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Many machine learning problems can be formulated as predicting labels
for a pair of objects. Problems of that kind are often referred to as pair-
wise learning, dyadic prediction, or network inference problems. During
the past decade, kernel methods have played a dominant role in pairwise
learning. They still obtain a state-of-the-art predictive performance, but a
theoretical analysis of their behavior has been underexplored in the ma-
chine learning literature. In this work we review and unify kernel-based
algorithms that are commonly used in different pairwise learning set-
tings, ranging from matrix filtering to zero-shot learning. To this end, we
focus on closed-form efficient instantiations of Kronecker kernel ridge
regression. We show that independent task kernel ridge regression, two-
step kernel ridge regression, and a linear matrix filter arise naturally as a
special case of Kronecker kernel ridge regression, implying that all these
methods implicitly minimize a squared loss. In addition, we analyze uni-
versality, consistency, and spectral filtering properties. Our theoretical
results provide valuable insights into assessing the advantages and lim-
itations of existing pairwise learning methods.
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1 Introduction to Pairwise Learning

1.1 Settings in Pairwise Learning. Many real-world machine learning
problems can naturally be represented as pairwise learning or dyadic pre-
diction problems. In contrast to more traditional learning settings, the goal
here consists of making predictions for pairs of objects u ∈ U and v ∈ V , as
elements of two universes U and V . Such an ordered pair (u, v ) is often re-
ferred to as a dyad, and both elements in the dyad are usually equipped
with a feature representation. In contrast to many statistical settings, these
dyads are not independently and identically distributed, as the same objects
tend to appear many times as part of different pairs.

Applications of pairwise learning often arise in the life sciences,
such as predicting various types of interactions in all sorts of biologi-
cal networks (e.g., drug-target networks, gene regulatory networks, and
species interaction networks). Similarly, pairwise learning methods are also
used to extract novel relationships in social networks, such as author-
citation networks. Other popular applications include recommender
systems (predicting interactions between users and items) and informa-
tion retrieval (predicting interactions between search queries and search
results).

Formally speaking, in pairwise learning, one attempts to learn a function
of the form f (u, v ), that is, a function to predict properties of two objects.
Such functions are fitted using a set of n labeled examples: the training set
S = {(uh, vh, yh) | h = 1, . . . , n}. Further on, U = {ui | i = 1, . . . , m} and V =
{v j | j = 1, . . . , q} will denote the sets of distinct objects of both types, later
referred to as instances and tasks, respectively, in the training set with m =
|U| and q = |V|.

Pairwise learning holds strong connections with many other machine
learning settings. Especially a link with multitask learning can be advo-
cated by calling the first object of a dyad an “instance” and the second
object a “task.” The underlying idea for making the distinction between
instances and tasks is that the feature description of the instances is often
considered as more informative, while the feature description of the tasks
is mainly used to steer learning in the right direction. Albeit less common
in traditional multitask learning formulations, feature representations for
tasks play a crucial role in recent paradigms such as zero-shot learning (see,
e.g., Palatucci, Hinton, Pomerleau, & Mitchell, 2009; Lampert, Nickisch, &
Harmeling, 2014).

The connection between pairwise learning and multitask learning allows
one to distinguish different prediction settings that are crucial in the context
of this letter. Formally, four settings for predicting the label of the dyad (u, v )
can be distinguished in pairwise learning, based on whether testing objects
are in-sample (appear in the training data) or out-of-sample (do not appear
in the training data):
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Figure 1: The different prediction settings in pairwise learning, depending on
whether objects in a dyad occurred in the training set. The four settings are
always referred to as settings A, B, C, and D, respectively, in this letter.

• Setting A: Both u and v are observed during training, as parts of dif-
ferent dyads, but the label of the dyad (u, v ) must be predicted.

• Setting B: Only v is known during training, while u is not observed
in any training dyad, and the label of the dyad (u, v ) must be
predicted.

• Setting C: Only u is known during training, while v is not observed
in any training dyad, and the label of the dyad (u, v ) must be
predicted.

• Setting D: Neither u nor v occurs in any training dyad, and the label
of the dyad (u, v ) must be predicted.

Figure 1 shows data of the four settings graphically in four matrix rep-
resentations. Setting A resembles a matrix completion or matrix filtering
scenario, as typically encountered in collaborative filtering problems. In
principle, feature representations are not needed if the structure of the ma-
trix is exploited to generate predictions, but additional information might
be helpful. Setting B resembles a classical multitask learning scenario,
where the columns represent instances and the rows tasks. For a predefined
set of tasks, one aims for predicting the labels of novel instances. Setting
C then considers the converse setting, where the instances are all known
during training and some tasks are unobserved. This setting is in essence
identical to setting B if one interchanges the notions of task and instance.
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Setting D is the most difficult prediction setting of the four. In the multitask
learning literature, this setting is known as zero-shot learning, as one aims
for predicting the labels of tasks with zero training data.

In pairwise learning, it is extremely important to distinguish these four
prediction scenarios. Without bearing them in mind, one might select the
wrong model for the given scenario or obtain an under- or overestimation
of the generalization error. For example, a pairwise recommender system
that can generalize well to new users might perform poorly for new items.
In a large-scale metastudy about biological network identification, it was
found that these concepts are vital to correctly evaluate pairwise learning
models (Park & Marcotte, 2012). Certain properties of different models dis-
cussed in this work hold only for certain settings.

1.2 Kernel Methods for Pairwise Learning with Complete Data Sets.
During the past decade, various types of methods for pairwise learning
have been proposed in the literature. Kernel methods in particular have
been extensively used (see, e.g., Vert & Yamanishi, 2005; Zaki, Lazarova-
Molnar, El-Hajj, & Campbell, 2009; Huynh-Thu, Irrthum, Wehenkel, &
Geurts, 2010; van Laarhoven, Nabuurs, & Marchiori, 2011; Cao et al., 2012;
Liu & Yang, 2015). Especially in bioinformatics applications, they have been
popular because biological entities are often easier to represent in terms of
similarity scores than feature representations (Ben-Hur & Noble, 2005; Shen
et al., 2007; Vert, Qiu, & Noble, 2007).1

In this work, we focus on kernel methods for pairwise learning. We be-
lieve that kernel methods have a number of appealing properties:

First, the methods that we analyze in this letter are general-purpose
methods. They can be applied to a wide range of settings, including set-
tings A to D and a wide range of application domains. More recent methods
might outperform kernel methods in specific situations, but they are usu-
ally not applicable to settings A to D at the same time, or they are mainly
developed for specific application domains with very specific types of data
sets (e.g., computer vision and text mining data sets).

Second, the methods that we analyze often form an essential building
block of more recent (and more complicated) methods. This is, for example,
the case for zero-shot learning methods in computer vision. It is therefore
important to provide a theoretical analysis of older methods in order to gain
a better understanding of more recent methods that are often black-box en-
gineering approaches. More details on this aspect are given section 4.

1
Recent advances in convolutional neural networks, however, have resulted in intrigu-

ing ways to generate representations for molecules (Duvenaud et al., 2015), proteins (Jo,
Hou, Eickholt, & Cheng, 2015) and nucleic acids (Alipanahi, Delong, Weirauch, & Frey,
2015). Such feature representations, obtained by pretraining on large data sets, will likely
replace kernel methods in the future, at least to some extent.
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Third, the methods that we analyze in this paper are still clear win-
ners for specific scenarios. One of those scenarios is cross-validation in
pairwise learning, for which kernel methods outperform other methods
substantially with regard to computational scalability. Furthermore, scal-
able and exact algorithms can be derived to learn a model online or when
the data set is not complete (see definition 1). For more information on these
aspects, we refer readers to our complementary work (Stock, De Baets, &
Waegeman, 2017; Stock, 2017; Stock, Pahikkala, Airola, Waegeman, & De
Baets, 2018).

These three reasons are the key motivations for studying kernel-based
pairwise learning methods from a theoretical perspective. The key idea
of extending kernel methods to pairwise learning is to construct so-called
pairwise kernels, which measure the similarity between two dyads (u, v )
and (ū, v̄ ). Kernels of that kind can be used in tandem with any conven-
tional kernelized learning algorithm such as support vector machines, ker-
nel ridge regression (KRR), and kernel Fisher discriminant analysis. In this
letter, we particularly focus on pairwise learning methods that are inspired
by kernel ridge regression. Due to the algebraic properties of such meth-
ods, they are especially useful when analyzing so-called complete data sets
in pairwise learning.

Definition 1 (complete dataset). A training set is called complete if it contains
exactly one labeled example for every dyad (u, v ) ∈ U × V.

