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Abstract

Large-scale phosphoproteome profiling using mass spectrometry (MS) provides functional insight that is crucial for disease biology
and drug discovery. However, extracting biological understanding from these data is an arduous task requiring multiple analysis
platforms that are not adapted for automated high-dimensional data analysis. Here, we introduce an integrated pipeline that
combines several R packages to extract high-level biological understanding from large-scale phosphoproteomic data by seamless
integration with existing databases and knowledge resources. In a single run, PhosPiR provides data clean-up, fast data overview,
multiple statistical testing, differential expression analysis, phosphosite annotation and translation across species, multilevel
enrichment analyses, proteome-wide kinase activity and substrate mapping and network hub analysis. Data output includes graphical
formats such as heatmap, box-, volcano- and circos-plots. This resource is designed to assist proteome-wide data mining of
pathophysiological mechanism without a need for programming knowledge.
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Introduction
Protein phosphorylation is a reversible post-translational
modification (PTM) catalyzed by protein kinases of
the transferase class [1]. Since its discovery in 1932,
numerous studies have highlighted the importance of
phosphorylation as a central regulatory process in cells
[2]. High numbers of often tightly interconnected phos-
phoproteins participate in cell signaling and all aspects of
cellular function from proliferation and differentiation
to metabolism and neurotransmission, to name a few
[3–5]. Phosphorylation is the most abundant ‘signaling’
PTM exceeding ubiquitination, methylation and acety-
lation [6]. To understand how complex phosphorylation
changes, especially shifts introduced by pathophysiolog-
ical states coordinate function, systems-level phospho-
proteomics study becomes necessary [6]. Advanced mass
spectrometry methods enable high-throughput mea-
surement of phosphoproteomes [7], however traditional

downstream analysis does little beyond phosphopeptide
identification and quantification. Recent developments
in R packages have taken advantage of protein phos-
phorylation databases and annotation advances, thereby
supporting the creation of an analysis tool that can better
exploit phosphopeptide data.

Here we introduce PhosPiR, a pipeline which takes
advantage of available open-source tools for a complete
downstream analysis of mass spectrometry-derived
data after phosphopeptide identification. No programing
knowledge is required to run the pipeline. Our workflow
consists of peptide quality control, data overviewing
with histogram, boxplot, heatmap, and principal com-
ponent analysis (PCA) plots, data annotation utilizing
UniProt and Ensembl database, differential expres-
sion analysis including four statistical test options
and post hoc testing, phosphosite translation across
species, four enrichment analyses for phosphoproteins,
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Figure 1. Flowchart overview of pipeline architecture. The main pipeline steps are outlined. Information on software packages utilized and/or
information on the approach used is provided in adjoining boxes.

post-translational modification set enrichment analysis
(PTM-SEA) for phosphopeptide, kinase analysis, network
analysis and hub analysis (Figure 1). The pipeline is
accompanied by video tutorials and we exemplify the
functionality of the tool using previously published
large-scale phosphoproteomic study of circadian clock
changes in synaptoneuroscomes [8].

Methods
The current pipeline marks version 1.1.

Input data
PhosPiR accepts output files directly from MaxQuant
or preprocessed files from similar MS data processing
platforms that provide peptide sequence identification
and intensity data on PTMs [9]. The input file from
MaxQuant for PhosPiR is the ‘Phospho (STY)Sites.txt’
file from the ‘combined/txt’ folder within MaxQuant.
In case another spectra analysis tool is preferred
instead of MaxQuant, such as Progenesis, Spectronaut,
openMS or PEAKS, the user should select ‘Other’ for
data input. The input format for this option is explained
in Supplementary Table 1A, and demonstrated with an
example input file in Supplementary Table 1B. The steps
for user data input are also outlined in the user support
videos found at https://youtu.be/c7n7yE0DMsA (short
setup introduction video), and https://youtu.be/n4EagNo

xusI (long pipeline run demonstration and result file
introduction video). To start the workflow, simply run
the ‘run.R’ script in R program with version 4.0.3 or
above. R can be downloaded from https://www.r-proje
ct.org/

Special input generation
If the input file is ‘Phospho (STY)Sites.txt’ directly
from MaxQuant, the pipeline will automatically remove
MaxQuant-marked reverse sequences and potential con-
taminants and sum the intensities for each phosphosite
entry. However, if the user wishes to keep track of possibly
falsely labeled potential contaminant sequences, or have
the analysis done on individual phosphosite intensities
separated by sequence phosphocount number for each
site (similar to the ‘expand site’ option in Perseus), a
‘Special Input Generation’ step can be selected, where
details can be found in Supplementary Table 1C. This is
specific for MaxQuant output and is not included as part
of the analysis in the ‘All steps’ choice of the analysis run
option.

