianas and the Orinoco delta can explain the affinities of extant
candidate species among these areas. Recent independent arrivals of
unrelated, mostly water-dispersed species across vast areas of dry
land are unlikely, particularly for obligate water-dispersed species
such as Dalbergia ecastaphyllum, Dalbergia monetaria, Guilandina bon-

duc, Pachira aquatica and Pterocarpus officinalis.

4 | MOLECULAR PHYLOGENETICS

DNA sequences were downloaded from the National Center for
Biotechnology Information (GenBank) and complemented with
new sequences (Table S2) for individuals from inland Amazonian
and coastal populations of Manicaria saccifera. Those specimens
were sequenced for the PRK and RPB2 genes following Bacon et al.
(2016), and for the ITS and trnLF genes for Pachira aquatica following

the protocol of Duarte, Esteves, Salatino, Walsh, and Baum (2011).
Divergence times were inferred for these two groups in BeasT 1.7.5
(Drummond, Ho, Phillips, & Rambaut, 2006) using a Yule tree prior
and the GTR+I" model of nucleotide substitution with four gamma
categories. Markov chains were sampled every 10,000th iteration
for 100 million generations and repeated three times to test for
Markov chain Monte Carlo convergence and to ensure effective
sample sizes exceeded 200.

Internal nodes were calibrated to represent absolute time
using fossil information. For the Pachira dataset, we estimated
divergence times by constraining the phylogeny at the crown
node of the Malvatheca clade (Bombacoideae; Malvaceae)
using Malvaciphyllum macondicus fossil leaves from the Cerrejon
Palaeocene forests of Colombia (Carvalho, Herrera, Jaramillo,
Wing, & Callejas, 2011). Synapomorphies were used to support
natural affinities for the fossil leaves, allowing for robust place-
ment in the phylogeny. We used an exponential prior defined by a
mean of 0.7 and an offset value of 58 to account for uncertainty
in the geological age of the fossil deposit following Carvalho et al.
(2011) and to infer divergence times in Pachira. Exponential pri-
ors were also used to calibrate the palm topology where prior
distributions were 1.0 and the offset value was set for the mean
age of the respective palm fossils: Attalea olssoni (35 Ma), Bactris
pseudocuesco (30 Ma), Bactrites pandanifolius (40 Ma), Cocos sp.
(54.8 Ma), Sabalites carolinensis (85.8 Ma) and Socratea brownii
(25 Ma), following Eiserhardt et al. (2011).

The mean crown ages for the two candidate species ranged from
c. 9-2.5 Ma, indicating that these species had split from their sister
groups and began to diverge only after the Miocene embayment had
retreated. Once the conditions began to change, gene flow likely
reduced and population differentiation and speciation may have
begun. Our results suggest that gene flow occurred until the early
Pliocene (5.0-4.3 Ma; Figure 3), when populations of both candidate
species differentiated into Amazonian and coastal populations, due
to increased isolation caused by the complete retreat of the embay-
ment (only after c. 7 Ma).

Our results also suggest that dispersal may have been bidi-
rectional, i.e., some species may have evolved in Amazonia or the
foothills of the Guiana Shield and dispersed towards the coasts
(Pachira; Carvalho-Sobrinho et al., 2016), while others dispersed
from the present coastline towards the centre of the continent.
For instance, the genus Manicaria originated in the middle Eocene
c. 50 Ma (Figure 3), and several lines of evidence suggest that it
evolved in the Guiana Shield and coastal Atlantic region. First, the
two species currently recognized in the genus are distributed in this
area. Second, the Guiana Shield comprises the distributional area of
tribe Leopoldinieae, the sister group of tribe Manicarieae to which
Manicaria belongs (Baker et al., 2009; Dransfield et al., 2008), and
may also have harboured the ancestors of extant Geonoma, the sis-
ter group of Manicarieae plus Leopoldinieae (Roncal, Borchsenius,
Asmussen-Lange, & Balslev, 2010). Third, the only known highland
populations of Manicaria are found in the Guiana Shield, reaching
up to 1,225 m. Fourth, dichotomously branched stems in palms (like
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FIGURE 1 The candidate species
suggestive of deltaic/or estuarine
environments in western Amazonia
surveyed in this study represent different
lineages and growth forms. (a) The fern
Acrostichum danaeifolium (Pteridaceae);
(b), the tree Cespedesia spathulata
(Ochnaceae); (c) the shrub Chrysobalanus
icaco (Chrysobalanaceae); (d) the climber
Guilandina bonduc (Fabaceae); (e) the
palm Manicaria saccifera (Arecaceae); (f)
the creeping herb Sphagneticola trilobata
(Asteraceae). All photographs by R.
Bernal [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 2 Extantrecords of candidate plants with deltaic/marine/estuary characteristics in South America mapped using Diva-GIS 7.5
(www.diva-gis.org). Colors represent the number of candidate species in one-degree cells. The possible extent of wetlands is based on a
compilation of published reconstructions and a mid-Miocene palaeogeographic map. Relief and continent contour correspond to present
conditions; in blue the reconstructed Pebas wetland. The red dotted line represents areas where estuarine, exclusively water-dispersed plants
also occur, and have been postulated as additional areas of marine embayments®'°. Only grids with >4 candidate species are shown, in order
to reduce noise caused by species with additional dispersal strategies besides water [Colour figure can be viewed at wileyonlinelibrary.com]