If the label matrix contains only a few missing labels, matrix imputation
methods can be applied to render the matrix complete (Mazumder, Hastie,
& Tibshirani, 2010; Stekhoven & Bühlmann, 2012; Zachariah & Sundin,
2012). Complete data sets, however, occur frequently, for example, in bi-
ological networks such as drug-protein interactions or species interactions.
Here, screenings or field studies generate a set of observed interactions,
while interactions that are not observed are either interactions not occur-
ring or false negatives (Schrynemackers, Küffner, & Geurts, 2013; Jordano,
2016). In such cases, the positive instances are labeled 1 and the negatives
are labeled 0. Theoretical work by Elkan and Noto (2008) has shown that
models can still be learned from such data sets. Outside of biological net-
work inference, complete datasets occur in recommender systems with im-
plicit feedback; for example, buying a book can be seen as a proxy for liking
a book (Isinkaye, Folajimi, & Ojokoh, 2015). Setting A (reestimating labels)
is still relevant for such data sets if the labels are noisy or contain false pos-
itives or false negatives. A pairwise learning model can be used to detect
and curate such errors.

For a complete training set, we introduce a further notation for the matrix
of labels Y ∈ Rm×q, so that its rows are indexed by the objects in U and the
columns by the objects in V . Furthermore, we use Yi. (resp. Y. j) to denote
the ith row (resp. jth column) of Y. The vectorization of the matrix Y by
stacking its columns in one long vector will be denoted y.
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1.3 Scope and Objectives of This Letter. The goal of this letter is to
provide theoretical insight into the working of existing pairwise learning
methods that are based on kernel ridge regression. To this end, we focus on
scenarios with complete training data sets while analyzing the behavior for
settings A to D. More specifically, we provide an in-depth discussion of the
following four methods:

• Kronecker kernel ridge regression: Adopting a least-squares formulation,
this method is representative for many existing systems based on
pairwise kernels.

• Two-step kernel ridge regression: This recent method has some inter-
esting properties such as simplicity and computational efficiency.
The method has been independently proposed in Pahikkala et al.
(2014) and Romera-Paredes and Torr (2015). In a variant of it, tree-
based methods replace kernel ridge regression as base learners
(Schrynemackers, Wehenkel, Babu, & Geurts, 2015). In a statistical
context, similar models have been developed for structural equation
modelling (Bollen, 1996; Bollen & Bauer, 2004; Jung, 2013).

• Linear matrix filtering: This recently proposed method provides pre-
dictions in setting A without the need for object features, similar to
collaborative filtering methods. Though simple, this linear filter was
found to perform very well in predicting interactions in a variety of
species-species and protein-ligand interaction datasets (Stock, Poisot,
Waegeman, & De Baets, 2017; Stock, 2017). On these data sets, it out-
performs standard matrix factorization methods and is very tolerant
of a large number of false negatives in the label matrices.

• Independent-task kernel ridge regression: This method serves as a base-
line and a building block for some of the other methods. This ap-
proach resembles the traditional kernel ridge regression method,
applied to each task (i.e., each column of Y) separately. When the
method is applied to a single task, we speak of single-task kernel
ridge regression.

We review these four models in section 2. All can be represented using
two positive-semidefinite kernel functions, one for each type of object—
k : U × U → R and g : V × V → R. These capture the similarity between two
objects of the same types. We will with prediction functions of the form

f (u, v ) =
m∑

i=1

q∑
j=1

ai jk(u, ui)g(v, v j ), (1.1)

with A = [ai j] ∈ Rm×q the dual parameters. Such a model can, for instance,
be obtained by the pairwise Kronecker kernel in a kernel-based learning
algorithm such as support vector machines (e.g., Vert et al., 2007; Brunner
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Figure 2: Overview of the methods discussed in this work and their relation to
one other. KRR = kernel ridge regression; ST KRR = single-task kernel ridge
regression; TS KRR = two-step kernel ridge regression. The letters in brackets
indicate the settings for which the theorem holds, as shown in Figure 1.

& Fischer, 2012). In this work, we limit ourselves to models where the dual
parameters can be written as a linear combination of the label matrix:

vec(A) = Bvec(Y). (1.2)

Here, B ∈ Rmq×mq is a matrix constructed based on the training objects U
and V , the kernel functions and the learning algorithm, but not the labels of
the pairs. Similarly, the matrix containing the predictions F associated with
the labels can be obtained by

vec(F) = Hvec(Y), (1.3)

where H ∈ Rmq×mq is the so-called hat matrix which maps observations to
predictions (Hastie, Tibshirani, & Friedman, 2001). Although B and H are
huge matrices for problems of even modest size (e.g., if |U| and |V| are on the
order of thousands, these matrices have a cardinality of millions); for sev-
eral methods, the parameters and predictions can be computed efficiently.
More specifically, the learning algorithms discussed in this work scale with
the number of objects rather than the number of labels.

The learning properties of the four methods are theoretically analyzed in
section 3. In a first series of results, we establish equivalences using special
kernels and algebraic operations. We discuss several links that are specific
for settings A, B, C, or D. Figure 2 gives an overview of what readers might
expect to learn. In a second series of results, we prove the universality of
Kronecker product pairwise kernels, and we analyze the consistency of the
algorithms that can be derived from such kernels. To this end, we provide a



2252 M. Stock et al.

spectral interpretation of Kronecker and two-step kernel ridge regression.
This will give further insight into the behavior of these methods.

2 Pairwise Learning with Methods Based on Kernel Ridge Regression

In this section we formally review the four methods outlined in section 1.
We start by explaining a baseline multitask learning formulation that will
be needed to understand more complicated methods. We call this method
independent-task kernel ridge regression, since it constructs independent
models for the different tasks, that is, the different columns of Y. Subse-
quently, we elaborate on Kronecker kernel ridge regression as an instantia-
tion of a method that employs pairwise kernels. In sections 2.3 and 2.4, we
review two-step kernel ridge regression and the linear matrix filter. In what
follows we adopt a multitask learning formulation in which the objects of
U and V are referred to as instances and tasks, respectively.

2.1 Independent-Task Kernel Ridge Regression. Suppose that only
features of objects of type U are available, but not of type V . Since there
is no information available on how the tasks are related, a separate model
for each task is trained. Let Y. j ∈ Rm be the labels of task v j and k(·, ·) be
a suitable kernel function that quantifies the similarity of the different in-
stances. Since a separate and independent model is trained for each task,
we denote this setting as independent task (IT) kernel ridge regression. For
each task v j, one would like to learn a function of the form

f IT
j (u) =

m∑
i=1

aIT
i j k(u, ui),

with aIT
i j parameters that minimize a suitable objective function. In the

case of KRR, this objective function is the squared loss with an L2-
complexity penalty. The parameters for the individual tasks using KRR can
be found jointly by minimizing the following objective function (Wahba,
1990; Bishop, 2006):

J(AIT) = tr[(KAIT − Y)�(KAIT − Y)] + λutr[AIT�
KAIT], (2.1)

with tr(·) the trace, AIT = [aIT
i j ] ∈ Rm×q and K ∈ Rm×m the Gram matrix

associated with the kernel function k(·, ·) for the instances and λu a reg-
ularization parameter. For simplicity, we assume the same regularization
parameter λu for each task v , though extensions to different penalties for
different tasks are straightforward. This basic setting assumes no cross
talk between the tasks, as each model is fitted independently. The optimal
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coefficients that minimize equation 2.1 can be found by solving the follow-
ing linear system:

(K + λuI) AIT = Y. (2.2)

Using the singular value decomposition of the Gram matrix, this system
can be solved for any value of λu with a time complexity of O(m3 + m2q).

2.2 Pairwise and Kronecker Kernel Ridge Regression. Suppose one
has prior knowledge about which tasks are more similar, quantified by a
kernel function g(·, ·) defined over the tasks. Several authors (see Álvarez,
Rosasco, & Lawrence, 2012; Baldassarre, Rosasco, Barla, & Verri, 2012) have
extended KRR to incorporate task correlations via matrix-valued kernels.
However, most of this literature concerns kernels for which the tasks are
fixed at training time. An alternative approach, allowing for the generaliza-
tion to new tasks more straightforwardly by means of such a task kernel,
is to use a pairwise kernel � ((u, v ) , (ū, v̄ )). Pairwise kernels provide a pre-
diction function of the type

f (u, v ) =
n∑

h=1

αh� ((u, v ) , (uh, vh)) , (2.3)

where α = [αh] are parameters that minimize the same objective function as
in equation 2.1,

J(α) = (�α − y)�(�α − y) + λα��α, (2.4)

with � the pairwise Gram matrix. The minimizer can also be found by solv-
ing a system of linear equations:

(� + λI) α = y. (2.5)

The most commonly used pairwise kernel is the Kronecker product pair-
wise kernel (Basilico & Hofmann, 2004; Oyama & Manning, 2004; Ben-
Hur & Noble, 2005; Park & Chu, 2009; Hayashi, Takenouchi, Tomioka, &
Kashima, 2012; Bonilla, Agakov, & Williams, 2007; Pahikkala, Airola, Stock,
De Baets, & Waegeman, 2013). This kernel is defined as

�KK ((u, v ) , (ū, v̄ )) = k (u, ū) g (v, v̄ ) , (2.6)

a product of the data kernel k(·, ·) and the task kernel g(·, ·). Many other
variations of pairwise kernels have been considered to incorporate prior
knowledge on the nature of the relations (e.g., Vert et al., 2007; Pahikkala,
Waegeman, Tsivtsivadze, Salakoski, & De Baets, 2010; Waegeman et al.,
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2012; Pahikkala et al., 2013) or for more efficient calculations in certain set-
tings (e.g., Kashima, Oyama, Yamanishi, & Tsuda, 2010).