Filtering and normalization setup
Filtering and normalization steps are implemented as
data preprocessing. It is important to understand the
data and make educated choices here to bring forth the
most reliable result. Rows and/or columns with excessive
missing values can be filtered out here. The user can
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also choose not to filter. For normalization, there are
three choices, normalize and impute, only normalize,
or neither. proBatch package [10] and MSImpute pack-
age [11] are utilized for normalization and imputation,
respectively. Median normalization is performed when
‘only normalize’ is chosen. Quantile normalization and
low-rank approximation imputation is performed when
‘normalize and impute’ is chosen. These normalization
methods were chosen as they have proven successful
with phosphoproteomics [8, 10, 12]. Imputation requires
at least four nonmissing values per row, if the input data
do not satisfy this requirement, the user will be forced to
choose one of the other two options.

Other information setup
Organism information, sample group information and
comparison information needed to be setup by the user.
PhosPiR provides a prompt window accompanied by a
guide for the setup process. For organism selection, the
user should highlight an organism from the organism
list, or if the organism is not available from the list, select
‘Other’ from the list, then input the scientific name of the
source organism. A few analysis steps are only available
for human, mouse or rat data.

For sample group information, the user could set
it up either by inputting an information file or by
setting up groups within the pipeline. For the first
option, a template of the information file is included
in Supplementary Table 2. Both .csv and .xlsx formats
are accepted by PhosPiR. For the second option, the user
will be asked how many group classifications are found
in the data, for each classification, a brief description is
entered, e.g. treatment or genotype, followed by group
order. Group order is recorded from the user’s selection
of sample names in a list of all sample names within
the dataset for each group. After the user has selected
samples for group 1, the pipeline asks if the current group
classification contains another group, upon pressing
‘yes’, the list of all sample names will be displayed again,
this time with all previously selected samples marked
with their respective group numbers. The selection
process repeats until all groups from the current group
classification are setup. Multiple group comparisons
can also be setup by providing an information file
(Supplementary Table 2) or going through the pipeline
process. In case of setting up in PhosPiR, the user
chooses the group classification first, and then enters,
e.g. ‘1,2’ to specify the groups that should be compared
against each other. The process can be repeated for
as many group comparisons are wished. Lastly, the
user can select whether to run all analysis steps,
or only special input generation/annotation/overview
figure/differential analysis step. After setup, PhosPiR
will run the analyses automatically, however, between
analyses, step-specific choices will be given to the user,
and the pipeline will not continue until the user has
responded.

Overview figures
Several figures will be plotted automatically in order to
provide an overview of the data distribution. Boxplot and
histograms are suitable visuals for comparing sample
distributions. Heatmaps, PCA with k-means clustering,
and 3D PCA plots will automatically display the results
from unsupervised clustering of the data, providing
informative biological patterns from the data. Heatmap
clustering utilizes Euclidean distance and complete-
linkage clustering. Two heatmaps are generated, one with
only column (sample) clustering, and one with column
and row clustering. K-means clustering on PCA plot sets
the number of clusters to the reference group count
number plus 1. Log 2 intensity values are automatically
generated and used for overview figures. Missing values
are assigned intensity of 1. A few packages are utilized
for this step. Boxplot and histogram are plotted with
‘ggplot2’ [13]; heatmap is plotted with ‘pheatmap’ [14];
PCAs and 3D PCA are plotted with ‘fingerprint’ [15],
‘vegan’ [16], ‘rgl’ [17], ‘FactoMineR’ [18], ‘factoextra’ [19],
‘plot3D’ [20] and ‘magick’ [21].