those of trans-Andean populations of Manicaria) are considered de-
rived from unbranched stems like those in Amazonian and other
cis-Andean populations (Fisher & Maidman, 1999). Our results from
the dated Manicaria phylogeny suggest that the species originated
along the Atlantic coast, dispersed into Amazonia and likely be-
came isolated from the coastal populations after the embayment
retreated and transformed into the Amazon fluvial system (‘Acre
System’ in the sedimentary record; Figure 3; Hoorn, Wesselingh,
Hovikoski, et al., 2010).

5 | PLANTS AS RELICTS OF MARINE
INCURSIONS?

The different lines of evidence explored here indicate the potential
for a common historical and evolutionary scenario. Our hypothesis
is that these candidate plant species growing in western Amazonia
are, in a sense, living fossils that can help us to understand the in-
teractions between landscape changes and biodiversity. The cur-
rent distribution of candidate species and their patterns of richness
underscore the interplay between biota and landscape processes,
including Andean mountain building and marine incursions (Eakin,
Lithgow-Bertelloni, & Davila, 2014; Hoorn, Wesselingh, ter Steege,
et al., 2010; Hoorn et al., 2017; Shepard, Mdiller, Liu, & Gurnis, 2010;
van Soelen et al., 2017).

The species discussed here are evidence of extant terrestrial

organisms associated to past marine incursions. However, they

may well be just the tip of an iceberg—a mere indication of the
pivotal role of past coastal settings in shaping Amazonia's pres-
ent biota. Further research should aim at investigating the gen-
eral importance of these findings on the whole Amazonian flora,
through the integration of molecular, palaeontological and envi-
ronmental data. Specifically, we suggest a careful review of the
fossil pollen of the candidate species. A major contribution would
be to relate these with their nearest living relative and trace the
effect of marine incursions on plant diversity and distribution.
Second, key insight would be gained by untangling the effect of
marine from orogenic, edaphic or climatic-induced variables on
the distribution and diversification of species. To achieve this, it
will be pivotal to design numerical climate simulations account-
ing for the actual Miocene palaeogeography (i.e. palaeotopog-
raphy and wetlands extent). By translating the reconstruction
of the Pebas wetland (Boonstra et al., 2015; Hernandez et al.,
2005; Hoorn, Wesselingh, ter Steege, et al., 2010; Jaramillo
etal.,, 2017) on a published mid-Miocene topographic map
(Herold, Seton, Muller, You, & Huber, 2008), we provide a re-
alistic physiographic Miocene context for South America that
will be useful for such a purpose (Figure S3). Ultimately, these
contributions will allow us to better ascertain to what extent the
current abiotic environment (e.g. Ritter et al., 2018) has influ-
enced the relictual signals from past marine incursions. Lastly,
dense phylogeographic sampling would lead to explicit tests of
the geographic origin, genetic diversity and population structure

of the candidate plant species.
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FIGURE 3 Phylogenetic relationships of coastal and inland populations of the tree Pachira aquatica and the palm Manicaria saccifera
based on DNA sequences. The number in brackets represents the number of individuals sampled per geographic area, also listed (Atlantic,
Pacific coast, and Amazonia). The two species are depicted to the left of the phylogeny (photographs by R. Bernal), together with their
geographic distribution (red dots) mapped onto soil fertility (total exchangeable bases, cmol/kg, green shading) using QGIS 2.6 (www.qgis.
org) and the reconstructed Pebas wetland, according to this study, is shown in blue contour (see also Fig. S1). The timing of divergence is
listed at nodes and bars show credibility intervals in age estimates. Four periods of aquatic systems in South America are mapped: (a) follows
Louterbach et al. (2014) and (b-d) follow results presented here and in Hoorn, Wesselingh, ter Steege, et al. (2010). The putative extension
of the Pebas wetland into the Orinoco region (as suggested by the occurrence of estuarine, water-dispersed plants) is in light green and the
onset of the Amazon River at c. 9 Ma is shown with a blue line (Hoorn et al., 2017). Below the phylogeny, six known periods of marine events
are depicted with an ‘M’ (Jaramillo et al., 2017; Salamanca et al., 2016). Global sea level, following Miller, Mountain, Wright, and Browning
(2011) in blue and Higgins et al. (2011) in red, is shown at the bottom of the figure [Colour figure can be viewed at wileyonlinelibrary.com]
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