Let G ∈ Rq×q be the Gram matrix for the tasks. Then, for a complete train-
ing set, the Gram matrix for the instance-task pairs is the Kronecker product
� = G ⊗ K. Often it is infeasible to use this kernel directly due to its large
size. The prediction function 2.3 can be written as

f KK(u, v ) =
m∑

i=1

q∑
j=1

aKK
i j k(u, ui)g(v, v j ). (2.7)

The matrix F containing the predictions for the training data using a pair-
wise kernel can be obtained by a linear transformation of the training labels:

vec(F) = �vec(AKK) (2.8)

= � (� + λI)−1 vec(Y) (2.9)

= H�vec(Y). (2.10)

As a special case of Kronecker KRR, we also retrieve ordinary Kronecker
kernel least squares (OKKLS) when the objective function of equation 2.4
has no regularization term (i.e., λ = 0).

Several authors have pointed out that while the size of the system in
equation 2.5 is considerably large, its solutions for the Kronecker product
kernel can be found efficiently via tensor algebraic optimization (Van Loan,
2000; Martin & Van Loan, 2006; Kashima, Kato, Yamanishi, Sugiyama, &
Tsuda, 2009; Raymond & Kashima, 2010; Pahikkala et al., 2013; Álvarez
et al., 2012). This is because the eigenvalue decomposition of a Kronecker
product of two matrices can easily be computed from the eigenvalue de-
composition of the individual matrices. The time complexity scales roughly
with O(m3 + q3), which is required for computing the singular value de-
composition of K and G (see property 2 in the appendix), but the com-
plexities can be scaled down even further by using sparse kernel matrix
approximation (Mahoney, 2011; Gittens & Mahoney, 2013).

However, these computational shortcuts concern only the case in which
the training set is complete. If some of the instance-task pairs in the training
set are missing or if there are several occurrences of certain pairs, one has to
resort, for example, to gradient-descent-based training approaches (Park &
Chu, 2009; Pahikkala et al., 2013; Kashima et al., 2009; Airola & Pahikkala,
2018). While the training can be accelerated via tensor algebraic optimiza-
tion, such techniques still remain considerably slower than the approach
based on eigenvalue decomposition.

2.3 Two-Step Kernel Ridge Regression. Clearly, independent-task
ridge regression can generalize to new instances, but not to new tasks as no
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dependence between these tasks is encoded in the model. Kronecker KRR,
on the other hand, can be used for all four prediction settings depicted in
Figure 1. But since our definition of instances and tasks is purely conven-
tional, nothing is preventing us from building a model using the kernel
function g(·, ·) to generalize to new tasks for the same instances. By com-
bining two ordinary KRRs, one for generalizing to new instances and one
that generalizes to new tasks, one can indirectly predict for new dyads.

More formally, suppose one wants to make a prediction for the dyad
(u, v ). Let k ∈ Rm denote the vector of instance kernel evaluations be-
tween the instances in the training set and an instance in the test set:
k(u) = (k(u, u1), . . . , k(u, um))�. Likewise, g ∈ Rq represents the vector of
task kernel evaluations between the target task and the auxiliary tasks:
g(v ) = (

g(v, v1), . . . , g(v, vq)
)�. Based on the parameters found by solving

equation 2.2, we can make a prediction for the new instance u for all the
auxiliary tasks,

fV (u) = k� (K + λuI)
−1 Y, (2.11)

with λu the specific regularization parameter for the instances. This vector
of predictions fV (u) can be used as a set of labels in an intermediate step to
train a second model for generalizing to new tasks for the same instance.
Thus, using the task kernel and a regularization parameter for the tasks λv ,
one obtains

f TS(u, v ) = g� (G + λvI)
−1 fV (u)�,

or, by making use of equation 2.11, the prediction is given by

f TS(u, v ) = k� (K + λuI)
−1 Y (G + λvI)

−1 g (2.12)

= k�ATSg, (2.13)

with ATS the dual parameters. The concept of two-step KRR is illustrated
in Figure 3. Two-step KRR can be used for any of the prediction settings
discussed in section 1.1. Note that in practice, there is no need to explicitly
calculate fV , nor does it matter if in the first step, one uses a model for new
tasks and in the second step for instances, or the other way around.

This model can be cast in a similar form as the pairwise prediction func-
tion of equation 2.7 by making use of property 1 in the appendix. Thus, for
two-step KRR, the parameters are given by

ATS = (K + λuI)
−1 Y (G + λvI)

−1
. (2.14)

The time complexity for two-step KRR is the same as for Kronecker KRR:
O(m3 + q3). The parameters can also be found by computing the eigenvalue
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Figure 3: Principle of two-step KRR. In a first step, a virtual prediction is made
for the out-of-sample tasks for new instances using a first KRR model. A sec-
ond KRR model is trained using these data; and this model is used to make
predictions for new tasks.

decomposition of the two Gram matrices. Starting from these eigenvalue
decompositions, it is possible to directly obtain the dual parameters for any
values of the regularization hyperparameters λu and λv . Because of its con-
ceptual simplicity, it is quite straightforward to use two-step KRR for certain
situations when the label matrix is not complete. The algebraic simplicity of
two-step KRR can lead to some interesting algorithmic shortcuts for train-
ing and validating models. We refer to our other work for a theoretical and
experimental overview (Stock, 2017).

2.4 Linear Filter for Matrices. Single-task KRR uses a feature descrip-
tion only for the objects u, while Kronecker and two-step KRR incorporate
feature descriptions of both objects u and v . Is it possible to make predic-
tions without any features at all? Obviously this would be possible only for
setting A, where both objects are known during training. The structure of
the label matrix Y (e.g., being low rank) often contains enough information
to successfully make predictions for this setting. In recommender systems,
methods that do not take side features into account are often categorized as
collaborative filtering methods (Su & Khoshgoftaar, 2009).

In order to use our framework, we have to construct some feature de-
scription in the form of a kernel function. An object u (resp. v) can be de-
scribed by the observed labels of the dyads that contain the object. In the
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context of item recommendation, this seems reasonable: users are described
by the ratings they have given to items, and items are described by users’
ratings. For example, Basilico and Hofmann (2004) use a kernel based on the
Pearson correlation of rating vectors of users to obtain a kernel description
of users for collaborative filtering. In bioinformatics, van Laarhoven and
colleagues (2011) predict drug-target interactions using so-called gaussian
interaction profile kernels, that is, the classical radial basis kernel applied
to the corresponding row or column of the label matrix. There is nothing
inherently wrong with using the labels to construct feature descriptions or
kernels for the object. One should be cautious only when taking a holdout
set for model selection or model evaluation; the omitted labels should also
be removed from the feature description to prevent overfitting.

Kernels that take observed labels into account, such as the gaussian in-
teraction profile kernel, are in theory quite powerful. Because they can be
used to learn nonlinear associations, they lead to more expressive models
than matrix factorization. The advantage of using these kernels compared
to other collaborative filtering techniques such as matrix factorization, k-
nearest neighbors, or restricted Boltzmann machines is that side features
can elegantly be incorporated into the model. To this end, one only has to
combine the collaborative and content-based kernel matrices, for example,
by computing a weighted sum or element-wise multiplication.

Recently, a different method was proposed to make predictions without
object features (Stock, Poisot et al., 2017). This method makes a prediction
for a couple (ui, v j ) by aggregating the observed value, the row and col-
umn average, and the total average of the label matrix. By analogy with an
image filter, this method was called a linear filter (LF) for matrices. The pre-
diction matrix, equation 1.3, is obtained as the following weighted average
of averages:

FLF
i j = α1Yi j + α2

1
n

n∑
k=1

Yk j + α3
1
m

m∑
l=1

Yil + α4
1

nm

n∑
k=1

m∑
l=1

Ykl, (2.15)

where (α1, α2, α3, α4) ∈ [0, 1]4. The first term is proportional to the label, and
the last term is proportional to the average of all labels. The second (resp.
third) term is proportional to the average label in the corresponding column
(resp. row). The parameters α1, α2, α3, and α4 act as weighing coefficients.