Data annotation
A data annotation step utilizes information from all
organisms found in the Ensembl database to identify
for example reviewed accession and phosphorylation
site position, Entrez ID, genome position of the protein,
human ortholog genome position, accession, identify
score and sequence alignment, protein pathology,
expression, PTMs, subcellular location and links to
publications containing information on the protein in
question. For each unique protein i.d., this information is
extracted from both the Ensembl and Uniprot database.
For nonhuman organisms, the human ortholog informa-
tion is also included for comparison. Due to the long run
time, the user has the choice to opt out of UniProt and
human ortholog information mining.

Nonhuman organism data usually have many unre-
viewed accessions within the dataset. Some databases
such as PhosphoSitePlus, host site information based on
Swiss-Prot accessions, and does not include unreviewed
accessions. This results in difficulties matching the
input phosphosite identity to the database’s information.
PhosPiR solves this issue by identifying the Swiss-Prot
accession for the protein and aligning the sequences
to generate the equivalent reviewed phosphosite posi-
tion. This reviewed site information can be used for
database searches by data annotation tools, thereby
maximizing the identification of associated biological
information. Human ortholog information allows for
direct comparison of model organism data to human
information. Pairwise alignment to human ortholog
protein sequences allows the user to identify orthologous
phosphorylation sites in human for any site of interest
identified in their organism. Sequence alignment should
only serve as a reference. Although it should be accurate
for alignments with high identity scores, its practicality
decreases as sequence identify score decreases. The
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following packages are utilized for this step: ‘biomaRt’
[22], ‘Biostrings’ [23], ‘GenomicAlighments’ [24], ‘protr’
[25] and ‘UniprotR’ [26].

Differential expression analysis
Statistical tests are performed based on the group
comparison setup. The user selects whether or not the
data are paired in the given comparison and is offered
a choice of statistical tests. For two group comparisons,
fold change is automatically calculated. The fold change
direction is determined by the group number, where the
group with the larger number is the numerator. Group
numbering should therefore take this into account.
Four statistical tests T-test, Wilcoxon signed-rank test,
reproducibility-optimized test statistic (ROTS) and rank
product test can be chosen. T-test should not be chosen
for nonparametric data. All tests can be selected if
desired. Each test will yield a P-value and an FDR value
for each data row. For a multiple group comparison,
ANOVA with post hoc Tukey HSD Test will be performed
if the groups are not paired, and linear mixed effect (LME)
modeling is performed if groups are paired. Next, the user
can set thresholds based on P-value or FDR for example.
The significant lists will then be used as input for
enrichment and network analyses. The user can choose
volcano plots to visualize the statistical results. Multiple
comparisons (maximum 4) can be plotted together. Based
on the selected statistical cutoff, significant entries in the
plot will be labeled if the number of significant changes
is less than 60 in total. ROTS analysis utilizes the ‘ROTS’
package [27], ‘RankProd’ [28] performs the rank product
analysis, ‘multcompView’ [29], ‘lsmeans’ [30] and ‘nlme’
[31] are ultilized for LME modeling. ‘ggrepel’ [32] and
‘gridExtra’ [33] are utilized in addition to ‘ggplot2’ for
volcano plots.

Enrichment analysis
Enrichment analysis is performed on both phospho-
protein intensity data and phosphosite data. Protein
level enrichment utilizes the ‘clusterProfiler’ package
[34]. This powerful analysis tool enables gene ontology
(GO) enrichment, Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment and cell marker
enrichment, and for human data, disease-association
enrichment. For KEGG analysis, it automatically utilizes
the current latest online version of KEGG database which
for example includes the COVID-19 pathway from the
newest release (v.98). All the listed enrichment analyses
are performed for each significant list created earlier.
Both universal background and dataset background are
applied for separate analyses. Only enrichments with
significant entries are recorded as a result. Phosphosite
enrichment utilizes the ‘PTM-SEA’ (PTM-signature
enrichment analysis) tool and its library PTMsigDB [35].
PTMsigDB curates detailed PTM information based on
perturbation-induced site-specific changes, such as the
direction of phosphorylation change upon a signaling
event, and the affected signature sets that are collectively

regulated. PTM-SEA analysis is performed on the entire
dataset for all group comparisons. It is available for
human, mouse and rat.