As mentioned in section 1, this linear filter can outcompete standard
methods such as matrix factorization, and it was observed to be particu-
larly tolerant to a large number of false negatives in the label matrices. An
attractive property of the linear filter is that it is possible to derive a com-
putational shortcut for leave-one-pair-out (LOO) cross validation:

FLOO
i j = Fi j − (

α1 + α2
n + α3

m + α4
nm

)
Yi j

1 − (
α1 + α2

n + α3
m + α4

nm

) . (2.16)
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This allows one to efficiently compute the prediction value FLOO
i j using the

label matrix except for the value Yi j.
In section 3.2 we will show that this linear filter is a special instance of

Kronecker KRR. This filter can hence be written in the form of equation
1.1 with the parameters obtained by solving a system of the form 1.2. In
practice, however, one would always prefer to work directly using equation
2.15. The parameters α1, α2, α3, and α4 can be set by means of leave-one-pair-
out cross validation using equation 2.16.

3 Theoretical Considerations

In sections 3.1 and 3.2 we show how the four methods of section 2 are re-
lated via special kernels and algebraic equivalences. We establish several
links that are specific for settings A, B, C, or D. Therefore, each result is
formulated as a theorem that indicates the setting to which it applies in its
header. In section 3.3, the universality of the Kronecker product pairwise
kernels is proven. This result provides a theoretical justification for the ob-
servation that Kronecker-based systems often obtain very satisfactory per-
formance in empirical studies. The universality is also used to prove the
consistency of the methods that we analyze. This is done in section 3.4 via
a spectral interpretation. In addition, this interpretation also allows us to
illustrate that two-step kernel ridge regression adopts a special decompos-
able filter.

3.1 Equivalence between Two-Step and Other Kernel Ridge Regres-
sion Methods. The relation between two-step kernel ridge regression and
independent-task ridge regression is given in the following theorem.

Theorem 1 (setting B). When the Gram matrix of the tasks G is full rank and λv

is set to zero, independent-task KRR and two-step KRR return the same predictions
for any given training task:

f IT
j (·) ≡ f TS(·, v j ).

Proof. The prediction for the independent-task KRR is given by

f IT
j (u) = [k�(K + λuI)−1Y] j .

For two-step KRR, it follows from equation 2.12 that

f TS
j (u) = [k�(K + λuI)−1YG−1G] j

= [k�(K + λuI)−1Y] j.

�
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When G is singular, the q outputs for the different tasks are projected on
a lower-dimensional subspace by two-step KRR. This means that a depen-
dence between the tasks is enforced even when λv = 0.

The connection between two-step and Kronecker KRR is established by
the following results.

Theorem 2 (setting A). Consider the following pairwise kernel matrix:

� = G ⊗ K (λuλvI ⊗ I + λvI ⊗ K + λuG ⊗ I)−1
.

The predictions for the training data F using pairwise KRR (see equation 2.9) with
the above pairwise kernel and regularization parameter λ = 1 correspond to those
obtained with two-step KRR using the kernel matrices K, G with respective regu-
larization parameters λu and λv .

Proof. We will formulate the corresponding empirical risk minimization
of equation 2.4 from the perspective of value regularization. Since setting A
is an imputation setting, we directly search for the optimal predicted label
matrix F rather than the optimal parameter matrix. Starting from the objec-
tive function for Kronecker KRR, the predictions for the training data are
obtained through minimizing the following variational function:

J(F) = vec(F − Y)�vec(F − Y) + vec(F)��−1vec(F) (3.1)

= vec(F − Y)�vec(F − Y)

+ vec(F)�(G ⊗ K (λuλvI ⊗ I + λvI ⊗ K + λuG ⊗ I)−1)−1vec(F)

= vec(F − Y)�vec(F − Y)

+ vec(F)�
(
G−1 ⊗ K−1 (λuλvI ⊗ I + λvI ⊗ K + λuG ⊗ I)

)
vec(F)

= vec(F − Y)�vec(F − Y)

+ vec(F)�
(
λuλvG−1 ⊗ K−1 + λuI ⊗ K−1 + λvG−1 ⊗ I

)
vec(F)

= tr((F − Y)�(F − Y) + λuλvF�K−1FG−1

+ λuF�K−1F + λvF�FG−1).

The derivative with respect to F is given by

∂J(F)
∂F

= 2(F − Y + λuλvK−1FG−1 + λuK−1F + λvFG−1)

= 2(λuK−1 + I)F + 2(λuK−1 + I)(λvFG−1) − 2Y

= 2(λuK−1 + I)F(λvG−1 + I) − 2Y.
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Setting it to zero and solving with respect to F yields

F = (λuK−1 + I)−1Y(λvG−1 + I)−1

= K(K + λuI)−1Y(G + λvI)−1G.

Comparing with equation 2.14, we note that F = KATSG, which proves the
theorem. �

Here, we have assumed that K and G are invertible. Note that the kernel
� can always be obtained as long as K and G are positive semidefinite. The
relevance of theorem 2 is that it formulates two-step KRR as an empirical
risk minimization problem for setting A (see equation 3.1). It is important
to note that the pairwise kernel matrix � appears only in the regularization
term of this variational problem. The loss function is dependent on only the
predicted values F and the label matrix Y. Using two-step KRR for setting A
when dealing with incomplete data is thus well defined. The empirical risk
minimization problem of equation 3.1 can be modified so that the squared
loss takes only the observed dyads into account:

J′(F) =
∑

(u,v,y)∈S

(y − f (u, v )))2 + vec(F)��−1vec(F), (3.2)

with S the training set of labeled dyads. In this case, one ends up with a
transductive setting. This explains why setting A is the easiest setting to
predict, for, as in transductive learning, one only has to predict for a finite
number of dyads known during training, in contrast to inductive learning,
where the model has to make predictions for any new dyad, a harder prob-
lem (Chapelle, Schölkopf, & Zien, 2006). (See Rifkin & Lippert, 2007, and
Johnson & Zhang, 2008 for a more in-depth discussion.)

Two-step and Kronecker KRR also coincide in an interesting way for set-
ting D (e.g., the special case in which there is no labeled data available for
the target task). This in turn will allow us to show the consistency of two-
step KRR via its universal approximation and spectral regularization prop-
erties. Theorem 3 shows the relation between two-step KRR and ordinary
Kronecker KRR for setting D.

Theorem 3 (setting D). Consider a setting with a complete training set. Let
f TS(·, ·) be a model trained with two-step KRR and f OKKLS(·, ·) be a model trained
with ordinary Kronecker kernel least-squares regression (OKKLS) using the fol-
lowing pairwise kernel function on U × V :

ϒ ((u, v ), (ū, v̄ )) = (k (u, ū) + λuδ (u, ū)) (g (v, v̄ ) + λvδ (v, v̄ ))) , (3.3)
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where δ is the delta kernel whose value is 1 if the arguments are equal and 0 oth-
erwise. Then for making predictions for instances u ∈ U \ U and tasks v ∈ V \ V
not seen in the training set, it holds that f TS(u, v ) = f OKKLS(u, v ).

Proof. From equation 2.12, we have the following dual model for predic-
tion:

f TS(u, v ) =
m∑

i=1

q∑
j=1

aTS
i j k(u, ui)g(v, v j ),

with ATS = [aTS
i j ] the matrix of parameters. Similarly, the dual representa-

tion of the OKKLS (see equation 2.7) using a parameterization AOKKLS =
[aOKKLS

i j ] is given by

f OKKLS(u, v ) =
m∑

i=1

q∑
j=1

aOKKLS
i j ϒ

((
u, v ), (ui, v j

))

=
m∑

i=1

q∑
j=1

aOKKLS
i j (k(u, ui) + λuδ(u, ui))(g(v, v j ) + λvδ(v, v j )))

=
m∑

i=1

q∑
j=1

aOKKLS
i j k(u, ui)g(v, v j ).

In the last step, we used the fact that u �= ui and v �= v j to drop the delta
kernels. Hence, we need to show that ATS = AOKKLS.

By equation 2.14 and denoting G̃ = (G + λI)−1 and K̃ = (K + λI)−1, we
observe that the model parameters ATS of the two-step model can also be
obtained in the following closed form:

ATS = K̃YG̃. (3.4)

The kernel matrix of ϒ for setting D can be expressed as ϒ = (G + λvI) ⊗
(K + λuI) . The OKKLS problem with kernel ϒ being

vec(AOKKLS) = arg min
A∈Rm×q

(vec(Y) − ϒvec(A))� (vec(Y) − ϒvec(A)) ,

its minimizer can be expressed as

vec(AOKKLS) = ϒ−1vec(Y) =
(

(G + λvI)
−1 ⊗ (K + λuI)

−1
)

vec(Y)

= vec
(

(K + λuI)
−1 Y (G + λvI)

−1
)

= vec
(

K̃YG̃
)

. (3.5)
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Here we again make use of property 1 in the appendix. From equation 3.5,
it then follows that ATS = AOKKLS, which proves the theorem. �

3.2 Smoother Kernels Lead to the Linear Filter. Here, we show that
using Kronecker KRR in tandem with certain kernels results in the linear
filter of section 2.4. When no good features of the objects are available, we
propose to use different kernels, agnostic of the true objects:

kSM(u, ū) = 1 + θuδ(u, ū),

gSM(v, v̄ ) = 1 + θvδ(v, ū),

or, equivalently, as Gram matrices:

K = Jm×m + θuIm and G = Jq×q + θvIq. (3.6)

Here, θu and θv are two hyperparameters of the kernels, Jm×m is an m × m
matrix filled with ones, and Jq×q is an q × q matrix filled with ones. We call
these kernels smoother kernels for reasons that will become clear. The ratio-
nale behind these kernels is quite simple: a kernel that is the identity matrix
would imply that all objects are unique and independent; there is no simi-
larity between them. However, using the all-ones matrix encodes all objects
being exactly the same; no distinction between two objects can be made.
Hence, the kernels of equation 3.6 represent a trade-off between all objects
being similar (first part) and all objects being unique (second part). This is
controlled by the hyperparameters θu and θv .

Using these kernels in the Kronecker-based models has an interesting in-
terpretation: the predictions can be written as a weighted sum of averages.

Theorem 4 (smoother kernels). Predictions using Kronecker KRR for setting A
using the Gram matrices, equation 3.6, are of the form

f (ui, v j ) = α1Yi j + α2
1
q

q∑
l=1

Yil + α3
1
m

m∑
k=1

Yk j + α4
1

mq

m∑
k=1

q∑
l=1

Ykl,

with (α1, α2, α3, α4) ∈ R4.

Proof. For setting A, the hat matrix of equation 1.3 transforms the label ma-
trix in the prediction matrix. The hat matrix HSM for Kronecker KRR using
these smoother kernels can be obtained by applying equation 2.10:

HSM = a1Iq ⊗ Im + a2Jq ⊗ Im + a3Iq ⊗ Jm + a4Jq ⊗ Jm. (3.7)

This can easily be seen because the pairwise Gram matrix will be of the
form 3.7 and properties 3 and 4 state that multiplying or inverting matrices
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of the form 3.7 results in a matrix of the same form. From these properties,
it follows that the hat matrix will also be of this form.

The prediction for dyad (ui, v j ) is given by [HSMvec(Y)] jq+i. Using the
relation between the Kronecker product and the vectorization operation,
each term of equation 3.7 can be rewritten using property 1 as follows:

a1[(Iq ⊗ Im)vec(Y)] jm+i = a1[ImYIq]i j = a1Yi j,

a2[(Jq×q ⊗ Im)vec(Y)] jm+i = a2[ImYJq×q]i j = a2

q∑
l=1

Yil,

a3[(Iq ⊗ Jm×m)vec(Y)] jm+i = a3[Jm×mYIq]i j = a3

m∑
k=1

Yk j,

a4[(Jq×q ⊗ Jm×m)vec(Y)] jm+i = a4[Jm×mYJq×q]i j = a4

q∑
l=1

m∑
k=1

Ykl,

which proves the theorem. �

The smoother kernel is thus quite restrictive in the type of models that
can be learned. It can only exploit the fact that some rows or columns have
a larger average value (e.g., in item recommendation, some items in col-
laborative filtering have a high average rating, independent for the user).
Nevertheless, it can lead to good baseline predictions for setting A and is
particularly useful for small data sets with no side features, such as species
interaction networks.

3.3 Universality of the Kronecker Product Pairwise Kernel. Here we
consider the universal approximation properties of Kronecker KRR and, by
theorems 2 and 3, of two-step KRR. This is a necessary step in showing the
consistency of the latter method. First, recall the concept of universal kernel
functions.

Definition 2 (Steinwart, 2002). A continuous kernel k(·, ·) on a compact metric
space X (i.e., X is closed and bounded) is called universal if the reproducing kernel
Hilbert space (RKHS) induced by k(·, ·) is dense in C(X ), where C(X ) is the space
of all continuous functions f : X → R.

The universality property indicates that the hypothesis space induced by
a universal kernel can approximate any continuous function on the input
space X to be learned arbitrarily well, given that the available set of train-
ing data is large and representative enough and the learning algorithm can
efficiently find this approximation from the hypothesis space (Steinwart,
2002). In other words, the learning algorithm is consistent in the sense that,
informally put, the hypothesis learned by it gets closer to the function to be
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learned while the size of the training set gets larger. The consistency prop-
erties of two-step KRR are considered in more detail in section 3.4.

Next, we consider the universality of the Kronecker product pairwise
kernel. The following result is a straightforward modification of some of
the existing results in the literature (e.g., Waegeman et al., 2012), but it is
presented here for self-containedness. This theorem is mainly related to set-
ting D but also covers the other settings as special cases.

Theorem 5. The kernel �KK((·, ·), (·, ·)) on U × V defined in equation 2.6 is uni-
versal if the instance kernel k(·, ·) on U and the task kernel g(·, ·) on V are both
universal.
Proof. Let us define

A ⊗ B = {
t | t(u, v ) = a(u)b(v ), a ∈ A, b ∈ B

}
(3.8)

for compact metric spaces U and V and sets of functions A ⊂ C(U ) and B ⊂
C(V ). We observe that the RKHS of kernel � can be written as H(k) ⊗ H(g),
where H(k) and H(g) are the RKHS of kernels k(·, ·) and g(·, ·), respectively.

Let ε > 0, and let t ∈ C(U ) ⊗ C(V ) be an arbitrary function that, according
to equation 3.8, can be written as t(u, v ) = a(u)b(v ), where a ∈ C(U ) and b ∈
C(V ). By definition of the universality property, H(k) and H(g) are dense in
C(U ) and C(V ), respectively. Therefore, there exist functions ā ∈ H(k) and
b̄ ∈ H(g) such that

max
u∈U

∣∣ā(u) − a(u)
∣∣ ≤ ε̄, max

v∈V
∣∣b̄(v ) − b(v )

∣∣ ≤ ε̄,

where ε̄ is a constant for which it holds that

max
u∈U ,v∈V

{∣∣ε̄ a(u)
∣∣ + ∣∣ε̄ b(v )

∣∣ + ε̄2} ≤ ε.

Note that according to the extreme value theorem, the maximum exists due
to the compactness of U and V and the continuity of the functions a(·) and
b(·). Now we have

max
u∈U ,v∈V

∣∣t(u, v ) − ā(u)b̄(v )
∣∣

≤ max
u∈U ,v∈V

∣∣t(u, v ) − a(u)b(v )
∣∣ + ∣∣ε̄ a(u)

∣∣ + ∣∣ε̄ b(v )
∣∣ + ε̄2

= max
u∈U ,v∈V

∣∣ε̄ a(u)
∣∣ + ∣∣ε̄ b(v )

∣∣ + ε̄2 ≤ ε,

which confirms the density of H(k) ⊗ H(g) in C(U ) ⊗ C(V ).
The space U × V is compact if both U and V are compact according to

Tikhonov’s theorem. It is straightforward to see that C(U ) ⊗ C(V ) is a sub-
algebra of C(U × V ); separates points in U × V , vanishes at no point of
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C(U × V ), and is therefore dense in C(U × V ) due to the Stone-Weierstraß
theorem. Thus, H(k) ⊗ H(g) is also dense in C(U × V ), and � is a universal
kernel on U × V . �

3.4 Spectral Interpretation and Consistency. In this section we study
the difference between independent task, Kronecker, and two-step KRR
from the point of view of spectral regularization. The universal approxi-
mation properties of this kernel, already shown, are also connected to the
consistency properties of two-step KRR, as we elaborate in more detail in
this section.

Learning by spectral regularization originates from the theory of ill-
posed problems. This paradigm is well studied in domains such as image
analysis (Bertero & Boccacci, 1998) and, more recently, machine learning
(e.g., Lo Gerfo, Rosasco, Odone, De Vito, & Verri, 2008). Here, one wants
to find the parameters α of the data-generating process given a set of noisy
measurements y such that

�α ≈ y, (3.9)

with � a Gram matrix with eigenvalue decomposition � = W�W�. At first
glance, one can find the parameters α by inverting �:

α = �−1y

= W�−1W�y.