Kinase–substrate analysis
A kinase–substrate relationship analysis is performed
with the ‘KinSwingR’ package [36], on each group com-
parison. It predicts a kinase–substrate interactome based
on a library of motifs, and then integrates the fold change
direction and P-value from the statistical results, to cal-
culate a normalized swing score. The score resembles a
z-score which predicts kinases’ activity changes. The P-
value is calculated to determine the significance level
based on a permutation test. PhosPiR utilizes the latest
kinase information from the PhosphoSitePlus human,
mouse and rat data for customized kinase library [37]
instead of the kinase dataset included in KinSwingR,
which has become outdated and is only available for
human.

A kinase–substrate network Circos plot is automati-
cally created with the ‘circlize’ package [38] which shows
the top 250 significant substrates. Kinases are connected
with edges to their specific substrate sites with phospho-
rylation sites grouped by phosphoprotein.

Phosphoprotein/protein network analysis
The phosphoprotein network is built using the ‘STRINGdb’
package [39]. The STRING tool uses its own protein–
protein interaction database which is used in PhosPiR to
build an interaction network from each significant data
list. Only interactions with greater than 0.4 confidence
score (ranging from 0 to 1) are included in the STRING
network figure (e.g. Supplementary Figure 1). The user
can choose to identify hubs from within each network,
and a hub interaction-enrichment score is also calcu-
lated. Hub phosphoproteins represent highly connected
proteins within the network and are therefore likely to
be functionally informative. The user can also choose
from two cutoffs for defining hubs: the top 10% highest
interactions, or an interaction count of 1 SD above the
mean. The hub interaction enrichment is calculated
by generating 1000 control networks for each hub and
comparing hub interactions in control networks to the
query network. Both P-value and FDR are presented in
the result.

Results
Description of example setup and output
To demonstrate the functionality of PhosPiR, we analyzed
synaptoneurosome phosphoproteome data from Brüning
et al. [8]. In the original study, the authors studied the
phosphorylation changes over time in synaptic terminals
(otherwise known as synaptoneurosomes) from sleep-
deprived mice and control mice. Here, we compared the
overall differences in synaptoneurosome protein phos-
phorylation from mice while awake or asleep under con-
trol or sleep-deprived conditions.
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The original study processed the synaptoneurosome
phosphopeptide data with the EasyPhos platform. The
sleep/wake cycles were controlled as follows: mice were
kept in a light:dark 12 hours cycle, synaptoneurosomes
were taken every 4 hours (n = 4) in a single day for sleep-
deprived mice and baseline mice, totaling to 48 samples
[8]. For the reanalysis of this data, we downloaded the
raw MS files from the PRIDE database with identifier
PXD010697. Taking the original data preparation as a
reference [8], we preprocessed the raw data in a similar
fashion using MaxQuant 1.6.17.0 [9] and Perseus 1.6.7.0
[40] (Supplementary Table 1). When inputting the pre-
processed data into PhosPiR, ‘Neither’ was selected for
normalization and imputation, as it is done outside of the
pipeline.