If � has small eigenvalues, the inverse becomes highly unstable: small
changes in the feature description of the label vector will lead to huge
changes in α. Spectral regularization deals with this problem by general-
izing the inverse by a so-called filter function to make solving equation
3.9 well posed. The following definition of a spectral filter–based regular-
izer is standard in the machine learning literature (see, e.g., Lo Gerfo et al.,
2008). Note that we assume �((·, ·), (·, ·)) being bounded with κ > 0 such
that supx∈X

√
�(x, x) ≤ κ , ensuring that the eigenvalues of the Gram matrix

� are in [0, κ2].

Definition 3 (admissible regularizer). A function ϕλ : [0, κ2] → R, parameter-
ized by 0 < λ ≤ κ2, is an admissible regularizer if there exist constants D, B, γ ∈
R, and ν̄, γν > 0 such that

sup
0<σ≤κ2

|σϕλ(σ )| ≤ D, sup
0<σ≤κ2

|ϕλ(σ )| ≤ B
λ

, sup
0<σ≤κ2

|1 − σϕλ(σ )| ≤ γ ,

and sup
0<σ≤κ2

λν

σ ν
|1 − σϕλ(σ )| ≤ γν, for any ν ∈ ]0, ν̄],

where the constant γν does not depend on λ.



2266 M. Stock et al.

In the literature, the constant ν̄ is called the qualification of the regular-
izer, and it is related to the consistency properties of the learning method,
as we will describe in more detail.

The spectral filter is a matrix function that acts as a stabilized generaliza-
tion of a matrix inverse. Hence, equation 3.9 can be solved by

α = ϕλ(�)y

= Wϕλ(�)W�vec(Y).

Similarly, the noisy measurements can be filtered to obtain a better estima-
tion of the true labels:

f = �α

= W�W�Wϕλ(�)W�vec(Y)

= W�ϕλ(�)W�vec(Y).

The spectral interpretation allows for using a more general form of the hat
matrix (see equation 2.10):

H� = W�ϕλ(�)W�.

For example, the filter function corresponding to the Tikhonov regulariza-
tion, as used for independent-task KRR, is given by

ϕTIK
λ (σ ) = 1

σ + λ
,

with the ordinary least-squares approach corresponding to λ = 0. Several
other learning approaches, such as spectral cutoff, iterated Tikhonov, and
L2 boosting, can also be expressed as filter functions, but they cannot be
expressed as a penalized empirical error minimization problem analogous
to equation 2.4 (Lo Gerfo et al., 2008). The spectral interpretation can also
be used to motivate novel learning algorithms.

Many authors have expanded this framework to multitask settings
(e.g., Baldassarre et al., 2012; Argyriou, Micchelli, Pontil, & Ying, 2007; Ar-
gyriou, Micchelli, Pontil, & Massimiliano, 2010). We translate the pairwise
learning methods from section 2 to this spectral regularization context. Let
us denote the eigenvalue decomposition of the instance and task kernel ma-
trices as

K = U�U� and G = VSV�.

Let ui denote the ith eigenvector of K and v j the jth eigenvector of G.
The eigenvalues of the kernel matrix obtained with the Kronecker product
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pairwise kernel on a complete training set can be expressed as the Kro-
necker product � = S ⊗ � of the eigenvalues � and S of the instance and
task kernel matrices. For the models in this letter, it is opportune to define
a pairwise filter function over the representation of the instances and tasks.

Both of the factor kernels are assumed to be bounded, and hence we can
write that all the eigenvalues ς of the Kronecker product kernel can be fac-
torized as the product of the eigenvalues of the instance and task kernels as
follows:

ς = σ s with 0 ≤ σ, s ≤ a
√

ς and 1 ≤ a < ∞, (3.10)

where σ, s denote the eigenvalues of the factor kernels and a the constant
determined as the product of supu∈U

√
k(u, u) and supv∈V

√
g(v, v ).

Definition 4 (pairwise spectral filter). We say that a function ϕλ : [0, κ2] → R,
parameterized by 0 < λ ≤ κ2, is a pairwise spectral filter if it can be written as

ϕλ(ς ) = ϑλ(σ, s)

for some function ϑλ : [0, a
√

ς]2 → R with 1 ≤ a < ∞, and it is an admissible
regularizer for all possible factorizations of the eigenvalues as in equation 3.10.

Since the eigenvalues of a Kronecker product of two matrices are just
the scalar product of the eigenvalues of the matrices, the filter function for
Kronecker KRR is given by

ϑKK
λ (s, σ ) = ϕTIK

λ (σ s) = 1
(σ s + λ)

, (3.11)

where σ and s are the eigenvalues of K and G, respectively. The admissi-
bility of this filter is a well-known result, since it is simply the Tikhonov
regularizer for the pairwise Kronecker product kernel.

Instead of considering two-step KRR from the kernel point of view, one
can also cast it into the spectral filtering regularization framework. We start
from equation 2.14, in vectorized form:

vec(A) = (
(G + λvI)−1 ⊗ (K + λuI)−1) vec(Y)

= (
(VSV� + λvI)−1 ⊗ (U�U� + λuI)−1) vec(Y)

= (
(VϕTIK

λv
(S)V�) ⊗ (UϕTIK

λu
(�)U�)

)
vec(Y)

= (
(V ⊗ U)(ϕTIK

λv
(S) ⊗ ϕTIK

λu
(�))(V ⊗ U)�

)
vec(Y).

Hence, one can interpret two-step KRR with a complete training set for set-
ting D as a spectral filtering regularization–based learning algorithm that
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uses the pairwise Kronecker product kernel with the following filter func-
tion:

ϑTS
λ (s, σ ) = ϕTIK

λv
(s)ϕTIK

λu
(σ )

= 1
(σ + λu)(s + λv )

= 1
σ s + λvσ + λus + λvλu

. (3.12)

The validity of this filter is characterized by the following theorem:

Theorem 6. The filter function ϑTS
λ (·, ·) is admissible with D = B = γ = 1, γν =

2ab, and has qualification ν̄ = 1
2 for all factorizations of ς and λ as

ς = σ s and λ = λvλu with 0 ≤ σ, s ≤ a
√

ς and 0 < λv , λu ≤ b
√

λ,

(3.13)

where 1 ≤ a, b < ∞ are constants that do not depend on λ or ς .

Proof. Let us recollect the last condition in definition 3:

sup
0<ς≤κ2

ςν

λν
|1 − ςϕλ(ς )| ≤ γν, for any ν ∈ ]0, ν̄],

where γν does not depend on λ. In order to show this for all cases covered
by equation 3.13, we rewrite the condition by taking the supremum with
respect to the factorizations of ς and λ given the constants a and b:

sup
0 < ς ≤ κ2

0 < λv , λu ≤ b
√

λ

0 < σ, s ≤ a
√

ς

ςν

λν

(
1 − ς

ς + λvσ + λus + λ

)
≤ γν, for any ν ∈ ]0, ν̄].

The left-hand side then becomes

sup
0<ς≤κ2

ςν

λν

(
1 − ς

ς + 2ab
√

λ
√

ς + λ

)
= sup

0<ς≤κ2

(
2abλ

1
2 −νςν+ 1

2 + λ1−νςν

ς + 2ab
√

λ
√

ς + λ

)
.

By checking the extreme values of the latter expression with respect to
(ς, λ, ν) using standard differential calculus, we observe that it is bounded
by γν = 2ab if ν ∈ ]0, 1

2 ]. With values of ν̄ larger than 1
2 , the term 2abλ

1
2 −νςν+ 1

2

in the numerator grows arbitrarily while λ → 0, and hence the qualification
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is ν̄ = 1
2 . The other conditions in definition 3 can be verified by direct

computation. �

Thus, equation 3.12 can be positioned within the spectral filtering
regularization-based framework with separate regularization parameter
values for instances and tasks. In contrast to equation 3.11, the filter of two-
step KRR can be factorized into a component for the tasks and instances
separately:

ϑλ(s, σ ) = ϕλu (σ )ϕλv
(s). (3.14)

Providing a different regularization for instances and tasks also makes
sense from a learning point of view. It is easy to imagine a setting in which
the instance has a much larger influence in determining the label compared
to the task, or vice versa. For example, consider a collaborative filtering
setting with the goal of recommending books for customers. Suppose that
the sales of a book are for a very large part determined simply by being a
best-seller novel or not, and less by an individual customer’s taste. When
building a predictive model, one would give more freedom to the part con-
cerning the books (hence a lower regularization). Lesser degrees of freedom
are given to the inference of the user’s personal task, as this is harder to
learn and explains less of the variance in the preferences. This can be ex-
tended even further by choosing specific filter functions separately for the
instances and tasks tuned to the application at hand. In a pairwise setting,
the filter function to perform independent-task KRR arises as a special case
with λv = 0,

ϑ IT
λv

(s, σ ) = 1
(σ + λu)s

,

when the task kernel is full rank (see theorem 1).
Next, we analyze the consistency properties of two-step KRR in set-

ting D, given the above results about the universality of the pairwise
Kronecker product kernel and the spectral filtering interpretation of the
method. Let R(·) denote the expected prediction error of a hypothesis f with
respect to some unknown probability measure ρ(x, y) on the joint space
X × R of inputs and labels, that is,

R( f ) =
∫
X×R

( f (x) − y)2dρ(x, y).