The folder organization of the output files from Phos-
PiR is shown schematically in Supplementary Figure 2.
The Group Information folder describes the group com-
parisons as setup by the user. Examples of group
information can be found in Supplementary Tables 3
and 4, respectively. In the Overview Figure folder, the
overall data distribution is visualized in several ways
including histograms, heat-maps, PCA and boxplots
plots. An example is shown in Supplementary Figure 3.
The Statistical Analysis folder presents the statistical
data including significance threshold for several tests
as well as volcano plot output of significantly changing
phosphopeptides or proteins, for each comparison
and for every statistical test selected. Examples of
statistical analysis output are shown in Figure 2A and
Supplementary Table 5. The Enrichment folder stores
the protein-centric result on cell marker enrichment,
GO enrichment and KEGG enrichment (Figure 2B and
Supplementary Table 6), and peptide-centric PTM-SEA
enrichment result. PTM-SEA data are stored in the
PhosphoSite enrichment subfolder, which includes
converted. GCT input files and PTM-SEA analysis
results, one per comparison, each in its own folder.
Example rank plots of phosphorylation signatures
can be found in Figure 2C. Kinase Analysis folder
includes predicted significant kinases analyzed from
KinSwingR, and resembled by swing scores, similar to
z-scores for kinase activity change, and P-values, which
indicate the significance of this change. Kinase activities
are evaluated from the entire set rather than from
the significant list. Examples of motif diagrams and
kinase swing score output can be found in Figure 3 and
Supplementary Table 7, respectively. The Network folder
provides interaction figures of kinases to substrates
spinning off from kinase analysis (Figure 4), also provides
output from the STRING database network analysis
and hub significance analysis. Examples are shown in
Supplementary Figure 1 and Figure 5. The Annotation
folder includes important ID information, UniProt
database information, human homolog information
and sequence alignment for all proteins as well as
phosphorylation sites from the dataset. An example of
human homolog ID information and UniProt database

information can be found in Supplementary Tables 8 and
9, respectively.

Description of example results
The MS data used here [8], incorporated intensity data
for 13 634 phosphosites from which, 8386 remained after
filtering. Among these, PhosPiR identified 61 known dis-
ease associated phosphorylation sites, and 256 known
regulatory sites using the automatic detection annota-
tion tools (Supplementary Tables 10 and 11). The group
comparisons (control versus sleep-deprived, and wake
period versus sleep period with or without sleep depri-
vation), identified 367 significantly changing phosphory-
lation sites with fold change ≥2, and Rank product FDR
of <0.05. These results can be seen from volcano plot
and csv file output (Figure 2A, Supplementary Table 12).
Interestingly, the proteins with significantly altered phos-
phorylation between wake and sleep time were enriched
for changes on the dopaminergic synapse pathway, as
shown in Figure 2B. Thus, significant phosphopeptide
changes were identified for voltage gated ion channels
VGCC, VSSC and Cav2.1/2.2, and for signaling proteins
PLC, PKC and CamKII (Figure 2).

In the phosphosite-centric enrichment analysis, the
signature set ‘rapamycin’ was 40% downregulated and
the ‘mTOR’ signature set was 14% upregulated, in sleep-
deprived synaptoneurosomes (Figure 2C), consistent
with known negative regulation of mTOR by Rapamycin
[41]. This demonstrates the utility of the PhosPiR
pipeline to make functionally accurate predictions
as the mTOR pathway is known to regulate sleep-
deprivation induced responses [42, 43]. Moreover, as
the PhosPiR identifies specific phosphorylation sites
from these signature sets, as well as their regulatory
function, where documented (Supplementary Table 13),
far more detailed mechanistic insight can be gained
using PhosPiR’s integrated approach than would be
possible with a stand-alone phosphosite analysis. This is
further supported by the PhosPiR kinase activity analysis,
which uses the KinSwingR package to predict kinase
activity changes (Figure 3, Supplementary Table 14).