Given the input space X , the minimizer of the error is the so-called regres-
sion function:
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fρ (x) =
∫
R

y dρ(y | x).

Following Baldassarre et al. (2012), Lo Gerfo et al. (2008), and Bauer,
Pereverzev, and Rosasco (2007), we characterize the quality of a learning al-
gorithm via its consistency properties, in particular, by considering whether
the learning algorithm is consistent in the sense of definition 5:

Definition 5. A learning algorithm is consistent if the following holds with high
probability,

lim
n→∞

∫
X

(
f̂ λ
n (x) − fρ (x)

)2
dρ(x) = 0,

where f̂ λ
n denotes the hypothesis inferred by the learning algorithm from a training

set having n independent and identically drawn training examples.

The following result is assembled from the existing literature concerning
spectral filtering-based regularization methods, and we present it here only
in a rather abstract form. (For the details and further elaboration, we refer
to Baldassarre et al., 2012; Lo Gerfo et al., 2008; and Bauer et al., 2007.)

Theorem 7. If the filter function is admissible and the kernel function is universal,
then the learning algorithm is consistent in the sense of definition 5. Furthermore,
if the regularization parameter is set as λ = 1

n2ν̄+1 , where n denotes the number
of independent and identically drawn training examples, the following holds with
high probability:

R( f̂ λ) − R( fρ (x)) = O
(

n− ν̄
2ν̄+1

)
. (3.15)

Intuitively put, the universality of the kernel ensures that the regression
function belongs to the hypothesis space of the learning algorithm, and the
admissibility of the regularizer ensures that R( f̂ λ) converges to it when the
size of the training set approaches infinity and the rate of convergence is
reasonable.
Corollary 1. Two-step KRR is consistent, and the hypothesis it infers from the
training set of size n = mq converges to the underlying regression function with a
rate at least proportional to

R( f̂ λ) − R( fρ (u, v )) = O
(

min(m, q)−
ν̄

2ν̄+1

)
. (3.16)

Proof. The result follows from the admissibility of the pairwise filter func-
tion, the universality of the pairwise Kronecker product kernel and the fact
that the training set consists of at least min(m, q) independent and identi-
cally drawn training examples. �
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Hence, it is proven that the two-step KRR is not only a universal method
(can approximate any pairwise prediction function) but will also converge
to the prediction function that generated the data when provided with
enough training examples.

4 Related Work

In section 1, we argued that it remains important to study the theoreti-
cal properties of kernel methods for three reasons: (1) kernel methods are
general-purpose instruments, (2) they often serve as building blocks for
more complicated methods, and (3) they clearly outperform other meth-
ods for specific scenarios such as cross-validation. As such observations
have been reported in other papers, including quantitative results on real-
world data sets, we see no merit in providing additional experimental evi-
dence. We refer to other work that pairwisely compares the kernel methods
discussed in this letter with other machine learning methods (e.g.,
Ding, Takigawa, Mamitsuka, & Zhu, 2013; Romera-Paredes & Torr, 2015;
Schrynemackers, Wehenkel, Babu, & Geurts, 2015; Stock, Poisot, Waege-
man, & De Baets, 2017). However, it remains important to outline the com-
monalities and differences with other methods. In what follows, we subdi-
vide these methods according to their applicability to settings A, B, C, or D.

4.1 Methods That Are Applicable to Setting A. In this section, we re-
view methods for setting A—matrix completion methods. In section 2, such
methods were claimed to be useful for a pairwise learning setting with
partially observed matrices Y. Both u and v are observed, but not for all
instance-target combinations. In setting A, side information about instances
or targets is not required per se. We hence distinguish between methods that
ignore side information and methods that also exploit such information, in
addition to analyzing the matrix Y.

Inspired by the Netflix challenge in 2006, the former type of meth-
ods has been mainly popular in the area of recommender systems. Those
methods often impute missing values by computing a low-rank approxi-
mation of the sparsely filled matrix Y, and many variants exist in the litera-
ture, including algorithms based on nuclear norm minimization (Candes &
Recht, 2008), gaussian processes (Lawrence & Urtasun, 2009), probabilistic
methods (Shan & Banerjee, 2010), spectral regularization (Mazumder et al.,
2010), nonnegative matrix factorization (Gaujoux & Seoighe, 2010), graph-
regularized nonnegative matrix factorization (Cai, He, Han, & Huang,
2011), and alternating least-squares minimization (Jain, Netrapalli, & Sang-
havi, 2013). In addition to recommender systems, matrix factorization meth-
ods are commonly applied to social network analysis (Menon & Elkan,
2010), biological network inference (Gönen, 2012; Liu, Sun, Guan, Zheng,
& Zhou, 2015), and travel time estimation in car navigation systems (Dem-
bczyński, Kotłowski, Gawel, Szarecki, & Jaszkiewicz, 2013).
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In addition to matrix factorization, a few other methods exist for setting
A. Historically, memory-based collaborative filtering has been popular, and
corresponding methods are very easy to implement. They make predictions
for the unknown cells of the matrix by modeling a similarity measure be-
tween either rows or columns (see, e.g., Takács, Pilászy, Németh, & Tikk,
2008). For example, when rows and columns correspond to users and items,
respectively, one can predict novel items for a particular user by searching
for other users with similar interests. To this end, different similarity mea-
sures are commonly used, including cosine similarity, Tanimoto similarity,
and statistical similarity measures (Basnou, Vicente, Espelta, & Pino, 2015).

Many variants of matrix factorization and other collaborative methods
have been presented in which side information of rows and columns is con-
sidered during learning, in addition to exploiting the structure of the matrix
Y (see, e.g., Basilico and Hofmann, 2004; Abernethy, Bach, Evgeniou, & Vert,
2008; Adams, Dahl, & Murray, 2010; Fang & Si, 2011; Zhou, Chen, & Ye, 2011;
Menon & Elkan, 2011; Zhou, Shan, Banerjee, & Sapiro, 2012; Gönen, 2012;
Liu & Yang, 2015; Ezzat, Zhao, Wu, Li, & Kwoh, 2017). One simple but ef-
fective method is to extract latent feature representations for instances and
targets in a first step, and combine those latent features with explicit fea-
tures in a second step (Volkovs & Zemel, 2012). To this end, the methods
that have been described in this letter could be used, as well as other pair-
wise learning methods that depart from explicit feature representations.

4.2 Methods That Are Applicable to Settings B and C. When side in-
formation is available for the objects u and v , it would be pointless to ignore
this information. The hybrid filtering methods from the previous paragraph
seek to combine the best of both worlds by simultaneously modeling side
information and the structure of Y. In addition to setting A, they can often
be applied to settings B and C, which coincide, respectively, with a novel
user and a novel item in recommender systems. In that context, one often
speaks of cold-start recommendations.

However, when focusing on settings B and C only, a large bunch of ma-
chine learning methods is closely connected to pairwise learning. In fact,
many multitarget prediction problems can be interpreted as specific pair-
wise learning problems. All multitask learning problems, and multilabel
classification and multivariate regression problems as special cases, can be
seen as pairwise learning problems by calling u an instance and v a la-
bel (target/output/task). (We refer readers to Waegeman, Dembczynski, &
Hüllermeier, 2018), for a recent review on connections between multitarget
prediction problems and pairwise learning.

Multitask learning, multilabel classification, and multivariate regression
are huge research fields, so it is beyond the scope of this letter to give an
in-depth review of all methods developed in those fields. Moreover, not
all multitarget prediction methods are relevant for the discussion we in-
tend to provide. Roughly speaking, simple multitarget prediction methods
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consider side information for only one type of object, let’s say the objects
u, which represent the instances. No side information is available for the
targets, which could then be denoted v . Since no side information is avail-
able for the targets, simple multitarget prediction methods can be applied to
only settings B and C. We note that u and v are interchangeable, so settings
B and C are identical settings from a theoretical point of view.

The situation changes when side information in the form of relations or
feature representations becomes available for both instances and targets. In
such a scenario, multitarget prediction methods that process side informa-
tion about targets are more closely related to the pairwise learning meth-
ods that are analyzed in this letter. We will therefore provide a thorough
review of such methods in the next section. Furthermore, the availability
of side information on both instance and target level implies that setting D
can now be covered, in addition to settings B and C. Exploiting side infor-
mation about targets has two main purposes: it might boost the predictive
performance in settings B and C, and it is essential for generalizing to novel
targets in setting D.

4.3 Methods That Are Applicable to Settings B, C, and D. In setting D,
side information for both u and v is essential for generalizing to zero-shot
problems, such as a novel target molecule in drug discovery, a novel tag in
document tagging, or a novel person in image classification. In this area,
kernel methods have played a prominent role in the past, but tree-based
methods are also commonly used (Geurts, Touleimat, Dutreix, & D’Alché-
Buc, 2007; Schrynemackers et al., 2015). In bioinformatics, a subdivision
is usually made between global methods, which construct one predictive
model, and local methods, which separate the problem into several sub-
problems (Vert, 2008; Bleakley & Yamanishi, 2009; Schrynemackers et al.,
2013).

Factorization machines (Rendle, 2010; Steffen, 2012) deserve special
mention here, as they can be seen as an extension of matrix factorization
methods toward settings B, C, and D. They work by simultaneously learn-
ing a lower-dimensional feature embedding and a polynomial (usually of
degree two) predictive model. Factorization machines can effectively cope
with large, sparse data sets frequently encountered in collaborative and
content-based filtering. For such problems, they are expected to outperform
kernel methods. Their main drawback, however, is that training them be-
comes a nonconvex problem and requires relatively large data sets to train.
The relation between factorization machines, polynomial networks, and
kernel machines was recently explored by Blondel, Ishihata, Fujino, and
Ueda (2016).

In recent years, specific zero-shot learning methods based on deep learn-
ing have become extremely popular in image classification applications.
The central idea in all those methods is to construct semantic feature repre-
sentations for class labels, for which various techniques might work. One
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class of methods constructs binary vectors of visual attributes (Lampert,
Nickisch, & Harmeling, 2009; Palatucci et al., 2009; Liu, Kuipers, & Savarese,
2011; Fu, Hospedales, Xiang, & Gong, 2013). Another class of methods
rather considers continuous word vectors that describe the linguistic con-
text of images (Mikolov, Chen, Corrado, & Dean, 2013; Frome et al., 2013;
Socher et al., 2013).

Many zero-shot learning methods for image classification adopt princi-
ples that originate from kernel methods. The model structure can often be
formalized as follows:

f (u, v ) = wT(
φ(u) ⊗ ψ (v )

)
, (4.1)

with w a parameter vector and φ an embedding of an object in a high-
dimensional feature space. This model in fact coincides with the primal
formulation of equation 2.3 with � the Kronecker product pairwise kernel.
Different optimization problems with this model have been proposed
(Frome et al., 2013; Akata, Reed, Walter, Lee, & Schiele, 2015; Akata,
Perronnin, Harchaoui, & Schmid, 2016), and related methods provide non-
linear extensions (Socher et al., 2013; Xian et al., 2016). Most of these op-
timization problems do not minimize squared error loss, and they should
rather be seen as structured output prediction methods. Indeed, a represen-
tation such as equation 4.1 is in fact commonly used in structured output
prediction methods. These methods additionally have inference procedures
that allow for finding the best-scoring targets in an efficient manner.

Some of the zero-shot learning methods from computer vision also turn
out to be useful for the related field of text classification. For documents,
it is natural to model a latent representation for both the (document) in-
stances and class labels in a joint space (Nam, Loza Mencía, & Fürnkranz,
2016). Nonetheless, many of those approaches are tailor-made for particu-
lar application domains. In contrast to kernel methods, they do not provide
general purpose tools for analyzing general data types.

5 Conclusion

In this work we have studied several models derived from kernel ridge
regression. First, we independently derived single-task kernel ridge regres-
sion, Kronecker kernel ridge regression, and two-step kernel ridge regres-
sion and the linear filter. Subsequently, we have shown that they are all
related; two-step kernel ridge regression and the linear filter are a spe-
cial case of pairwise kernel ridge regression, itself being merely kernel
ridge regression with a specific pairwise kernel. From this, universality and
consistency results could be derived, motivating the general use of these
methods.
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Pairwise learning is a broadly applicable machine learning paradigm.
It can be applied to problems as diverse as multitask learning, content
and collaborative filtering, transfer learning, network inference, and zero-
shot learning. This work offers a general tool kit to tackle such problems.
Despite being easy to implement and computationally efficient, kernel
methods have been found to attain an excellent performance on a wide va-
riety of problems. We believe that the intriguing algebraic properties of the
Kronecker product will serve as a basis for developing novel learning al-
gorithms, and we hope that the results of this work will be helpful in that
regard.

Appendix: Matrix Properties

The trick of pairwise learning is transforming a matrix in a vector. This can
be done by the vectorization operation.

Definition 6 (vectorization). The vectorization operator vec(·) is a linear operator
that transforms an n × m matrix A in a column vector of length nm by stacking
the columns of A on top of each other.

Further, the Kronecker product is defined as follows:

Definition 7 (Kronecker product). If A = [ai j] is an n × m matrix and B = [i j]
is an p × q matrix, then the Kronecker product A ⊗ B is the mp × nq block matrix:

A ⊗ B =

⎡⎢⎣ a11B . . . a1mB
...

. . .
...

an1B . . . anmB

⎤⎥⎦ .

For instance, if

A =
[

a11 a12

a21 a22

]
and B =

[
b11 b12

b21 b22

]
,

then

vec(A) =

⎡⎢⎢⎢⎣
a11

a12

a21

a22

⎤⎥⎥⎥⎦ and A ⊗ B =

⎡⎢⎢⎢⎣
a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

⎤⎥⎥⎥⎦ .

The relation between vectorization and the Kronecker product is given by
the following property:
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Property 1. For any conformable matrices N, M and X, it holds that

(N� ⊗ M)vec(X) = vec(MXN).

Computing the Kronecker product of two reasonably large matrices re-
sults in a huge matrix, often too large to fit in computer memory. If the Kro-
necker product is needed only in an intermediary step, the above identity
can be used to dramatically reduce computation time and memory require-
ment.

Using the eigenvalue decomposition of matrices, a large system of equa-
tions using the Kronecker product can be solved efficiently.

Property 2 (Pahikkala et al., 2013). Let A, B ∈ Rn×n be diagonalizable matri-
ces, that is, matrices that can be eigendecomposed as

A = V�V−1 and B = U�U−1,

where V, U ∈ Rn×n contain the eigenvectors and the diagonal matrices
�,� ∈ Rn×n contain the corresponding eigenvalues of A and B. Then the
following type of shifted Kronecker product system,

(A ⊗ B + λI)a = vec(Y), (A.1)

where λ > 0 and Y ∈ Rn×n, can be solved with respect to a in O(n3) time if
the inverse of (A ⊗ B + λI) exists.

Proof. By multiplying both sides of equation A.1 by (A ⊗ B + λI)−1, it is
relatively straightforward to show that

a = vec(V(C � E)(U�)−1), (A.2)

with � the Hadamard product (element-wise matrix multiplication),

E = U−1Y(V−1)�

and

diagm(vec(C)) = (� ⊗ � + λI)−1.

The eigendecompositions of A and B, as well as all matrix multiplications
in equation A.2, can be computed in O(n3) time. �

Finally, we present two matrix identities that are useful in deriving the
linear filter of section 3.2. Consider two matrices of the form
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A = a1Im ⊗ Iq + a2Jm ⊗ Iq + a3Im ⊗ Jq + a4Jm ⊗ Jq

and

B = b1Im ⊗ Iq + b2Jm ⊗ Iq + b3Im ⊗ Jq + b4Jm ⊗ Jq.

Two properties can easily be deduced.

Property 3. The product C = AB is given by

C = c1Im ⊗ Iq + c2Jm ⊗ Iq + c3Im ⊗ Jq + c4Jm ⊗ Jq,

with

c1 = a1b1,

c2 = a1b2 + a2b1 + a2b2m,

c3 = a1b3 + a3b1 + a3b3q,

c4 = a1b4 + a2b3 + a2b4m + a3b2 + a3b4q + a4b1 + a4b2m + a4b3q + a4b4mq.

Property 4. The inverse D = A−1 is given by

D = d1Im ⊗ Iq + d2Jm ⊗ Iq + d3Im ⊗ Jq + d4Jm ⊗ Jq,

with

d1 = 1
a1

,

d2 = −a2

a1(a1 + a2m)
,

d3 = −a3

a1(a1 + a3q)
,

d4 = (a2(a1 + a3q)(a3 + a4m) + a3(a1 + a2m)(a2 + a3q + a4q)

− a4(a1 + a2m)(a1 + a3q))(a2(a1 + a2m)(a1 + a3q)(a1 + a2m

+ a3q + a4mq))−1.
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