Examples of identified kinase substrates that undergo
altered phosphosphorylation at synapses during wake
versus sleep hours, or following sleep deprivation, are
shown in the Circos plots in Figure 4A and B. In Figure 4A,
neurofilament M (NEFM) which shows the greatest fold
change in phosphorylation (−115×) can be seen to be
regulated by SRC, ADRBK1 (GRK2), CSNK1D and PRKCD
in synaptoneurosomes when comparing wake hours to
sleep hours. Examination of the corresponding statistics
file reveals that RPS6KA1 has the most increased activ-
ity among kinases based on motif phosphorylation, and
PRKCZ shows the largest decrease in activity during wake
hours in sleep-deprived mice based on observed phos-
phorylation changes on known kinase motifs (Figure 4B).
This figure also highlights mTOR, this time as one of
the kinases with the largest number of substrates that
undergo altered phosphorylation in synaptoneurosomes
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Figure 2. Sample output from the statistical and enrichment analysis feature of PhosPiR. Phosphoproteome changes in synaptoneurosomes of sleep-
deprived versus normal sleep cycle mice. (A) Normalized phosphoproteomic data were loaded to PhosPiR. Automated statistical analysis was done on
user-defined group comparisons for up to four statistical tests and visualized as volcano plots and csv files. A representative volcano plot is shown for
the rank product FDR statistical analysis output. Significant proteins are labeled in the volcano plots only when there are ≤60 significant datapoints,
otherwise the labels overlap. In this example the number of significant hits are >60. Every volcano plot is accompanied by a csv file providing detailed
numerical output from all statistical tests, including UniProt and gene accession identifiers. (B) PhosPiR performs several enrichment analyses on the
data, e.g. GO, cell marker and KEGG enrichment analyses. The KEGG analysis output is shown from the comparison between wake and sleep time
synaptoneurosomes phosphopoteome, as an example. (C) Phosphosite enrichment using the post-translational modification set enrichment analysis
(PTM-SEA) compares synaptoneurosomes from sleep-deprived mice and control mice during wake hours. Enrichment P-values and FDR (adjusted P-
value) are indicated. This analysis highlights synaptic upregulation of mTOR pathway phosphorylation in sleep-deprived mice. Information on specific
proteins and regulated sites are found in the accompanying csv file in the Enrichment\PhosphoSite enrichment folder.

from sleep-deprived mice. The precise substrates; adhe-
sion G-protein coupled receptor L1 (LPHN1), cell cycle
exit and neural differentiation protein 1 (CEND1), piccolo
(PCLO), F-actin mono-oxygenase (MICAL3), spectrin beta
chain (SPTBN1), MARCKS, GJA1 and MAP1B, and their
altered phosphorylation sites, can be read directly from
the plot (Figure 4B).

The hub analysis of protein phosphorylation in
synaptoneurosomes during wake time versus sleep time
has identified that the NMDA receptor subunit GRIN2B
was a highly significant signaling hub (Figure 5A).
This is consistent with several reports pointing to
NMDAR in sleep regulation especially in the context
of autoimmune encephalitis-induced sleep disturbance
[44, 45]. Similarly, SHANK3 was highly connected to
the changing phosphoproteins, consistent with its
reported action in the control of circadian rhythm
[46]. Synapsin I (SYN1), a neurotransmitter release
regulatory protein, was also highly networked with
the wake cycle phosphoproteins. SYN1 has previously
been associated with synaptic changes following sleep

deprivation [47]. Conversely, in sleep-deprived mice,
there were fewer hubs overall consistent with the
finding of Bruning et al., which showed that phospho-
rylation cycling was reduced upon sleep deprivation
[8]. Nonetheless, synapsin I, neurofilament (NEFM) and
MAPT showed increased connectivity to the regulated
phosphoproteins (Figure 5B). MAPT phosphorylation has
been shown to increase upon sleep-deprivation stress
[48]. Thus, PhosPiR automated analysis identified known
regulators of sleep/wake cycle and sleep-deprivation
stress in synaptic terminal preparations from mouse
brain. Moreover, PhosPiR provides site-specific and
network information that can assist detailed parsing of
mechanism.

PhosPiR also enables kinase–substrate predictions and
links to kinase activity directional changes. Moreover, as
all identified sites are matched to their human homolog
with pairwise alignment (Supplementary Table 15).
Analysis of pathological implications could be further
confirmed from database search of aligned homolog
sites. These are some of the highlights of PhosPiR.
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Figure 3. PhosPiR utilizes the KinSwingR tool to predict increases or decreases in kinase activities for defined group comparisons. PhosPiR integrates the
KinSwingR tool which assesses local connectivity (swing) of kinase–substrate networks. Automated output from PhosphoPiR kinase analysis predicts
regulated kinase activity based on identified substrate motifs. The final swing score is a normalized and weighted score of predicted kinase activity.
Swing scores, positive and negative represent the direction of kinase activity change. Representative output tiffs are shown and accompanying csv file
(ComparisonX_swingscore) is found in the Kinase analysis output folder.

Discussion

PhosPiR is an automated pipeline that does not require
any coding knowledge from its user. It integrates several
new phosphoproteomic analysis tools such as PTM-SEA
and KinSwingR into a single pipeline while it simulta-
neously translates phosphoproteomic data from model

organisms to human in order to exploit a range of cus-
tomized databases that facilitate identification of func-
tionally relevant information.

Although all analysis steps are automatic, the pipeline
retains flexibility through its setup options. The user is
free to fully customize group comparisons. For example,
in addition to the examples shown here, a time series

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbab510/6456296 by Turun Yliopiston Kirjasto user on 17 January 2022



8 | Hong et al.

Figure 4. Kinase substrate network prediction tool. PhosPiR performs a proteome-wide kinase analysis using the KinSwingR package as shown (Figure 3).
The PhosPiR Network Analysis tool finds the top kinase–substrate relations and presents them in a Circos plot. (A and B) Predicted kinase–substrate
connections from the significantly changing data for group comparisons (A) wake hours versus sleep hours from control mice and (B) sleep deprived
versus control mice during wake hours are shown. Colored ribbons link the kinase of interest with the substrate phosphorylation site that is significantly
changed in the comparison. Predictions rely on known kinase–substrate phosphorylation sites. Only the top 250 most significant kinase–substrate
relationships are plotted, to facilitate labeling. All output data are available in the accompanying csv file ComparisonX_significant_kinaseNetwork.

Figure 5. PhosPiR identifies network hubs based on protein:protein interactions. Sample output from the Network Analysis tool hub analysis is shown in
(A) and (B). Hubs are defined as proteins with interaction number > 1 SD from the mean. Hub significance is calculated from the number of interactions
within the data set compared to 1000 equal sized background datasets randomly generated from the total data. The hub interaction count in the
background dataset is shown as a boxplot, and interaction count (hubness) in the target network is indicated by a red star. FDR values calculated from
the permutation test are indicated above the boxplots. Hubs from comparisons of sleep deprived versus control mice during wake hours, and wake
hours versus sleep hours from sleep-deprived mice are shown in (A) and (B), respectively.

analysis can also be included, by choosing the pairwise
multigroup comparison option. All user options are pre-
sented with textboxes created using the ‘svDialogs’ pack-
age [49] creating a straightforward and seamless experi-
ence for the user. Although the pipeline can be applied

also to nonphosphoproteomic data, several of the func-
tions are specific to phosphoproteomics. For example,
the ortholog alignment function, PTM-SEA enrichment
analysis, kinase–substrate analysis and the kinase net-
work figure generation all rely on phosphorylation-site
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information. Among the unique features is the ortholog
alignment tool that provides a human reference site for
every single phosphorylation-site from mouse or rat. An
important benefit of PhosPiR is that it integrates sev-
eral packages, such as PTM-SEA that utilize customized,
curated libraries that contain up to date information. The
integrated ‘kinase analysis’ function in PhosPiR not only
predicts which kinases are linked to the input data, but
also predicts activity changes based on the generated
statistics. The ‘kinase network’ function clearly labels
substrate phosphosite position and organizes them by
protein, thereby providing a clear visual summary for
significant kinase substrate changes.

Many important functions of the pipeline come from
recently developed, powerful R-packages, which the
pipeline unifies and provides important customizations.
For example, most of the included analysis packages
require strict input formats and generate diverse
output formats. PhosPiR utilizes packages such as
‘reshape2’ [50], ‘vroom’ [51], ‘openxlsx’ [52], ‘textreadr’
[53], ‘plyr’ [54] and ‘cmapR’ [55] to transform data
between analysis steps, so that input requirements
are satisfied, and output results are unified. Output
figures are expanded from the originals, modified
with packages such as ‘gplots’ [56], ‘gridExtra’ [33]
and ‘RColorBrewer’ [57] to be informative at a glance.
Many more packages are utilized and listed within
Method section, we wanted to include all of them
to offer their functionalities and customizations to a
wider audience of nonbioinformaticians. PhosPiR also
supports a wide range of organisms. With the exclusion
of the disease ontology semantic enrichment analysis,
kinase analysis and PTM-SEA which search only human
data, whereas all other analysis steps support up to 18
organisms.

Our pipeline offers unique functionalities compared
to even the most recent analysis packages such as
PhosR [58], which provides a kinase analyses toolkit
for bioinformaticians working in R coding language.
In contrast, the PhosPiR workflow does not require
coding knowledge and can be performed by nonbioin-
formaticians. Furthermore, PhosPiR provides automated
protein and site annotation from UniProt, Ensembl
and PhosphoSitePlus. The annotation files provide
information on functionality and associated pathologies.
Scientific references for identified functions are included
in the output. Another unique feature of the pipeline is
the protein-centric network and hub analysis, which pro-
vides aligned sequence information on human homolog
when for example the input data are from a model organ-
ism. Finally, the annotations accompanying the kinase
enrichment function (using the PTM-SEA database) takes
into account directionality of phosphorylation change
when identifying pathology and regulatory signatures.
These many exclusive features enable users to study
their data from multiple angles and distinguishes
PhosPiR from existing phosphoproteomic data analysis
software.

Conclusion
In summary, PhosPiR is an automated pipeline that
integrates a full range of analysis tools to maximize
the discovery potential for phosphoproteomics datasets.
PhosPiR is compatible with datasets from all MS
spectral interpretation tools. In terms of compati-
bility, most of the analysis tools will support up to
18 different organisms for either phosphoproteomics
or proteomics datasets. In terms of functionality,
PhosPiR performs data preprocessing, normalization
and imputation, figure overviews, statistical analysis,
enrichment analysis, PTM-SEA, kinase analysis, network
and hub analysis, while also carrying out annotation
mining and homolog alignment. Altogether it produces
over 100 result files and figures from an average
dataset, without counting annotation files. In this
paper, we use PhosPiR automated analysis to identify
regulators of sleep/wake cycle and sleep-deprivation
stress in synaptic terminal preparations from a mouse
brain. This identifies known and novel regulators,
thereby validating the pipeline’s utility while at the
same time contributing to discovery. We hope that
PhosPiR will provide an opportunity for users with
limited programming knowledge to experience great
R packages for comprehensive functional prediction
analysis with statistical support, from their phospho-
proteomics data.

Key Points

• PhosPiR is an automatic phosphoproteomics
pipeline which does not require any programing
knowledge from the users.

• In a single run, PhosPiR provides peptide quality
control, data overviewing with histogram, box-
plot, heatmap and PCAs, data annotation uti-
lizing UniProt and Ensembl database, differen-
tial expression analysis including four statisti-
cal test options and post hoc testing, phospho-
site translation across species, four enrichment
analyses for phosphoproteins, PTM-SEA (post-
translational modification set enrichment analy-
sis) for phosphopeptide, kinase analysis, network
analysis and hub analysis.

• We included a variety of recently updated R pack-
age in the pipeline to offer their functionalities
and customizations to a wider audience of non-
bioinformaticians.

• Our code and tutorial videos can be found at
https://github.com/TCB-yehong/PhosPiR.

Supplementary data
Supplementary data are available online at https://acade
mic.oup.com/bib.
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Data availability
Example data are part of the study F. Brüning, S.B. Noya,
T. Bange, S. Koutsouli, J.D. Rudolph, S.K. Tyagarajan, J.
Cox, M. Mann, S.A. Brown and M.S. Robles, ‘Sleep-wake
cycles drive daily dynamics of synaptic phosphorylation,’
Science, vol. 366, pp. eaav3617, 10/11. 2019. It is available
on PRIDE database, at https://www.ebi.ac.uk/pride/archi
ve/projects/PXD010697. The data files generated with
PhosPiR are available at 10.6084/m9.figshare.16583390.
This manuscript is accompanied by a short video tuto-
rial which can be viewed here: https://youtu.be/c7n7yE0
DMsA PhosPiR code can be accessed at https://github.co
m/TCB-yehong/PhosPiR.

Software availability statement
The PhosPiR software is available at the GitHub repos-
itory at the following site: https://github.com/TCB-yeho
ng/PhosPiR. Any issues or questions during the run can
be submitted to the ‘Issue’ tab on our GitHub page. The
tutorial videos can be accessed via these links: https://
youtu.be/c7n7yE0DMsA (short setup introduction video),
https://youtu.be/n4EagNoxusI (long pipeline run demon-
stration and result file introduction video).
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